Original entry on oeis.org
3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472, 6442450944, 12884901888
Offset: 0
- Jason I. Brown, Discrete Structures and Their Interactions, CRC Press, 2013, p. 71.
- T. Ito, Method, equipment, program and storage media for producing tables, Publication number JP2004-272104A, Japan Patent Office (written in Japanese, a(2)=12, a(3)=24, a(4)=48, a(5)=96, a(6)=192, a(7)=384 (a(7)=284 was corrected)).
- Kenji Ohkuma, Atsuhiro Yamagishi and Toru Ito, Cryptography Research Group Technical report, IT Security Center, Information-Technology Promotion Agency, JAPAN.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- K. Bezdek and Tudor Zamfirescu, A Characterization of 3-dimensional Convex Sets with an Infinite X-ray Number, in: Coll. Math. Soc. J. Bolyai 63., Intuitive Geometry, Szeged (Hungary), North-Holland, Amsterdam, 1991, pp. 33-38.
- Allan Bickle, Properties of Sierpinski Triangle Graphs, Springer PROMS 448 (2021) 295-303.
- Yuri Brudnyi and Pavel Shvartsman, Generalizations of Whitney's extension theorem, International Mathematics Research Notices 1994.3 (1994): 129-139.
- J. W. Cannon and P. Wagreich, Growth functions of surface groups, Mathematische Annalen, 1992, Volume 293, pp. 239-257. See Prop. 3.1.
- Tomislav Došlić, Kepler-Bouwkamp Radius of Combinatorial Sequences, Journal of Integer Sequences, Vol. 17, 2014, #14.11.3.
- John Elias, Illustration: 2^n+1 hexagram perimeters
- Lukas Fleischer and Jeffrey Shallit, Words With Few Palindromes, Revisited, arxiv preprint arXiv:1911.12464 [cs.FL], November 27 2019.
- A. Hinz, S. Klavzar, and S. Zemljic, A survey and classification of Sierpinski-type graphs, Discrete Applied Mathematics 217 3 (2017), 565-600.
- Tanya Khovanova, Recursive Sequences
- Roberto Rinaldi and Marco Ripà, Optimal cycles enclosing all the nodes of a k-dimensional hypercube, arXiv:2212.11216 [math.CO], 2022.
- Edwin Soedarmadji, Latin Hypercubes and MDS Codes, Discrete Mathematics, Volume 306, Issue 12, Jun 28 2006, Pages 1232-1239
- D. Stephen, Topology on Finite Sets, American Mathematical Monthly, 75: 739 - 741, 1968.
- Index entries for linear recurrences with constant coefficients, signature (2).
Coordination sequences for triangular tilings of hyperbolic space:
A001630,
A007283,
A054886,
A078042,
A096231,
A163876,
A179070,
A265057,
A265058,
A265059,
A265060,
A265061,
A265062,
A265063,
A265064,
A265065,
A265066,
A265067,
A265068,
A265069,
A265070,
A265071,
A265072,
A265073,
A265074,
A265075,
A265076,
A265077.
Subsequence of the following sequences:
A029744,
A029747,
A029748,
A029750,
A362804 (after 3),
A364494,
A364496,
A364289,
A364291,
A364292,
A364295,
A364497,
A364964,
A365422.
Row sums of (5, 1)-Pascal triangle
A093562 and of (1, 5) Pascal triangle
A096940.
-
a007283 = (* 3) . (2 ^)
a007283_list = iterate (* 2) 3
-- Reinhard Zumkeller, Mar 18 2012, Feb 20 2012
-
[3*2^n: n in [0..30]]; // Vincenzo Librandi, May 18 2011
-
A007283:=n->3*2^n; seq(A007283(n), n=0..50); # Wesley Ivan Hurt, Dec 03 2013
-
Table[3(2^n), {n, 0, 32}] (* Alonso del Arte, Mar 24 2011 *)
-
A007283(n):=3*2^n$
makelist(A007283(n),n,0,30); /* Martin Ettl, Nov 11 2012 */
-
a(n)=3*2^n
-
a(n)=3<Charles R Greathouse IV, Oct 10 2012
-
def A007283(n): return 3<Chai Wah Wu, Feb 14 2023
-
(List.fill(40)(2: BigInt)).scanLeft(1: BigInt)( * ).map(3 * ) // _Alonso del Arte, Nov 28 2019
A112555
Triangle T, read by rows, such that the m-th matrix power satisfies T^m = I + m*(T - I) and consequently the matrix logarithm satisfies log(T) = T - I, where I is the identity matrix.
Original entry on oeis.org
1, 1, 1, -1, 0, 1, 1, 1, 1, 1, -1, -2, -2, 0, 1, 1, 3, 4, 2, 1, 1, -1, -4, -7, -6, -3, 0, 1, 1, 5, 11, 13, 9, 3, 1, 1, -1, -6, -16, -24, -22, -12, -4, 0, 1, 1, 7, 22, 40, 46, 34, 16, 4, 1, 1, -1, -8, -29, -62, -86, -80, -50, -20, -5, 0, 1, 1, 9, 37, 91, 148, 166, 130, 70, 25, 5, 1, 1, -1, -10, -46, -128, -239, -314, -296, -200, -95, -30, -6, 0
Offset: 0
Triangle T begins:
1;
1, 1;
-1, 0, 1;
1, 1, 1, 1;
-1, -2, -2, 0, 1;
1, 3, 4, 2, 1, 1;
-1, -4, -7, -6, -3, 0, 1;
1, 5, 11, 13, 9, 3, 1, 1;
-1, -6, -16, -24, -22, -12, -4, 0, 1;
1, 7, 22, 40, 46, 34, 16, 4, 1, 1;
-1, -8, -29, -62, -86, -80, -50, -20, -5, 0, 1;
...
Matrix log, log(T) = T - I, begins:
0;
1, 0;
-1, 0, 0;
1, 1, 1, 0;
-1, -2, -2, 0, 0;
1, 3, 4, 2, 1, 0;
-1, -4, -7, -6, -3, 0, 0;
...
Matrix inverse, T^-1 = 2*I - T, begins:
1;
-1, 1;
1, 0, 1;
-1, -1, -1, 1;
1, 2, 2, 0, 1;
-1, -3, -4, -2, -1, 1;
...
where adjacent sums in row n of T^-1 gives row n+1 of T.
Sum_{k=0..n} T(n, k)*x^(n-k) =
A165760(n),
A165759(n),
A165758(n),
A165755(n),
A165752(n),
A165746(n),
A165751(n),
A165747(n),
A000007(n),
A000012(n),
A084247(n),
A165553(n),
A165622(n),
A165625(n),
A165638(n),
A165639(n),
A165748(n),
A165749(n),
A165750(n) for x= -9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9 respectively.
Sum_{k=0..n} T(n, k)*x^k =
A166157(n),
A166153(n),
A166152(n),
A166149(n),
A166036(n),
A166035(n),
A091004(n+1),
A077925(n),
A000007(n),
A165326(n),
A084247(n),
A165405(n),
A165458(n),
A165470(n),
A165491(n),
A165505(n),
A165506(n),
A165510(n),
A165511(n) for x = -9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9 respectively. (End)
-
Clear[t]; t[0, 0] = 1; t[n_, 0] = (-1)^(Mod[n, 2]+1); t[n_, n_] = 1; t[n_, k_] /; k == n-1 := t[n, k] = Mod[n, 2]; t[n_, k_] /; 0 < k < n-1 := t[n, k] = -t[n-1, k] - t[n-1, k-1]; Table[t[n, k], {n, 0, 13}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 06 2013 *)
-
{T(n,k)=local(x=X+X*O(X^n),y=Y+Y*O(Y^k)); polcoeff( polcoeff( (1+2*x+x*y)/((1-x*y)*(1+x+x*y)),n,X),k,Y)}
for(n=0,12, for(k=0,n, print1(T(n,k),", "));print(""))
-
{T(n,k)=local(m=1,x=X+X*O(X^n),y=Y+Y*O(Y^k)); polcoeff(polcoeff(1/(1-x*y) + m*x/((1-x*y)*(1+x+x*y)),n,X),k,Y)}
for(n=0,12, for(k=0,n, print1(T(n,k),", "));print(""))
-
def A112555_row(n):
@cached_function
def prec(n, k):
if k==n: return 1
if k==0: return 0
return -prec(n-1,k-1)-sum(prec(n,k+i-1) for i in (2..n-k+1))
return [(-1)^(n-k+1)*prec(n+1, k) for k in (1..n+1)]
for n in (0..12): print(A112555_row(n)) # Peter Luschny, Mar 16 2016
A151575
G.f.: (1+x)/(1+x-2*x^2).
Original entry on oeis.org
1, 0, 2, -2, 6, -10, 22, -42, 86, -170, 342, -682, 1366, -2730, 5462, -10922, 21846, -43690, 87382, -174762, 349526, -699050, 1398102, -2796202, 5592406, -11184810, 22369622, -44739242, 89478486, -178956970, 357913942, -715827882, 1431655766, -2863311530, 5726623062
Offset: 0
-
CoefficientList[Series[(1+x)/(1+x-2x^2),{x,0,40}],x] (* or *) LinearRecurrence[{-1,2},{1,0},40] (* Harvey P. Dale, May 31 2023 *)
A154879
Third differences of the Jacobsthal sequence A001045.
Original entry on oeis.org
3, -2, 4, 0, 8, 8, 24, 40, 88, 168, 344, 680, 1368, 2728, 5464, 10920, 21848, 43688, 87384, 174760, 349528, 699048, 1398104, 2796200, 5592408, 11184808, 22369624, 44739240, 89478488, 178956968, 357913944, 715827880, 1431655768, 2863311528, 5726623064
Offset: 0
-
[(1/3)*(8*(-1)^n+2^n): n in [0..35]]; // Vincenzo Librandi, Jul 24 2011
-
Differences[LinearRecurrence[{1,2},{0,1},40],3] (* or *) LinearRecurrence[ {1,2},{3,-2},40] (* Harvey P. Dale, Apr 20 2018 *)
-
def A154879(n): return ((1<2 else (3,-2,4)[n] # Chai Wah Wu, Apr 18 2025
Typo in A-number in formula corrected by
R. J. Mathar, Feb 23 2009
A135351
a(n) = (2^n + 3 - 7*(-1)^n + 3*0^n)/6; or a(0) = 0 and for n > 0, a(n) = A005578(n-1) - (-1)^n.
Original entry on oeis.org
0, 2, 0, 3, 2, 7, 10, 23, 42, 87, 170, 343, 682, 1367, 2730, 5463, 10922, 21847, 43690, 87383, 174762, 349527, 699050, 1398103, 2796202, 5592407, 11184810, 22369623, 44739242, 89478487, 178956970, 357913943, 715827882, 1431655767, 2863311530, 5726623063, 11453246122, 22906492247, 45812984490
Offset: 0
-
List([0..40], n-> (2^n+3-7*(-1)^n+3*0^n)/6); # G. C. Greubel, Sep 02 2019
-
a135351:=func< n | (2^n+3-7*(-1)^n+3*0^n)/6 >; [ a135351(n): n in [0..32] ]; // Klaus Brockhaus, Dec 05 2009
-
G(x):=x*(2 - 4*x + x^2)/((1-x^2)*(1-2*x)): f[0]:=G(x): for n from 1 to 30 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n]/n!,n=0..30);
-
Join[{0}, Table[(2^n +3 -7*(-1)^n)/6, {n,40}]] (* G. C. Greubel, Oct 11 2016 *)
LinearRecurrence[{2,1,-2},{0,2,0,3},40] (* Harvey P. Dale, Feb 13 2024 *)
-
a(n) = (2^n + 3 - 7*(-1)^n + 3*0^n)/6; \\ Michel Marcus, Oct 11 2016
-
[(2^n+3-7*(-1)^n+3*0^n)/6 for n in (0..40)] # G. C. Greubel, Sep 02 2019
A140642
Triangle of sorted absolute values of Jacobsthal successive differences.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 16, 20, 21, 22, 24, 32, 40, 42, 43, 44, 48, 64, 80, 84, 85, 86, 88, 96, 128, 160, 168, 170, 171, 172, 176, 192, 256, 320, 336, 340, 341, 342, 344, 352, 384, 512, 640, 672, 680, 682, 683, 684, 688, 704, 768, 1024, 1280, 1344, 1360
Offset: 0
The triangle starts
1;
2, 3;
4, 5, 6;
8, 10, 11, 12;
16, 20, 21, 22, 24;
The Jacobsthal sequence and its differences in successive rows start:
0, 1, 1, 3, 5, 11, 21, 43, 85, ...
1, 0, 2, 2, 6, 10, 22, 42, 86, ...
-1, 2, 0, 4, 4, 12, 20, 44, 84, ...
3, -2, 4, 0, 8, 8, 24, 40, 88, ...
-5, 6, -4, 8, 0, 16, 16, 48, 80, ...
11, -10, 12, -8, 16, 0, 32, 32, 96, ...
-21, 22, -20, 24, -16, 32, 0, 64, 64, ...
43, -42, 44, -40, 48, -32, 64, 0, 128, ...
The values +-7, +-9, +-13, for example, are missing there, so 7, 9 and 13 are not in the triangle.
-
maxTerm = 384; FixedPoint[(nMax++; Print["nMax = ", nMax]; jj = Table[(2^n - (-1)^n)/3, {n, 0, nMax}]; Table[Differences[jj, n], {n, 0, nMax}] // Flatten // Abs // Union // Select[#, 0 < # <= maxTerm &] &) &, nMax = 5 ] (* Jean-François Alcover, Dec 16 2014 *)
A166114
a(n) = (6-(-4)^n)/5.
Original entry on oeis.org
1, 2, -2, 14, -50, 206, -818, 3278, -13106, 52430, -209714, 838862, -3355442, 13421774, -53687090, 214748366, -858993458, 3435973838, -13743895346, 54975581390, -219902325554, 879609302222, -3518437208882, 14073748835534, -56294995342130
Offset: 0
A140505
Second differences of Jacobsthal sequence A001045, pairs with even and odd indices swapped.
Original entry on oeis.org
2, -1, 4, 0, 12, 4, 44, 20, 172, 84, 684, 340, 2732, 1364, 10924, 5460, 43692, 21844, 174764, 87380, 699052, 349524, 2796204, 1398100, 11184812, 5592404, 44739244, 22369620, 178956972, 89478484, 715827884, 357913940, 2863311532, 1431655764, 11453246124
Offset: 0
A165553
a(n) = (3/2)*(1+(-3)^(n-1)).
Original entry on oeis.org
1, 3, -3, 15, -39, 123, -363, 1095, -3279, 9843, -29523, 88575, -265719, 797163, -2391483, 7174455, -21523359, 64570083, -193710243, 581130735, -1743392199, 5230176603, -15690529803, 47071589415, -141214768239
Offset: 0
-
3/2*(1 + (-3)^(Range[0, 29] - 1)) (* or *)
LinearRecurrence[{-2, 3}, {1, 3}, 30] (* Paolo Xausa, Apr 22 2024 *)
A166122
a(n) = (7-(-5)^n)/6.
Original entry on oeis.org
1, 2, -3, 22, -103, 522, -2603, 13022, -65103, 325522, -1627603, 8138022, -40690103, 203450522, -1017252603, 5086263022, -25431315103, 127156575522, -635782877603, 3178914388022, -15894571940103, 79472859700522
Offset: 0
-
LinearRecurrence[{-4,5},{1,2},30] (* Harvey P. Dale, Mar 10 2016 *)
Table[(7 - (-5)^n)/6, {n, 24}] (* or *)
CoefficientList[Series[(1 + 6 x)/(1 + 4 x - 5 x^2), {x, 0, 24}], x] (* Michael De Vlieger, Apr 27 2016 *)
Showing 1-10 of 19 results.
Comments