A190958
a(n) = 2*a(n-1) - 10*a(n-2), with a(0) = 0, a(1) = 1.
Original entry on oeis.org
0, 1, 2, -6, -32, -4, 312, 664, -1792, -10224, -2528, 97184, 219648, -532544, -3261568, -1197696, 30220288, 72417536, -157367808, -1038910976, -504143872, 9380822016, 23803082752, -46202054656, -330434936832, -198849327104, 2906650714112, 7801794699264
Offset: 0
Sequences of the form a(n) = c*a(n-1) - d*a(n-2), with a(0)=0, a(1)=1:
c/d...1.......2.......3.......4.......5.......6.......7.......8.......9......10
-
I:=[0,1]; [n le 2 select I[n] else 2*Self(n-1)-10*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 17 2011
-
LinearRecurrence[{2,-10}, {0,1}, 50]
-
a(n)=([0,1; -10,2]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Apr 08 2016
-
[lucas_number1(n,2,10) for n in (0..50)] # G. C. Greubel, Jun 10 2022
A367297
Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 2 + 3*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 - 2*x - x^2.
Original entry on oeis.org
1, 2, 3, 5, 10, 8, 12, 34, 38, 21, 29, 104, 161, 130, 55, 70, 305, 592, 654, 420, 144, 169, 866, 2023, 2788, 2436, 1308, 377, 408, 2404, 6556, 10810, 11756, 8574, 3970, 987, 985, 6560, 20446, 39164, 50779, 46064, 28987, 11822, 2584, 2378, 17663, 61912, 134960, 202630, 218717, 171232, 95078, 34690, 6765
Offset: 1
First eight rows:
1
2 3
5 10 8
12 34 38 21
29 104 161 130 55
70 305 592 654 420 144
169 866 2023 2788 2436 1308 377
408 2404 6556 10810 11756 8574 3970 987
Row 4 represents the polynomial p(4,x) = 12 + 34*x + 38*x^2 + 21*x^3, so (T(4,k)) = (12,34,38,21), k=0..3.
Cf.
A000129 (column 1),
A001906 (p(n,n-1)),
A107839 (row sums, p(n,1)),
A077925 (alternating row sums, p(n,-1)),
A023000 (p(n,2)),
A001076 (p(n,-2)),
A186446 (p(n,-3)),
A094440,
A367208,
A367209,
A367210,
A367211,
A367298,
A367299,
A367300,
A367301.
-
p[1, x_] := 1; p[2, x_] := 2 + 3 x; u[x_] := p[2, x]; v[x_] := 1 - 2 x - x^2;
p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
A367300
Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 3 + 2*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 - 2*x - x^2.
Original entry on oeis.org
1, 3, 2, 10, 10, 3, 33, 46, 22, 4, 109, 194, 131, 40, 5, 360, 780, 678, 296, 65, 6, 1189, 3036, 3228, 1828, 581, 98, 7, 3927, 11546, 14514, 10100, 4194, 1036, 140, 8, 12970, 43150, 62601, 51664, 26479, 8604, 1722, 192, 9, 42837, 159082, 261598, 249720, 152245, 61318, 16248, 2712, 255, 10
Offset: 1
First eight rows:
1
3 2
10 10 3
33 46 22 4
109 194 131 40 5
360 780 678 296 65 6
1189 3036 3228 1828 581 98 7
3927 11546 14514 10100 4194 1036 140 8
Row 4 represents the polynomial p(4,x) = 33 + 46*x + 22*x^2 + 4*x^3, so (T(4,k)) = (33,46,22,4), k=0..3.
Cf.
A006190 (column 1);
A000027 (p(n,n-1));
A107839 (row sums, p(n,1));
A001045 (alternating row sums, p(n,-1));
A030240 (p(n,2));
A039834 (signed Fibonacci numbers, p(n,-2));
A016130 (p(n,3));
A225883 (p(n,-3));
A099450 (p(n,-4));
A094440,
A367208,
A367209,
A367210,
A367211,
A367297,
A367298,
A367299.
-
p[1, x_] := 1; p[2, x_] := 3 + 2 x; u[x_] := p[2, x]; v[x_] := 1 - 2 x - x^2;
p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
A052984
a(n) = 5*a(n-1) - 2*a(n-2) for n>1, with a(0) = 1, a(1) = 3.
Original entry on oeis.org
1, 3, 13, 59, 269, 1227, 5597, 25531, 116461, 531243, 2423293, 11053979, 50423309, 230008587, 1049196317, 4785964411, 21831429421, 99585218283, 454263232573, 2072145726299, 9452202166349, 43116719379147, 196679192563037, 897162524056891, 4092454235158381
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 78).
- Stanley, Richard P. "Some Linear Recurrences Motivated by Stern’s Diatomic Array." The American Mathematical Monthly 127.2 (2020): 99-111.
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1058
- Richard P. Stanley, Some Linear Recurrences Motivated by Stern's Diatomic Array, arXiv:1901.04647 [math.CO], 2019. See p. 3.
- Zeying Xu, Graphical zonotopes with the same face vector, arXiv:1809.08764 [math.CO], 2018.
- Index entries for linear recurrences with constant coefficients, signature (5,-2).
-
a:=[1,3];; for n in [3..30] do a[n]:=5*a[n-1]-2*a[n-2]; od; a; # G. C. Greubel, Oct 23 2019
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-2*x)/(1-5*x+2*x^2) )); // G. C. Greubel, Feb 10 2019
-
a:=[1,3]; [n le 2 select a[n] else 5*Self(n-1)-2*Self(n-2):n in [1..25]]; // Marius A. Burtea, Oct 23 2019
-
spec:= [S,{S=Sequence(Union(Prod(Sequence(Union(Z,Z)),Union(Z,Z)),Z))}, unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
a[0]:=1: a[1]:=3: for n from 2 to 25 do a[n]:=5*a[n-1]-2*a[n-2] od: seq(a[n],n=0..25); # Emeric Deutsch
-
a[0]=1; a[1]=3; a[n_]:= a[n] = 5a[n-1]-2a[n-2]; Table[ a[n], {n, 0, 30}]
LinearRecurrence[{5,-2},{1,3},30] (* Harvey P. Dale, Apr 08 2014 *)
CoefficientList[Series[(1-2x)/(1-5x+2x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Apr 09 2014 *)
-
Vec((1-2*x)/(1-5*x+2*x^2)+O(x^30)) \\ Charles R Greathouse IV, Nov 20 2011
-
def A052984_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1-2*x)/(1-5*x+2*x^2) ).list()
A052984_list(30) # G. C. Greubel, Feb 10 2019
A005824
a(n) = 5*a(n-2) - 2*a(n-4), with initial terms 0,1,1,3.
Original entry on oeis.org
0, 1, 1, 3, 5, 13, 23, 59, 105, 269, 479, 1227, 2185, 5597, 9967, 25531, 45465, 116461, 207391, 531243, 946025, 2423293, 4315343, 11053979, 19684665, 50423309, 89792639, 230008587, 409593865, 1049196317, 1868384047, 4785964411, 8522732505, 21831429421, 38876894431
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Michael De Vlieger, Table of n, a(n) for n = 0..3036
- Milica Anđelić and Carlos M. da Fonseca, On the constant coefficients of a certain recurrence relation: A simple proof, Heliyon (2021) Vol. 7, No. 8, e07764.
- Sean A. Irvine, Walks on Graphs.
- D. Panario, M. Sahin and Q. Wang, A family of Fibonacci-like conditional sequences, INTEGERS, Vol. 13, 2013, #A78.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Jeffrey Shallit, On the worst case of three algorithms for computing the Jacobi symbol, J. Symbolic Comput. 10 (1990), no. 6, 593-610.
- Index entries for linear recurrences with constant coefficients, signature (0,5,0,-2).
-
a[0] = 0; a[1] = 1; a[n_] := a[n] = If[ EvenQ[n], a[n - 1] + 2a[n - 2], 2a[n - 1] + a[n - 2]]; Table[a[n], {n, 0, 31}]
LinearRecurrence[{0,5,0,-2},{0,1,1,3},40] (* Harvey P. Dale, Jul 09 2015 *)
A208341
Triangle read by rows, T(n,k) = hypergeometric_2F1([n-k+1, -k], [1], -1) for n>=0 and k>=0.
Original entry on oeis.org
1, 1, 2, 1, 3, 4, 1, 4, 8, 8, 1, 5, 13, 20, 16, 1, 6, 19, 38, 48, 32, 1, 7, 26, 63, 104, 112, 64, 1, 8, 34, 96, 192, 272, 256, 128, 1, 9, 43, 138, 321, 552, 688, 576, 256, 1, 10, 53, 190, 501, 1002, 1520, 1696, 1280, 512, 1, 11, 64, 253, 743, 1683, 2972, 4048
Offset: 0
First five rows:
1;
1, 2;
1, 3, 4;
1, 4, 8, 8;
1, 5, 13, 20, 16;
First five polynomials v(n,x):
1
1 + 2x
1 + 3x + 4x^2
1 + 4x + 8x^2 + 8x^3
1 + 5x + 13x^2 + 20x^3 + 16x^4
(1, 0, -1/2, 1/2, 0, 0, ...) DELTA (0, 2, 0, 0, 0, ...) begins:
1;
1, 0;
1, 2, 0;
1, 3, 4, 0;
1, 4, 8, 8, 0;
1, 5, 13, 20, 16, 0;
1, 6, 19, 38, 48, 32, 0;
Triangle in A049600 begins:
0;
0, 1;
0, 1, 2;
0, 1, 3, 4;
0, 1, 4, 8, 8;
0, 1, 5, 13, 20, 16;
0, 1, 6, 19, 38, 48, 32;
... - _Philippe Deléham_, Mar 23 2012
-
a208341 n k = a208341_tabl !! (n-1) !! (k-1)
a208341_row n = a208341_tabl !! (n-1)
a208341_tabl = map reverse a106195_tabl
-- Reinhard Zumkeller, Dec 16 2013
-
T := (n,k) -> hypergeom([n-k+1, -k],[1],-1):
seq(lprint(seq(simplify(T(n,k)),k=0..n)),n=0..7); # Peter Luschny, May 20 2015
-
u[1, x_] := 1; v[1, x_] := 1; z = 13;
u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
v[n_, x_] := u[n - 1, x] + 2*x*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A160232 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208341 *)
-
T(n,k) = sum(i = 0, k, 2^(k-i)*binomial(n-k,i)*binomial(k,i));
tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print();); \\ Michel Marcus, Aug 14 2015
A052913
a(n+2) = 5*a(n+1) - 2*a(n), with a(0) = 1, a(1) = 4.
Original entry on oeis.org
1, 4, 18, 82, 374, 1706, 7782, 35498, 161926, 738634, 3369318, 15369322, 70107974, 319801226, 1458790182, 6654348458, 30354161926, 138462112714, 631602239718, 2881086973162, 13142230386374, 59948977985546, 273460429154982, 1247404189803818, 5690100090709126
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 894
- J.-C. Novelli, J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014.
- Index entries for linear recurrences with constant coefficients, signature (5,-2).
Cf.
A007482 (inverse binomial transform).
-
a:=[1,4];; for n in [3..30] do a[n]:=5*a[n-1]-2*a[n-2]; od; a; # G. C. Greubel, Oct 16 2019
-
I:=[1,4]; [n le 2 select I[n] else 5*Self(n-1)-2*Self(n-2): n in [1..35]]; // Vincenzo Librandi, May 24 2015
-
R:=PowerSeriesRing(Integers(), 25); Coefficients(R!((1-x)/(1-5*x+2*x^2))); // Marius A. Burtea, Oct 16 2019
-
spec := [S,{S=Sequence(Union(Prod(Sequence(Z),Union(Z,Z)),Z,Z))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
seq(coeff(series((1-x)/(1-5*x+2*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 16 2019
-
Transpose[NestList[{Last[#],5Last[#]-2First[#]}&, {1,4},20]][[1]] (* Harvey P. Dale, Mar 12 2011 *)
LinearRecurrence[{5, -2}, {1, 4}, 25] (* Jean-François Alcover, Jan 08 2019 *)
-
Vec((1-x)/(1-5*x+2*x^2) + O(x^30)) \\ Michel Marcus, Mar 05 2015
-
def A052913_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((1-x)/(1-5*x+2*x^2)).list()
A052913_list(30) # G. C. Greubel, Oct 16 2019
A368151
Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 3x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >=3, where u = p(2,x), v = 2 - x^2.
Original entry on oeis.org
1, 1, 3, 3, 6, 8, 5, 21, 25, 21, 11, 48, 101, 90, 55, 21, 123, 290, 414, 300, 144, 43, 282, 850, 1416, 1551, 954, 377, 85, 657, 2255, 4671, 6109, 5481, 2939, 987, 171, 1476, 5883, 13986, 22374, 24300, 18585, 8850, 2584, 341, 3303, 14736, 40320, 74295, 97713
Offset: 1
First eight rows:
1
1 3
3 6 8
5 21 25 21
11 48 101 90 55
21 123 290 414 300 144
43 282 850 1416 1551 954 377
85 657 2255 4671 6109 5481 2939 987
Row 4 represents the polynomial p(4,x) = 5 + 21 x + 25 x^2 + 21 x^3, so (T(4,k)) = (5,21,25,21), k=0..3.
Cf.
A001045 (column 1);
A001906 (p(n,n-1));
A001076 (row sums), (p(n,1));
A077985 (alternating row sums), (p(n,-1));
A186446 (p(n,2)),
A107839, (p(n,-2));
A190989, (p(n,3));
A023000, (p(n,-3));
A094440,
A367208,
A367209,
A367210,
A367211,
A367297,
A367298,
A367299,
A367300,
A367301,
A368150.
-
p[1, x_] := 1; p[2, x_] := 1 + 3 x; u[x_] := p[2, x]; v[x_] := 2 - x^2;
p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
A110441
Triangular array formed by the Mersenne numbers.
Original entry on oeis.org
1, 3, 1, 7, 6, 1, 15, 23, 9, 1, 31, 72, 48, 12, 1, 63, 201, 198, 82, 15, 1, 127, 522, 699, 420, 125, 18, 1, 255, 1291, 2223, 1795, 765, 177, 21, 1, 511, 3084, 6562, 6768, 3840, 1260, 238, 24, 1, 1023, 7181, 18324, 23276, 16758, 7266, 1932, 308, 27, 1
Offset: 0
Asamoah Nkwanta (nkwanta(AT)jewel.morgan.edu), Aug 08 2005
Triangle starts:
1;
3, 1;
7, 6, 1;
15, 23, 9, 1;
31, 72, 48, 12, 1;
(0, 3, -2/3, 2/3, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, ...) begins:
1
0, 1
0, 3, 1
0, 7, 6, 1
0, 15, 23, 9, 1
0, 31, 72, 48, 12, 1. - _Philippe Deléham_, Mar 19 2012
With the arrays M(k) as defined in the Comments section, the infinite product M(0*)M(1)*M(2)*... begins
/ 1 \/1 \/1 \ / 1 \
| 3 1 ||0 1 ||0 1 | | 3 1 |
| 7 3 1 ||0 3 1 ||0 0 1 |... = | 7 6 1 |
|15 7 3 1 ||0 7 3 1 ||0 0 3 1 | |15 23 9 1|
|31 15 7 3 1 ||0 15 7 3 1||0 0 7 3 1| |... |
|... ||... ||... | |... | - _Peter Bala_, Jul 22 2014
-
# Uses function PMatrix from A357368. Adds column 1, 0, 0, ... to the left.
PMatrix(10, n -> 2^n - 1); # Peter Luschny, Oct 09 2022
-
With[{n = 9}, DeleteCases[#, 0] & /@ CoefficientList[Series[1/(1 - (3 + y) x + 2 x^2), {x, 0, n}, {y, 0, n}], {x, y}]] // Flatten (* Michael De Vlieger, Apr 25 2018 *)
A359993
Array read by antidiagonals: T(m,n) is the number of connected spanning subgraphs in the grid graph P_m X P_n.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 23, 23, 1, 1, 105, 431, 105, 1, 1, 479, 7857, 7857, 479, 1, 1, 2185, 142625, 555195, 142625, 2185, 1, 1, 9967, 2587279, 38757695, 38757695, 2587279, 9967, 1, 1, 45465, 46929343, 2698167665, 10286937043, 2698167665, 46929343, 45465, 1
Offset: 1
Table starts:
=================================================================
m\n| 1 2 3 4 5 6
---+-------------------------------------------------------------
1 | 1 1 1 1 1 1 ...
2 | 1 5 23 105 479 2185 ...
3 | 1 23 431 7857 142625 2587279 ...
4 | 1 105 7857 555195 38757695 2698167665 ...
5 | 1 479 142625 38757695 10286937043 2711895924889 ...
6 | 1 2185 2587279 2698167665 2711895924889 2692324030864335 ...
...
Showing 1-10 of 19 results.
Comments