A270806 A269747(n) - A270805(n).
0, 0, 0, 0, 0, 8, 27, 69, 154, 309, 546, 889
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a(5) = 5 from the five independent components of an antisymmetric tensor A of rank 4 and dimension 5, namely A(1,2,3,4), A(1,2,3,5), A(1,2,4,5), A(1,3,4,5) and A(2,3,4,5). See the Dec 10 2015 comment. - _Wolfdieter Lang_, Dec 10 2015
A000332 := List([1..10^2], n -> Binomial(n, 4)); # Muniru A Asiru, Oct 16 2017
[Binomial(n,4): n in [0..50]]; // Vincenzo Librandi, Nov 23 2014
A000332 := n->binomial(n,4); [seq(binomial(n,4), n=0..100)];
Table[ Binomial[n, 4], {n, 0, 45} ] (* corrected by Harvey P. Dale, Aug 22 2011 *) Table[(n-4)(n-3)(n-2)(n-1)/24, {n, 100}] (* Artur Jasinski, Dec 02 2007 *) LinearRecurrence[{5,-10,10,-5,1}, {0,0,0,0,1}, 45] (* Harvey P. Dale, Aug 22 2011 *) CoefficientList[Series[x^4 / (1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Nov 23 2014 *)
a(n)=binomial(n,4);
# Starts at a(3), i.e. computes n*(n+1)*(n+2)*(n+3)/24 # which is more in line with A000217 and A000292. def A000332(): x, y, z, u = 1, 1, 1, 1 yield 0 while True: yield x x, y, z, u = x + y + z + u + 1, y + z + u + 1, z + u + 1, u + 1 a = A000332(); print([next(a) for i in range(41)]) # Peter Luschny, Aug 03 2019
print([n*(n-1)*(n-2)*(n-3)//24 for n in range(50)]) # Gennady Eremin, Feb 06 2022
For n=9 the number of the tetrahedra of any orientation (those with the same orientation as the original one plus those with reverse orientation) is the total of the number of each size (counted from the smallest size upwards): t(9)+t(7)=165+84=249, t(8)+t(4)=120+20=140, t(7)+t(1)=84+1=85, t(6)=56, t(5)=35, t(4)=20, t(3)=10, t(2)=4 and t(1)=1, the total being a(9)=600, where t(n) denotes the tetrahedral number A000292(n).
I:=[1, 5, 16, 39, 80, 147, 249]; [n le 7 select I[n] else 4*Self(n-1)-6*Self(n-2)+5*Self(n-3)-5*Self(n-4)+6*Self(n-5)-4*Self(n-6)+Self(n-7): n in [1..50]]; // Vincenzo Librandi, Sep 12 2012
Table[(1/18) (1 - (-1)^Mod[n, 3] + 3 n + 7 n^2 + 5 n^3 + n^4), {n, 50}] CoefficientList[Series[(1 + x + 2 x^2)/((1 - x)^5 (1 + x + x^2)), {x, 0, 50}], x] (* Vincenzo Librandi, Sep 12 2012 *)
For n = 5, one such square has vertex set {(2,1,1), (5,4,1), (4,5,5), (1,2,5)}.
Comments