cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A000296 Set partitions without singletons: number of partitions of an n-set into blocks of size > 1. Also number of cyclically spaced (or feasible) partitions.

Original entry on oeis.org

1, 0, 1, 1, 4, 11, 41, 162, 715, 3425, 17722, 98253, 580317, 3633280, 24011157, 166888165, 1216070380, 9264071767, 73600798037, 608476008122, 5224266196935, 46499892038437, 428369924118314, 4078345814329009, 40073660040755337, 405885209254049952, 4232705122975949401
Offset: 0

Views

Author

Keywords

Comments

a(n+2) = p(n+1) where p(x) is the unique degree-n polynomial such that p(k) = A000110(k) for k = 0, 1, ..., n. - Michael Somos, Oct 07 2003
Number of complete rhyming schemes.
Whereas the Bell number B(n) (A000110(n)) is the number of terms in the polynomial that expresses the n-th moment of a probability distribution as a function of the first n cumulants, these numbers give the number of terms in the corresponding expansion of the central moment as a function of the first n cumulants. - Michael Hardy (hardy(AT)math.umn.edu), Jan 26 2005
a(n) is the number of permutations on [n] for which the left-to-right maxima coincide with the descents (entries followed by a smaller number). For example, a(4) counts 2143, 3142, 3241, 4123. - David Callan, Jul 20 2005
From Gus Wiseman, Feb 10 2019: (Start)
Also the number of stable partitions of an n-cycle, where a stable partition of a graph is a set partition of the vertex set such that no edge has both ends in the same block. A bijective proof is given in David Callan's article. For example, the a(5) = 11 stable partitions are:
{{1},{2},{3},{4},{5}}
{{1},{2},{3,5},{4}}
{{1},{2,4},{3},{5}}
{{1},{2,5},{3},{4}}
{{1,3},{2},{4},{5}}
{{1,4},{2},{3},{5}}
{{1},{2,4},{3,5}}
{{1,3},{2,4},{5}}
{{1,3},{2,5},{4}}
{{1,4},{2},{3,5}}
{{1,4},{2,5},{3}}
(End)
Also number of partitions of {1, 2, ..., n-1} with singletons. E.g., a(4) = 4: {1|2|3, 12|3, 13|2, 1|23}. Also number of cyclical adjacencies partitions of {1, 2, ..., n-1}. E.g., a(4) = 4: {12|3, 13|2, 1|23, 123}. The two partitions can be mapped by a Kreweras bijection. - Yuchun Ji, Feb 22 2021
Also the k-th central moment of a Poisson random variable with mean 1. a(n) = E[(X-1)^n, X~Poisson(1)]. - Thomas Dybdahl Ahle, Dec 14 2022

Examples

			a(4) = card({{{1, 2}, {3, 4}}, {{1, 4}, {2, 3}}, {{1, 3}, {2, 4}}, {{1, 2, 3, 4}}}) = 4.
		

References

  • Martin Gardner in Sci. Amer. May 1977.
  • D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.5 (p. 436).
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 228.
  • J. Riordan, A budget of rhyme scheme counts, pp. 455-465 of Second International Conference on Combinatorial Mathematics, New York, April 4-7, 1978. Edited by Allan Gewirtz and Louis V. Quintas. Annals New York Academy of Sciences, 319, 1979.
  • J. Shallit, A Triangle for the Bell numbers, in V. E. Hoggatt, Jr. and M. Bicknell-Johnson, A Collection of Manuscripts Related to the Fibonacci Sequence, 1980, pp. 69-71.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of triangle in A106436.
Row sums of the triangle of associated Stirling numbers of second kind A008299. - Philippe Deléham, Feb 10 2005
Row sums of the triangle of basic multinomial coefficients A178866. - Johannes W. Meijer, Jun 21 2010
Row sums of A105794. - Peter Bala, Jan 14 2015
Row sums of A261139, main diagonal of A261137.
Column k=0 of A216963.
Column k=0 of A124323.

Programs

  • Magma
    [1,0] cat [ n le 1 select 1 else Bell(n)-Self(n-1) : n in [1..40]]; // Vincenzo Librandi, Jun 22 2015
    
  • Maple
    spec := [ B, {B=Set(Set(Z,card>1))}, labeled ]; [seq(combstruct[count](spec, size=n), n=0..30)];
    with(combinat): A000296 :=n->(-1)^n + add((-1)^(j-1)*bell(n-j),j=1..n): seq(A000295(n),n=0..30); # Emeric Deutsch, Oct 29 2006
    f:=exp(exp(x)-1-x): fser:=series(f, x=0, 31): 1, seq(n!*coeff(fser, x^n), n=1..23); # Zerinvary Lajos, Nov 22 2006
    G:={P=Set(Set(Atom,card>=2))}: combstruct[gfsolve](G,unlabeled,x): seq(combstruct[count]([P,G,labeled], size=i), i=0..23); # Zerinvary Lajos, Dec 16 2007
    # [a(0),a(1),..,a(n)]
    A000296_list := proc(n)
    local A, R, i, k;
    if n = 0 then return 1 fi;
    A := array(0..n-1);
    A[0] := 1; R := 1;
    for i from 0 to n-2 do
       A[i+1] := A[0] - A[i];
       A[i] := A[0];
       for k from i by -1 to 1 do
          A[k-1] := A[k-1] + A[k] od;
       R := R,A[i+1];
    od;
    R,A[0]-A[i] end:
    A000296_list(100);  # Peter Luschny, Apr 09 2011
  • Mathematica
    nn = 25; Range[0, nn]! CoefficientList[Series[Exp[Exp[x] - 1 - x], {x, 0, nn}], x]
    (* Second program: *)
    a[n_] := a[n] = If[n==0, 1, Sum[Binomial[n-1, i]*a[n-i-1], {i, 1, n-1}]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 06 2016, after Vladimir Kruchinin *)
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:= Join@@Function[s,Prepend[#,s]&/@spsu[ Select[foo,Complement[#, Complement[set,s]]=={}&], Complement[set,s]]]/@Cases[foo,{i,_}];
    Table[Length[spsu[Select[Subsets[Range[n]],Select[Partition[Range[n],2,1,1], Function[ed,Complement[ed,#]=={}]]=={}&],Range[n]]],{n,8}] (* Gus Wiseman, Feb 10 2019 *)
    s = 1; Join[{1}, Table[s = BellB[n] - s, {n, 0, 25}]] (* Vaclav Kotesovec, Jun 20 2022 *)
  • Maxima
    a(n):=if n=0 then 1 else sum(binomial(n-1,i)*a(n-i-1),i,1,n-1); /* Vladimir Kruchinin, Feb 22 2015 */
    
  • PARI
    a(n) = if(n<2, n==0, subst( polinterpolate( Vec( serlaplace( exp( exp( x+O(x^n)/x )-1 ) ) ) ), x, n) )
    
  • Python
    from itertools import accumulate, islice
    def A000296_gen():
        yield from (1,0)
        blist, a, b = (1,), 0, 1
        while True:
            blist = list(accumulate(blist, initial = (b:=blist[-1])))
            yield (a := b-a)
    A000296_list = list(islice(A000296_gen(),20)) # Chai Wah Wu, Jun 22 2022

Formula

E.g.f.: exp(exp(x) - 1 - x).
B(n) = a(n) + a(n+1), where B = A000110 = Bell numbers [Becker].
Inverse binomial transform of Bell numbers (A000110).
a(n)= Sum_{k>=-1} (k^n/(k+1)!)/exp(1). - Vladeta Jovovic and Karol A. Penson, Feb 02 2003
a(n) = Sum_{k=0..n} ((-1)^(n-k))*binomial(n, k)*Bell(k) = (-1)^n + Bell(n) - A087650(n), with Bell(n) = A000110(n). - Wolfdieter Lang, Dec 01 2003
O.g.f.: A(x) = 1/(1-0*x-1*x^2/(1-1*x-2*x^2/(1-2*x-3*x^2/(1-... -(n-1)*x-n*x^2/(1- ...))))) (continued fraction). - Paul D. Hanna, Jan 17 2006
a(n) = Sum_{k = 0..n} {(-1)^(n-k) * Sum_{j = 0..k}((-1)^j * binomial(k,j) * (1-j)^n)/ k!} = sum over row n of A105794. - Tom Copeland, Jun 05 2006
a(n) = (-1)^n + Sum_{j=1..n} (-1)^(j-1)*B(n-j), where B(q) are the Bell numbers (A000110). - Emeric Deutsch, Oct 29 2006
Let A be the upper Hessenberg matrix of order n defined by: A[i, i-1] = -1, A[i,j] = binomial(j-1, i-1), (i <= j), and A[i, j] = 0 otherwise. Then, for n >= 2, a(n) = (-1)^(n)charpoly(A,1). - Milan Janjic, Jul 08 2010
From Sergei N. Gladkovskii, Sep 20 2012, Oct 11 2012, Dec 19 2012, Jan 15 2013, May 13 2013, Jul 20 2013, Oct 19 2013, Jan 25 2014: (Start)
Continued fractions:
G.f.: (2/E(0) - 1)/x where E(k) = 1 + 1/(1 + 2*x/(1 - 2*(k+1)*x/E(k+1))).
G.f.: 1/U(0) where U(k) = 1 - x*k - x^2*(k+1)/U(k+1).
G.f.: G(0)/(1+2*x) where G(k) = 1 - 2*x*(k+1)/((2*k+1)*(2*x*k-x-1) - x*(2*k+1)*(2*k+3)*(2*x*k-x-1)/(x*(2*k+3) - 2*(k+1)*(2*x*k-1)/G(k+1))).
G.f.: (G(0) - 1)/(x-1) where G(k) = 1 - 1/(1+x-k*x)/(1-x/(x-1/G(k+1))).
G.f.: 1 + x^2/(1+x)/Q(0) where Q(k) = 1-x-x/(1-x*(2*k+1)/(1-x-x/(1-x*(2*k+2)/Q(k+1)))).
G.f.: 1/(x*Q(0)) where Q(k) = 1 + 1/(x + x^2/(1 - x - (k+1)/Q(k+1))).
G.f.: -(1+(2*x+1)/G(0))/x where G(k) = x*k - x - 1 - (k+1)*x^2/G(k+1).
G.f.: T(0) where T(k) = 1 - x^2*(k+1)/( x^2*(k+1) - (1-x*k)*(1-x-x*k)/T(k+1)).
G.f.: (1 + x * Sum_{k>=0} (x^k / Product_{p=0..k}(1 - p*x))) / (1 + x). (End)
a(n) = Sum_{i=1..n-1} binomial(n-1,i)*a(n-i-1), a(0)=1. - Vladimir Kruchinin, Feb 22 2015
G.f. A(x) satisfies: A(x) = (1/(1 + x)) * (1 + x * A(x/(1 - x)) / (1 - x)). - Ilya Gutkovskiy, May 21 2021
a(n) ~ exp(n/LambertW(n) - n - 1) * n^(n-1) / (sqrt(1 + LambertW(n)) * LambertW(n)^(n-1)). - Vaclav Kotesovec, Jun 28 2022

Extensions

More terms, new description from Christian G. Bower, Nov 15 1999
a(23) corrected by Sean A. Irvine, Jun 22 2015

A229048 Number of different chromatic polynomials of a simple graph with n nodes.

Original entry on oeis.org

1, 2, 4, 9, 23, 73, 304, 1954, 23075, 607507
Offset: 1

Views

Author

Eric M. Schmidt, Sep 25 2013

Keywords

Comments

Partial sums of A245883. This may be proved using two facts: (i) the number of connected components of a graph is the multiplicity of the root 0 of the chromatic polynomial (thus the chromatic polynomial determines whether a graph is connected) and (ii) a disconnected graph is chromatically equivalent to some graph with an isolated vertex. The first statement is well known. For the latter statement, see p. 65 of [Dong]. - Eric M. Schmidt, Mar 20 2015
A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic polynomial is given by chi_G(x) = Sum_p (x)k, where the sum is over all stable partitions of G, k is the length (number of blocks) of p, and (x)_k is the falling factorial x(x-1)(x-2)...(x-k+1). - _Gus Wiseman, Nov 24 2018

Examples

			From _Gus Wiseman_, Nov 24 2018: (Start)
The a(4) = 9 chromatic polynomials:
  -6x + 11x^2 - 6x^3 + x^4
  -4x +  8x^2 - 5x^3 + x^4
  -2x +  5x^2 - 4x^3 + x^4
  -3x +  6x^2 - 4x^3 + x^4
         2x^2 - 3x^3 + x^4
   -x +  3x^2 - 3x^3 + x^4
          x^2 - 2x^3 + x^4
                -x^3 + x^4
                       x^4
(End)
		

References

  • F. M. Dong, K. M. Koh, and K. L. Teo. Chromatic Polynomials and Chromaticity of Graphs, World Scientific Publishing Company, 2005.

Crossrefs

Programs

  • Mathematica
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    falling[x_,k_]:=Product[(x-i),{i,0,k-1}];
    chromPoly[g_]:=Expand[Sum[falling[x,Length[stn]],{stn,spsu[Select[Subsets[Union@@g],Select[DeleteCases[g,{_}],Function[ed,Complement[ed,#]=={}]]=={}&],Union@@g]}]];
    simpleSpans[n_]:=simpleSpans[n]=If[n==0,{{}},Union@@Table[If[#=={},Union[ine,{{n}}],Union[Complement[ine,List/@#],{#,n}&/@#]]&/@Subsets[Range[n-1]],{ine,simpleSpans[n-1]}]];
    Table[Length[Union[chromPoly/@simpleSpans[n]]],{n,5}] (* Gus Wiseman, Nov 24 2018 *)
  • Sage
    def A229048(n):
        return len({g.chromatic_polynomial() for g in graphs(n)})
    
  • Sage
    sorted({g.chromatic_polynomial() for g in graphs(n)})

Extensions

a(10) added by Eric M. Schmidt, Mar 20 2015

A277203 Number of distinct chromatic symmetric functions realizable by a graph on n vertices.

Original entry on oeis.org

1, 2, 4, 11, 33, 146, 939, 10932
Offset: 1

Views

Author

Sam Heil and Caleb Ji, Oct 04 2016

Keywords

Comments

A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic symmetric function is given by X_G = Sum_p m(t(p)) where the sum is over all stable partitions of G, t(p) is the integer partition whose parts are the block-sizes of p, and m is augmented monomial symmetric functions (see A321895). - Gus Wiseman, Nov 21 2018

Examples

			For n = 3, under the p basis, the CSF's are: p_{1, 1, 1}, p_{1, 1, 1} - p_{2, 1}, p_{1, 1, 1} - 2p_{2, 1} + p_{3}, p_{1, 1, 1} - 3p_{2, 1} + 2p_{3}.
From _Gus Wiseman_, Nov 21 2018: (Start)
The a(4) = 11 chromatic symmetric functions (m is the augmented monomial symmetric function basis):
                                     m(1111)
                            m(211) + m(1111)
                           2m(211) + m(1111)
          m(22) +          2m(211) + m(1111)
                           3m(211) + m(1111)
          m(22) +          3m(211) + m(1111)
                   m(31) + 3m(211) + m(1111)
         2m(22) +          4m(211) + m(1111)
          m(22) +  m(31) + 4m(211) + m(1111)
         2m(22) + 2m(31) + 5m(211) + m(1111)
  m(4) + 3m(22) + 4m(31) + 6m(211) + m(1111)
(End)
		

Crossrefs

Programs

  • Mathematica
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    chromSF[g_]:=Sum[m[Sort[Length/@stn,Greater]],{stn,spsu[Select[Subsets[Union@@g],Select[DeleteCases[g,{_}],Function[ed,Complement[ed,#]=={}]]=={}&],Union@@g]}];
    simpleSpans[n_]:=simpleSpans[n]=If[n==0,{{}},Union@@Table[If[#=={},Union[ine,{{n}}],Union[Complement[ine,List/@#],{#,n}&/@#]]&/@Subsets[Range[n-1]],{ine,simpleSpans[n-1]}]];
    Table[Length[Union[chromSF/@simpleSpans[n]]],{n,6}] (* Gus Wiseman, Nov 21 2018 *)

A058843 Triangle T(n,k) = C_n(k) where C_n(k) = number of k-colored labeled graphs with n nodes (n >= 1, 1<=k<=n).

Original entry on oeis.org

1, 1, 2, 1, 12, 8, 1, 80, 192, 64, 1, 720, 5120, 5120, 1024, 1, 9152, 192000, 450560, 245760, 32768, 1, 165312, 10938368, 56197120, 64225280, 22020096, 2097152, 1, 4244480, 976453632, 10877927424, 23781703680, 15971909632, 3758096384
Offset: 1

Views

Author

N. J. A. Sloane, Jan 07 2001

Keywords

Comments

From Peter Bala, Apr 12 2013: (Start)
A coloring of a simple graph G is a choice of color for each graph vertex such that no two vertices sharing the same edge have the same color.
Let E(x) = sum_{n >= 0} x^n/(n!*2^C(n,2)) = 1 + x + x^2/(2*2!) + x^3/(2^3*3!) + .... Read has shown that (E(x) - 1)^k is a generating function for labeled graphs on n nodes that can be colored using exactly k colors. Cases include A213441 (k = 2), A213442 (k = 3) and A224068 (k = 4).
In this triangle, colorings of a labeled graph using k colors that differ only by a permutation of the k colors are treated as the same giving 1/k!*(E(x) - 1)^k as a generating function function for the k-th column. (End)

Examples

			Triangle begins:
  1;
  1,    2;
  1,   12,      8;
  1,   80,    192,     64;
  1,  720,   5120,   5120,   1024;
  1, 9152, 192000, 450560, 245760, 32768;
  ...
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 18, Table 1.5.1.

Crossrefs

Apart from scaling, same as A058875.
Row sums give A240936.

Programs

  • Maple
    for p from 1 to 20 do C[p,1] := 1; od: for k from 2 to 20 do for p from 1 to k-1 do C[p,k] := 0; od: od: for k from 2 to 10 do for p from k to 10 do C[p,k] := add( binomial(p,n)*2^(n*(p-n))*C[n,k-1]/k,n=1..p-1); od: od:
  • Mathematica
    maxn = 8; t[, 1] = 1; t[n, k_] := t[n, k] = Sum[ Binomial[n, j]*2^(j*(n - j))*t[j, k - 1]/k, {j, 1, n - 1}]; Flatten[ Table[t[n, k], {n, 1, maxn}, {k, 1, n}]] (* Jean-François Alcover, Sep 21 2011 *)
  • PARI
    T(n,k)={n!*2^binomial(n,2)*polcoef((sum(j=1, n, x^j/(j!*2^binomial(j,2))) + O(x*x^n))^k, n)/k!} \\ Andrew Howroyd, Nov 30 2018

Formula

C_n(k) = Sum_{i=1..n-1} binomial(n, i)*2^(i*(n-i))*C_i(k-1)/k.
From Peter Bala, Apr 12 2013: (Start)
Recurrence equation: T(n,k) = sum {i = 1..n-1} binomial(n-1,i)*2^(i*(n-i))*T(i,k-1).
A generating function: exp(x*(E(z) - 1)) = 1 + x*z + (x + 2*x^2)*z^2/(2!*2) + (x + 12*x^2 + 8*x^3)*z^3/(3!*2^3) + .... Cf. A008277 with e.g.f. exp(x*(exp(z) - 1)).
A generating function for column k: 1/k!*(E(x) - 1)^k = sum {n>=k} T(n,k)x^n/(n!*2^C(n,2)).
The row polynomials R(n,x) satisfy the recurrence equation R(n,x) = x*(1 + sum {k = 0..n-1} binomial(n-1,k)*2^(k*(n-k))*R(k,x)) with R(1,x) = x. The row polynomials appear to have only real zeros.
Column 2 = 1/2!*A213441; Column 3 = 1/3!*A213442; Column 4 = 1/4!*A224068. (End)

A011968 Apply (1+Shift) to Bell numbers.

Original entry on oeis.org

1, 2, 3, 7, 20, 67, 255, 1080, 5017, 25287, 137122, 794545, 4892167, 31858034, 218543759, 1573857867, 11863100692, 93345011951, 764941675963, 6514819011216, 57556900440429, 526593974392123, 4981585554604074, 48658721593531669, 490110875149889635
Offset: 0

Views

Author

Keywords

Comments

Number of set partitions of n+2 with at least one singleton and the smallest element in any singleton is exactly n. The maximum number of singletons is therefore 3. Alternatively, number of set partitions of n+2 with at least one singleton and the largest element in any singleton is exactly 3 (or n+2 if n+2 < 3). For example, a(3)=7 counts the following set partitions of [5]: {1245, 3}, {12, 3, 45}, {124, 3, 5}, {15, 24, 3}, {125, 3, 4}, {14, 25, 3}, {12, 3, 4, 5}. - Olivier Gérard, Oct 29 2007
Let V(N)={v(1),v(2),...,v(N)} denote an ordered set of increasing positive integers containing a pair of adjacent elements that differ by at least 2, that is, v(i),v(i+1) with v(i+1)-v(i) > 1. Then for n > 0, a(n) is the number of partitions of V(n+1) into blocks of nonconsecutive integers. - Augustine O. Munagi, Jul 17 2008

Examples

			a(3)=7 because the set {1,3,4,5} has 7 different partitions into blocks of nonconsecutive integers: 14/35, 135/4, 1/35/4, 13/4/5, 14/3/5, 15/3/4, 1/3/4/5.
		

References

  • Olivier Gérard and Karol Penson, A budget of set partitions statistics, in preparation, unpublished as of Sep 22 2011

Crossrefs

A diagonal of A011971 and A106436. - N. J. A. Sloane, Jul 31 2012

Programs

  • Maple
    with(combinat): seq(`if`(n>0,bell(n)+bell(n-1),1),n=0..21); # Augustine O. Munagi, Jul 17 2008
  • Python
    # requires python 3.2 or higher. Otherwise use def'n of accumulate in python docs.
    from itertools import accumulate
    A011968_list, blist, b = [1,2], [1], 1
    for _ in range(10**2):
        blist = list(accumulate([b]+blist))
        A011968_list.append(b+blist[-1])
        b = blist[-1] # Chai Wah Wu, Sep 02 2014, updated Chai Wah Wu, Sep 20 2014

Formula

For n >= 1, a(n+1) = exp(-1)*Sum_{k>=0} ((k+1)/k!)*k^n. - Benoit Cloitre, Mar 09 2008
For n >= 1, a(n) = Bell(n) + Bell(n-1). - Augustine O. Munagi, Jul 17 2008
G.f.: G(0) where G(k) = 1 - 2*x*(k+1)/((2*k+1)*(2*x*k-1) - x*(2*k+1)*(2*k+3)*(2*x*k-1)/(x*(2*k+3) - 2*(k+1)*(2*x*k+x-1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 19 2012
G.f.: 1 + x*E(0) where E(k) = 1 + 1/(1-x*k-x)/(1-x/(x+1/E(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 20 2013
G.f.: 1 + Sum_{k>=0} ( 1+1/(1-x-x*k) )*x^(k+1)/Product_{i=0..k} (1-x*i). - Sergei N. Gladkovskii, Jan 20 2013
a(n) ~ Bell(n) * (1 + LambertW(n)/n). - Vaclav Kotesovec, Jul 28 2021

A245883 Number of distinct chromatic polynomials among all connected graphs on n nodes.

Original entry on oeis.org

1, 1, 2, 5, 14, 50, 231, 1650, 21121, 584432
Offset: 1

Views

Author

Travis Hoppe and Anna Petrone, Aug 05 2014

Keywords

Comments

A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic polynomial is given by chi_G(x) = Sum_p (x)k, where the sum is over all stable partitions of G, k is the length (number of blocks) of p, and (x)_k is the falling factorial x(x-1)(x-2)...(x-k+1). - _Gus Wiseman, Nov 24 2018

Examples

			From _Gus Wiseman_, Nov 24 2018: (Start)
The a(4) = 5 chromatic polynomials:
  -6x + 11x^2 - 6x^3 + x^4
  -4x +  8x^2 - 5x^3 + x^4
  -2x +  5x^2 - 4x^3 + x^4
  -3x +  6x^2 - 4x^3 + x^4
   -x +  3x^2 - 3x^3 + x^4
(End)
		

Crossrefs

Cf. A229048 (simple graphs, including disconnected ones, with unique chromatic polynomials).

Programs

  • Mathematica
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    falling[x_,k_]:=Product[(x-i),{i,0,k-1}];
    chromPoly[g_]:=Expand[Sum[falling[x,Length[stn]],{stn,spsu[Select[Subsets[Union@@g],Select[DeleteCases[g,{_}],Function[ed,Complement[ed,#]=={}]]=={}&],Union@@g]}]];
    simpleSpans[n_]:=simpleSpans[n]=If[n==0,{{}},Union@@Table[If[#=={},Union[ine,{{n}}],Union[Complement[ine,List/@#],{#,n}&/@#]]&/@Subsets[Range[n-1]],{ine,simpleSpans[n-1]}]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Union[chromPoly/@Select[simpleSpans[n],Length[csm[#]]==1&]]],{n,5}] (* Gus Wiseman, Nov 24 2018 *)

A321911 Number of distinct chromatic symmetric functions of simple connected graphs with n vertices.

Original entry on oeis.org

1, 1, 2, 6, 20, 103, 759
Offset: 1

Views

Author

Gus Wiseman, Nov 21 2018

Keywords

Comments

A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic symmetric function is given by X_G = Sum_p m(t(p)) where the sum is over all stable partitions p of G, t(p) is the integer partition whose parts are the block-sizes of p, and m is augmented monomial symmetric functions (see A321895).

Examples

			The a(4) = 6 connected chromatic symmetric functions (m is the augmented monomial symmetric function basis):
                    m(1111)
           m(211) + m(1111)
          2m(211) + m(1111)
  m(22) + 2m(211) + m(1111)
  m(22) + 3m(211) + m(1111)
  m(31) + 3m(211) + m(1111)
		

Crossrefs

Programs

  • Mathematica
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    chromSF[g_]:=Sum[m[Sort[Length/@stn,Greater]],{stn,spsu[Select[Subsets[Union@@g],Select[DeleteCases[g,{_}],Function[ed,Complement[ed,#]=={}]]=={}&],Union@@g]}];
    simpleSpans[n_]:=simpleSpans[n]=If[n==0,{{}},Union@@Table[If[#=={},Union[ine,{{n}}],Union[Complement[ine,List/@#],{#,n}&/@#]]&/@Subsets[Range[n-1]],{ine,simpleSpans[n-1]}]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Union[chromSF/@Select[simpleSpans[n],Length[csm[#]]==1&]]],{n,6}]

A321979 Number of e-positive simple labeled graphs on n vertices.

Original entry on oeis.org

1, 1, 2, 8, 60, 899
Offset: 0

Views

Author

Gus Wiseman, Nov 23 2018

Keywords

Comments

A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic symmetric function is given by X_G = Sum_p m(t(p)) where the sum is over all stable partitions of G, t(p) is the integer partition whose parts are the block-sizes of p, and m is augmented monomial symmetric functions (see A321895). A graph is e-positive if, in the expansion of its chromatic symmetric function in terms of elementary symmetric functions, all coefficients are nonnegative.

Examples

			The 4 non-e-positive simple labeled graphs on 4 vertices are:
  {{1,2},{1,3},{1,4}}
  {{1,2},{2,3},{2,4}}
  {{1,3},{2,3},{3,4}}
  {{1,4},{2,4},{3,4}}
		

Crossrefs

A322064 Number of ways to choose a stable partition of a simple connected graph with n vertices.

Original entry on oeis.org

1, 1, 1, 7, 141, 6533, 631875, 123430027, 48659732725, 39107797223409, 64702785181953175, 221636039917857648631, 1575528053913118966200441, 23249384407499950496231003021, 711653666389829384034090082068939, 45128328085994437067694854477617868995
Offset: 0

Views

Author

Gus Wiseman, Nov 25 2018

Keywords

Comments

A stable partition of a graph is a set partition of the vertices where no non-singleton edge has both ends in the same block.

Examples

			The a(3) = 7 stable partitions. The simple connected graph is on top, and below is a list of all its stable partitions.
  {1,3}{2,3}     {1,2}{2,3}     {1,2}{1,3}     {1,2}{1,3}{2,3}
  --------       --------       --------       --------
  {{1,2},{3}}    {{1,3},{2}}    {{1},{2,3}}    {{1},{2},{3}}
  {{1},{2},{3}}  {{1},{2},{3}}  {{1},{2},{3}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Sum[Length[Select[Subsets[Complement[Subsets[Range[n],{2}],Union@@Subsets/@stn]],And[Union@@#==Range[n],Length[csm[#]]==1]&]],{stn,sps[Range[n]]}],{n,5}]
  • PARI
    \\ See A322278 for M.
    seq(n)={concat([1], (M(n)*vectorv(n,i,1))~)} \\ Andrew Howroyd, Dec 01 2018

Extensions

Terms a(7) and beyond from Andrew Howroyd, Dec 01 2018

A321980 Row n gives the chromatic symmetric function of the n-path, expanded in terms of elementary symmetric functions and ordered by Heinz number.

Original entry on oeis.org

1, 2, 0, 3, 1, 0, 4, 2, 2, 0, 0, 5, 3, 7, 1, 0, 0, 0, 6, 10, 4, 6, 2, 0, 4, 0, 0, 0, 0, 7, 5, 13, 17, 6, 0, 11, 4, 1, 0, 0, 0, 0, 0, 0, 8, 6, 16, 12, 0, 22, 16, 8, 12, 20, 2, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 9, 7, 19, 27, 0, 31, 10, 9, 21, 0, 58, 16, 12, 9, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic symmetric function is given by X_G = Sum_p m(t(p)) where the sum is over all stable partitions of G, t(p) is the integer partition whose parts are the block-sizes of p, and m is augmented monomial symmetric functions (see A321895).
All terms are nonnegative [Stanley].

Examples

			Triangle begins:
  1
  2  0
  3  1  0
  4  2  2  0  0
  5  3  7  1  0  0  0
  6 10  4  6  2  0  4  0  0  0  0
  7  5 13 17  6  0 11  4  1  0  0  0  0  0  0
  8  6 16 12  0 22 16  8 12 20  2  0  0  6  0  0  0  0  0  0  0  0
For example, row 6 gives: X_P6 = 6e(6) + 10e(42) + 4e(51) + 6e(33) + 2e(222) + 4e(321).
		

Crossrefs

Showing 1-10 of 22 results. Next