A000392
Stirling numbers of second kind S(n,3).
Original entry on oeis.org
0, 0, 0, 1, 6, 25, 90, 301, 966, 3025, 9330, 28501, 86526, 261625, 788970, 2375101, 7141686, 21457825, 64439010, 193448101, 580606446, 1742343625, 5228079450, 15686335501, 47063200806, 141197991025, 423610750290, 1270865805301
Offset: 0
a(4) = 6. Let denote Z[i] the i-th labeled element = "ball". Then one has for n=4 six different ways to fill sets = "boxes" with the labeled elements:
Set(Set(Z[3], Z[4]), Set(Z[1]), Set(Z[2])), Set(Set(Z[3], Z[1]), Set(Z[4]), Set(Z[2])), Set(Set(Z[4], Z[1]), Set(Z[3]), Set(Z[2])), Set(Set(Z[4]), Set(Z[1]), Set(Z[3], Z[2])), Set(Set(Z[3]), Set(Z[1], Z[2]), Set(Z[4])), Set(Set(Z[3]), Set(Z[1]), Set(Z[4], Z[2])).
G.f. = x^3 + 6*x^4 + 25*x^5 + 90*x^6 + 301*x^7 + 966*x^8 + 3025*x^9 + ...
For example, for n=3, a(4)=6 since the disjoint unions are: {1}U{2}, {1}U{3}, {1}U{2,3}, {2}U{3}, {2}U{1,3}, and {1,2}U{3}. - _Enrique Navarrete_, Aug 24 2021
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223.
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..200
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Harry Crane, Left-right arrangements, set partitions, and pattern avoidance, Australasian Journal of Combinatorics, 61(1) (2015), 57-72.
- John Elias, Illustration: Stirling-Sierpinski triangles, Nicomachus-Sierpinski towers
- M. Griffiths and I. Mezo, A generalization of Stirling Numbers of the Second Kind via a special multiset, JIS 13 (2010) #10.2.5.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 346
- Fred Kline and Peter Taylor, Partial sums of Nicomachus' Triangle rows produce Stirling numbers of the 2nd kind, Mathematics Stack Exchange. - _Fred Daniel Kline_, Sep 22 2014
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Anthony G. Shannon, Hakan Akkuş, Yeşim Aküzüm, Ömür Deveci, and Engin Özkan, A partial recurrence Fibonacci link, Notes Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 530-537. See Table 1, p. 531.
- Kai Wang, Girard-Waring Type Formula For A Generalized Fibonacci Sequence, Fibonacci Quarterly (2020) Vol. 58, No. 5, 229-235.
- Eric Weisstein's World of Mathematics, Minimal Cover.
- Thomas Wieder, The number of certain k-combinations of an n-set, Applied Mathematics Electronic Notes, vol. 8 (2008).
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6).
A000126
A nonlinear binomial sum.
Original entry on oeis.org
1, 2, 4, 8, 15, 27, 47, 80, 134, 222, 365, 597, 973, 1582, 2568, 4164, 6747, 10927, 17691, 28636, 46346, 75002, 121369, 196393, 317785, 514202, 832012, 1346240, 2178279, 3524547, 5702855, 9227432, 14930318, 24157782, 39088133, 63245949
Offset: 1
- Ralph P. Grimaldi, A generalization of the Fibonacci sequence. Proceedings of the seventeenth Southeastern international conference on combinatorics, graph theory, and computing (Boca Raton, Fla., 1986). Congr. Numer. 54 (1986), 123--128. MR0885268 (89f:11030). - N. J. A. Sloane, Apr 08 2012
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 1..201
- Kassie Archer and Noel Bourne, Pattern avoidance in compositions and powers of permutations, arXiv:2505.05218 [math.CO], 2025. See p. 6.
- Alvaro Carbonero, Beth Anne Castellano, Gary Gordon, Charles Kulick, Karie Schmitz, and Brittany Shelton, Permutations of point sets in R^d, arXiv:2106.14140 [math.CO], 2021.
- Tamsin Forbes and Tony Forbes, Hanoi revisited, Math. Gaz. 100, No. 549, 435-441 (2016).
- Thomas Langley, Jeffrey Liese, and Jeffrey Remmel, Generating Functions for Wilf Equivalence Under Generalized Factor Order, J. Int. Seq. 14 (2011) # 11.4.2.
- D. A. Lind, On a class of nonlinear binomial sums, Fib. Quart., 3 (1965), 292-298, doi: 10.1080/00150517.1965.12431407.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-1,1).
Cf.
A007931: binary strings with leading 0's, or ternary strings without 0's.
-
List([1..40], n-> Fibonacci(n+3)-(n+1)); # G. C. Greubel, Jul 09 2019
-
[Fibonacci(n+3)-(n+1): n in [1..40]]; // G. C. Greubel, Jul 09 2019
-
a:= n-> (Matrix([[1,1,1,2]]). Matrix(4, (i,j)-> if (i=j-1) then 1 elif j=1 then [3,-2,-1,1][i] else 0 fi)^n)[1,2]; seq(a(n), n=1..36); # Alois P. Heinz, Aug 26 2008
# alternative
A000126 := proc(n)
combinat[fibonacci](n+3)-n-1 ;
end proc:
seq(A000126(n),n=1..40) ; # R. J. Mathar, Aug 05 2022
-
LinearRecurrence[{3,-2,-1,1},{1,2,4,8},40] (* or *) CoefficientList[ Series[-(1-x+x^3)/((x^2+x-1)(x-1)^2),{x,0,40}],x] (* Harvey P. Dale, Apr 24 2011 *)
Table[Length[Select[Subsets[Range[n]],Min@@Abs[Subtract@@@Partition[#,2,1,1]]>1&]],{n,15}] (* Gus Wiseman, Feb 10 2019 *)
-
Vec((1-x+x^3)/(1-x-x^2)/(1-x)^2+O(x^40)) \\ Charles R Greathouse IV, Oct 06 2011
-
vector(40, n, fibonacci(n+3) -(n+1)) \\ G. C. Greubel, Jul 09 2019
-
def seq(n):
if n < 0:
return 1
a, b = 1, 1
for i in range(n + 1):
a, b = b, a + b + i
return a
[seq(i) for i in range(n)] # Reza K Ghazi, Mar 03 2019
-
[fibonacci(n+3)-(n+1) for n in (1..40)] # G. C. Greubel, Jul 09 2019
A168043
Let S(1)={1} and, for n>1 let S(n) be the smallest set containing x+1, x+2, and 2*x for each element x in S(n-1). a(n) is the number of elements in S(n).
Original entry on oeis.org
1, 2, 4, 7, 13, 23, 40, 68, 114, 189, 311, 509, 830, 1350, 2192, 3555, 5761, 9331, 15108, 24456, 39582, 64057, 103659, 167737, 271418, 439178, 710620, 1149823, 1860469, 3010319, 4870816, 7881164, 12752010, 20633205, 33385247, 54018485, 87403766, 141422286
Offset: 1
Under the indicated set mapping we have {1} -> {2,3} -> {3,4,5,6} -> {4,5,6,7,8,10,12}, ..., so a(2)=2, a(3)=4, a(4)=7, etc.
-
from itertools import chain, islice
def agen(): # generator of terms
s = {1}
while True:
yield len(s)
s = set(chain.from_iterable((x+1, x+2, 2*x) for x in s))
print(list(islice(agen(), 30))) # Michael S. Branicky, Jan 13 2022 after Chai Wah Wu in A123247
A350603
Irregular triangle read by rows: row n lists the elements of the set S_n in increasing order, where S_0 = {0}, and S_n is obtained by applying the operations x -> x+1 and x -> 2*x to S_{n-1}.
Original entry on oeis.org
0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 5, 6, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 20, 24, 32, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 28, 32, 33, 34, 36, 40, 48, 64
Offset: 0
The first few sets S_n are:
[0],
[0, 1],
[0, 1, 2],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4, 5, 6, 8],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 20, 24, 32],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 28, 32, 33, 34, 36, 40, 48, 64],
...
-
T:= proc(n) option remember; `if`(n=0, 0,
sort([map(x-> [x+1, 2*x][], {T(n-1)})[]])[])
end:
seq(T(n), n=0..8); # Alois P. Heinz, Jan 12 2022
-
T[n_] := T[n] = If[n==0, {0}, {#+1, 2#}& /@ T[n-1] // Flatten //
Union];
Table[T[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, May 06 2022, after Alois P. Heinz *)
-
from itertools import chain, islice
def A350603_gen(): # generator of terms
s = {0}
while True:
yield from sorted(s)
s = set(chain.from_iterable((x+1,2*x) for x in s))
A350603_list = list(islice(A350603_gen(),30)) # Chai Wah Wu, Jan 12 2022
Definition made more precise by
Chai Wah Wu, Jan 12 2022
A123212
Let S(1) = {1} and, for n > 1, let S(n) be the smallest set containing x, 2x and x^2 for each element x in S(n-1). a(n) is the sum of the elements in S(n).
Original entry on oeis.org
1, 3, 7, 31, 383, 71679, 4313284607, 18447026747376402431, 340282367000167840050178713574329810943, 115792089237316195429848086745536112650120661123018741407845920610578123980799
Offset: 1
Under the indicated set mapping we have {1} -> {1,2} -> {1,2,4} -> {1,2,4,8,16}, giving the sums a(1)=1, a(2)=3, a(3)=7, a(4)=31, etc.
-
s:= proc(n) option remember; `if`(n=1, 1,
map(x-> [x, 2*x, x^2][], {s(n-1)})[])
end:
a:= n-> add(i, i=s(n)):
seq(a(n), n=1..10); # Alois P. Heinz, Jan 12 2022
-
S[n_] := S[n] = If[n == 1, {1}, {#, 2#, #^2}& /@ S[n-1] // Flatten // Union];
a[n_] := S[n] // Total;
Table[a[n], {n, 1, 10}] (* Jean-François Alcover, Apr 22 2022 *)
-
from itertools import chain, islice
def A123212_gen(): # generator of terms
s = {1}
while True:
yield sum(s)
s = set(chain.from_iterable((x,2*x,x**2) for x in s))
A123212_list = list(islice(A123212_gen(),10)) # Chai Wah Wu, Jan 12 2022
A123247
Let S(1)={1} and, for n>1 let S(n) be the smallest set containing x, x+1, 2x and 3x for each element x in S(n-1). a(n) is the number of elements in S(n).
Original entry on oeis.org
1, 3, 6, 13, 27, 54, 107, 213, 423, 845, 1685, 3371, 6735, 13468, 26937, 53900, 107873, 216035, 432787, 867313, 1738728, 3486464, 6993111, 14029776, 28153533, 56507114, 113435141, 227755613, 457358671, 918562597
Offset: 1
Under the indicated set mapping we have {1} -> {1,2,3} -> {1,2,3,4,6,9} -> {1,2,3,4,5,6,7,8,9,10,12,18,27}, ..., so a(2)=3, a(3)=6, a(4)=13, etc.
-
lista(nn) = {my(k, v=[1]); print1(1); for(n=2, nn, v=Set(vector(4*#v, i, if(k=i%4, k*v[(3+i)\4], v[i/4]+1))); print1(", ", #v)); } \\ Jinyuan Wang, Apr 14 2020
-
from itertools import chain, islice
def A123247_gen(): # generator of terms
s = {1}
while True:
yield len(s)
s = set(chain.from_iterable((x,x+1,2*x,3*x) for x in s))
A123247_list = list(islice(A123247_gen(),20)) # Chai Wah Wu, Jan 12 2022
Showing 1-6 of 6 results.
Comments