cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 1353 results. Next

A069396 Half the number of 3 X n binary arrays with a path of adjacent 1's and a path of adjacent 0's from top row to bottom row.

Original entry on oeis.org

1, 25, 377, 4541, 48329, 476389, 4461489, 40306317, 354713977, 3060942133, 26020259201, 218626028573, 1820140085705, 15043088032837, 123602247055953, 1010793162739629, 8234370308667673, 66870924588036181
Offset: 2

Views

Author

R. H. Hardin, Mar 22 2002

Keywords

Crossrefs

Cf. 1 X n A000225, 2 X n A016269, vertical path of 1 A069361-A069395, vertical paths of 0+1 A069396-A069416, vertical path of 1 not 0 A069417-A069428, no vertical paths A069429-A069447, no horizontal or vertical paths A069448-A069452.

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(x^2*(2*x+1)^2/(1-8*x)/(2*x^2-7*x+1)/(4*x^2-6*x+1))); // G. C. Greubel, Apr 22 2018
  • Mathematica
    Drop[CoefficientList[Series[x^2*(2*x+1)^2/(1-8*x)/(2*x^2-7*x + 1)/(4*x^2 - 6*x + 1), {x, 0, 50}], x], 2] (* G. C. Greubel, Apr 22 2018 *)
  • PARI
    x='x+O('x^30); Vec(x^2*(2*x+1)^2/(1-8*x)/(2*x^2-7*x+1)/(4*x^2 -6*x+1)) \\ G. C. Greubel, Apr 22 2018
    

Formula

G.f.: x^2*(2*x+1)^2/(1-8*x)/(2*x^2-7*x+1)/(4*x^2-6*x+1). - Vladeta Jovovic, Jul 02 2003
2*a(n) = 8^n+A084326(n+1) -2*A186446(n). - R. J. Mathar, May 09 2023

A069416 Half the number of n X 16 binary arrays with a path of adjacent 1's and a path of adjacent 0's from top row to bottom row.

Original entry on oeis.org

32767, 2104469695, 123602247055953, 6475978445076745163
Offset: 1

Views

Author

R. H. Hardin, Mar 22 2002

Keywords

Crossrefs

Cf. 1 X n A000225, 2 X n A016269, vertical path of 1 A069361-A069395, vertical paths of 0+1 A069396-A069416, vertical path of 1 not 0 A069417-A069428, no vertical paths A069429-A069447, no horizontal or vertical paths A069448-A069452.

A069447 Half the number of n X 9 binary arrays with no path of adjacent 1's or adjacent 0's from top row to bottom row.

Original entry on oeis.org

256, 1731840, 3334295986, 3616567402784
Offset: 2

Views

Author

R. H. Hardin, Mar 22 2002

Keywords

Crossrefs

Cf. 2 X n A000079, n X 1 A000225, vertical path of 1 A069361-A069395, vertical paths of 0+1 A069396-A069416, vertical path of 1 not 0 A069417-A069428, no vertical paths A069429-A069447, no horizontal or vertical paths A069448-A069452.

A069448 Half the number of 3 X n binary arrays with no path of adjacent 1's or adjacent 0's from top to bottom or side to side.

Original entry on oeis.org

3, 35, 269, 1723, 10123, 56757, 309755, 1663515, 8846821, 46767491, 246319875, 1294402053, 6792548971, 35614277883, 186632524741, 977711862035, 5120933346419
Offset: 2

Views

Author

R. H. Hardin, Mar 22 2002

Keywords

Crossrefs

Cf. 2 X n A000225, vertical path of 1 A069361-A069395, vertical paths of 0+1 A069396-A069416, vertical path of 1 not 0 A069417-A069428, no vertical paths A069429-A069447, no horizontal or vertical paths A069448-A069452.

A160120 Y-toothpick sequence (see Comments lines for definition).

Original entry on oeis.org

0, 1, 4, 7, 16, 19, 28, 37, 58, 67, 76, 85, 106, 121, 142, 169, 220, 247, 256, 265, 286, 301, 322, 349, 400, 433, 454, 481, 532, 583, 640, 709, 826, 907, 928, 937, 958, 973, 994, 1021, 1072, 1105, 1126, 1153, 1204, 1255, 1312, 1381, 1498, 1585, 1618, 1645
Offset: 0

Views

Author

Omar E. Pol, May 02 2009

Keywords

Comments

A Y-toothpick (or Y-shaped toothpick) is formed from three toothpicks of length 1, like a star with three endpoints and only one middle-point.
On the infinite triangular grid, we start at round 0 with no Y-toothpicks.
At round 1 we place a Y-toothpick anywhere in the plane.
At round 2 we add three more Y-toothpicks. After round 2, in the structure there are three rhombuses and a hexagon.
At round 3 we add three more Y-toothpicks.
And so on ... (see illustrations).
The sequence gives the number of Y-toothpicks after n rounds. A160121 (the first differences) gives the number added at the n-th round.
The Y-toothpick pattern has a recursive, fractal (or fractal-like) structure.
Note that, on the infinite triangular grid, a Y-toothpick can be represented as a polyedge with three components. In this case, at the n-th round, the structure is a polyedge with 3*a(n) components.
This structure is more complex than the toothpick structure of A139250. For example, at some rounds we can see inward growth.
The structure contains distinct polygons which have side length equal to 1.
Observation: It appears that the region of the structure where all grid points are covered is formed only by three distinct polygons:
- Triangles
- Rhombuses
- Concave-convex hexagons
Holes in the structure: Also, we can see distinct concave-convex polygons which contains a region where there are no grid points that are covered, for example:
- Decagons (with 1 non-covered grid point)
- Dodecagons (with 4 non-covered grid points)
- 18-gons (with 7 non-covered grid points)
- 30-gons (with 26 non-covered grid points)
- ...
Observation: It appears that the number of distinct polygons that contain non-covered grid points is infinite.
This sequence appears to be related to powers of 2. For example:
Conjecture: It appears that if n = 2^k, k>0, then, between the other polygons, there appears a new centered hexagon formed by three rhombuses with side length = 2^k/2 = n/2.
Conjecture: Consider the perimeter of the structure. It appears that if n = 2^k, k>0, then the structure is a triangle-shaped polygon with A000225(k)*6 sides and a half toothpick in each vertice of the "triangle".
Conjecture: It appears that if n = 2^k, k>0, then the ratio of areas between the Y-toothpick structure and the unitary triangle is equal to A006516(k)*6.
See the entry A139250 for more information about the growth of "standard" toothpicks.
See also A160715 for another version of this structure but without internal growth of Y-toothpicks. [Omar E. Pol, May 31 2010]
For an alternative visualization replace every single toothpick with a rhombus, or in other words, replace every Y-toothpick with the "three-diamond" symbol, so we have a cellular automaton in which a(n) gives the total number of "three-diamond" symbols after n-th stage and A160167(n) counts the total number of "ON" diamonds in the structure after n-th stage. See also A253770. - Omar E. Pol, Dec 24 2015
The behavior is similar to A153006 (see the graph). - Omar E. Pol, Apr 03 2018

Crossrefs

Programs

  • Mathematica
    YTPFunc[lis_, step_] := With[{out = Extract[lis, {{1, 2}, {2, 1}, {-1, -1}}], in = lis[[2, 2]]}, Which[in == 0 && Count[out, 2] >= 2, 1, in == 0 && Count[out, 2] == 1, 2, True, in]]; A160120[0] = 0; A160120[n_] := With[{m = n - 1}, Count[CellularAutomaton[{YTPFunc, {}, {1, 1}}, {{{2}}, 0}, {{{m}}}], 2, 2]] (* JungHwan Min, Jan 28 2016 *)
    A160120[0] = 0; A160120[n_] := With[{m = n - 1}, Count[CellularAutomaton[{435225738745686506433286166261571728070, 3, {{-1, 0}, {0, -1}, {0, 0}, {1, 1}}}, {{{2}}, 0}, {{{m}}}], 2, 2]] (* JungHwan Min, Jan 28 2016 *)

Extensions

More terms from David Applegate, Jun 14 2009, Jun 18 2009

A023758 Numbers of the form 2^i - 2^j with i >= j.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 12, 14, 15, 16, 24, 28, 30, 31, 32, 48, 56, 60, 62, 63, 64, 96, 112, 120, 124, 126, 127, 128, 192, 224, 240, 248, 252, 254, 255, 256, 384, 448, 480, 496, 504, 508, 510, 511, 512, 768, 896, 960, 992, 1008, 1016, 1020, 1022, 1023
Offset: 1

Views

Author

Keywords

Comments

Numbers whose digits in base 2 are in nonincreasing order.
Might be called "nialpdromes".
Subset of A077436. Proof: Since a(n) is of the form (2^i-1)*2^j, i,j >= 0, a(n)^2 = (2^(2i) - 2^(i+1))*2^(2j) + 2^(2j) where the first sum term has i-1 one bits and its 2j-th bit is zero, while the second sum term switches the 2j-th bit to one, giving i one bits, as in a(n). - Ralf Stephan, Mar 08 2004
Numbers whose binary representation contains no "01". - Benoit Cloitre, May 23 2004
Every polynomial with coefficients equal to 1 for the leading terms and 0 after that, evaluated at 2. For instance a(13) = x^4 + x^3 + x^2 at 2, a(14) = x^4 + x^3 + x^2 + x at 2. - Ben Paul Thurston, Jan 11 2008
From Gary W. Adamson, Jul 18 2008: (Start)
As a triangle by rows starting:
1;
2, 3;
4, 6, 7;
8, 12, 14, 15;
16, 24, 28, 30, 31;
...,
equals A000012 * A130123 * A000012, where A130123 = (1, 0,2; 0,0,4; 0,0,0,8; ...). Row sums of this triangle = A000337 starting (1, 5, 17, 49, 129, ...). (End)
First differences are A057728 = 1; 1; 1; 1; 2,1; 1; 4,2,1; 1; 8,4,2,1; 1; ... i.e., decreasing powers of 2, separated by another "1". - M. F. Hasler, May 06 2009
Apart from first term, numbers that are powers of 2 or the sum of some consecutive powers of 2. - Omar E. Pol, Feb 14 2013
From Andres Cicuttin, Apr 29 2016: (Start)
Numbers that can be digitally generated with twisted ring (Johnson) counters. This is, the binary digits of a(n) correspond to those stored in a shift register where the input bit of the first bit storage element is the inverted output of the last storage element. After starting with all 0’s, each new state is obtained by rotating the stored bits but inverting at each state transition the last bit that goes to the first position (see link).
Examples: for a(n) represented by three bits
Binary
a(5)= 4 -> 100 last bit = 0
a(6)= 6 -> 110 first bit = 1 (inverted last bit of previous number)
a(7)= 7 -> 111
and for a(n) represented by four bits
Binary
a(8) = 8 -> 1000
a(9) = 12 -> 1100 last bit = 0
a(10)= 14 -> 1110 first bit = 1 (inverted last bit of previous number)
a(11)= 15 -> 1111
(End)
Powers of 2 represented in bases which are terms of this sequence must always contain at least one digit which is also a power of 2. This is because 2^i mod (2^i - 2^j) = 2^j, which means the last digit always cycles through powers of 2 (or if i=j+1 then the first digit is a power of 2 and the rest are trailing zeros). The only known non-member of this sequence with this property is 5. - Ely Golden, Sep 05 2017
Numbers k such that k = 2^(1 + A000523(k)) - 2^A007814(k). - Daniel Starodubtsev, Aug 05 2021
A002260(n) = v(a(n)/2^v(a(n))+1) and A002024(n) = A002260(n) + v(a(n)) where v is the dyadic valuation (i.e., A007814). - Lorenzo Sauras Altuzarra, Feb 01 2023

Examples

			a(22) = 64 = 32 + 32 = 2^5 + a(16) = 2^A003056(20) + a(22-5-1).
a(23) = 96 = 64 + 32 = 2^6 + a(16) = 2^A003056(21) + a(23-6-1).
a(24) = 112 = 64 + 48 = 2^6 + a(17) = 2^A003056(22) + a(24-6-1).
		

Crossrefs

A000337(r) = sum of row T(r, c) with 0 <= c < r. See also A002024, A003056, A140129, A140130, A221975.
Cf. A007088, A130123, A101082 (complement), A340375 (characteristic function).
This is the base-2 version of A064222. First differences are A057728.
Subsequence of A077436, of A129523, of A277704, and of A333762.
Subsequences: A043569 (nonzero even terms, or equally, nonzero terms doubled), A175332, A272615, A335431, A000396 (its even terms only), A324200.
Positions of zeros in A049502, A265397, A277899, A284264.
Positions of ones in A283983, A283989.
Positions of nonzero terms in A341509 (apart from the initial zero).
Positions of squarefree terms in A260443.
Fixed points of A264977, A277711, A283165, A334666.
Distinct terms in A340632.
Cf. also A309758, A309759, A309761 (for analogous sequences).

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a023758 n = a023758_list !! (n-1)
    a023758_list = 0 : f (singleton 1) where
    f s = x : f (if even x then insert z s' else insert z $ insert (z+1) s')
    where z = 2*x; (x, s') = deleteFindMin s
    -- Reinhard Zumkeller, Sep 24 2014, Dec 19 2012
    
  • Maple
    a:=proc(n) local n2,d: n2:=convert(n,base,2): d:={seq(n2[j]-n2[j-1],j=2..nops(n2))}: if n=0 then 0 elif n=1 then 1 elif d={0,1} or d={0} or d={1} then n else fi end: seq(a(n),n=0..2100); # Emeric Deutsch, Apr 22 2006
  • Mathematica
    Union[Flatten[Table[2^i - 2^j, {i, 0, 100}, {j, 0, i}]]] (* T. D. Noe, Mar 15 2011 *)
    Select[Range[0, 2^10], NoneTrue[Differences@ IntegerDigits[#, 2], # > 0 &] &] (* Michael De Vlieger, Sep 05 2017 *)
  • PARI
    for(n=0,2500,if(prod(k=1,length(binary(n))-1,component(binary(n),k)+1-component(binary(n),k+1))>0,print1(n,",")))
    
  • PARI
    A023758(n)= my(r=round(sqrt(2*n--))); (1<<(n-r*(r-1)/2)-1)<<(r*(r+1)/2-n)
    /* or, to illustrate the "decreasing digit" property and analogy to A064222: */
    A023758(n,show=0)={ my(a=0); while(n--, show & print1(a","); a=vecsort(binary(a+1)); a*=vector(#a,j,2^(j-1))~); a} \\ M. F. Hasler, May 06 2009
    
  • PARI
    is(n)=if(n<5,1,n>>=valuation(n,2);n++;n>>valuation(n,2)==1) \\ Charles R Greathouse IV, Jan 04 2016
    
  • PARI
    list(lim)=my(v=List([0]),t); for(i=1,logint(lim\1+1,2), t=2^i-1; while(t<=lim, listput(v,t); t*=2)); Set(v) \\ Charles R Greathouse IV, May 03 2016
    
  • Python
    def a_next(a_n): return (a_n | (a_n >> 1)) + (a_n & 1)
    a_n = 1; a = [0]
    for i in range(55): a.append(a_n); a_n = a_next(a_n) # Falk Hüffner, Feb 19 2022
    
  • Python
    from math import isqrt
    def A023758(n): return (1<<(m:=isqrt(n-1<<3)+1>>1))-(1<<(m*(m+1)-(n-1<<1)>>1)) # Chai Wah Wu, Feb 23 2025

Formula

a(n) = 2^s(n) - 2^((s(n)^2 + s(n) - 2n)/2) where s(n) = ceiling((-1 + sqrt(1+8n))/2). - Sam Alexander, Jan 08 2005
a(n) = 2^k + a(n-k-1) for 1 < n and k = A003056(n-2). The rows of T(r, c) = 2^r-2^c for 0 <= c < r read from right to left produce this sequence: 1; 2, 3; 4, 6, 7; 8, 12, 14, 15; ... - Frank Ellermann, Dec 06 2001
For n > 0, a(n) mod 2 = A010054(n). - Benoit Cloitre, May 23 2004
A140130(a(n)) = 1 and for n > 1: A140129(a(n)) = A002262(n-2). - Reinhard Zumkeller, May 14 2008
a(n+1) = (2^(n - r(r-1)/2) - 1) 2^(r(r+1)/2 - n), where r=round(sqrt(2n)). - M. F. Hasler, May 06 2009
Start with A000225. If k is in the sequence, then so is 2k. - Ralf Stephan, Aug 16 2013
G.f.: (x^2/((2-x)*(1-x)))*(1 + Sum_{k>=0} x^((k^2+k)/2)*(1 + x*(2^k-1))). The sum is related to Jacobi theta functions. - Robert Israel, Feb 24 2015
A049502(a(n)) = 0. - Reinhard Zumkeller, Jun 17 2015
a(n) = a(n-1) + a(n-d)/a(d*(d+1)/2 + 2) if n > 1, d > 0, where d = A002262(n-2). - Yuchun Ji, May 11 2020
A277699(a(n)) = a(n)^2, A306441(a(n)) = a(n+1). - Antti Karttunen, Feb 15 2021 (the latter identity from A306441)
Sum_{n>=2} 1/a(n) = A211705. - Amiram Eldar, Feb 20 2022

Extensions

Definition changed by N. J. A. Sloane, Jan 05 2008

A323243 a(1) = 0; for n > 1, a(n) = A000203(A156552(n)).

Original entry on oeis.org

0, 1, 3, 4, 7, 6, 15, 8, 12, 13, 31, 12, 63, 18, 18, 24, 127, 14, 255, 20, 39, 48, 511, 24, 28, 84, 24, 48, 1023, 32, 2047, 32, 54, 176, 42, 40, 4095, 258, 144, 56, 8191, 38, 16383, 68, 36, 800, 32767, 48, 60, 31, 252, 132, 65535, 30, 91, 72, 528, 1302, 131071, 44, 262143, 2736, 60, 104, 126, 96, 524287, 304, 774, 42, 1048575, 72, 2097151, 4356, 42
Offset: 1

Views

Author

Antti Karttunen, Jan 10 2019

Keywords

Crossrefs

Cf. A323173, A324054, A324184, A324545 for other permutations of sigma, and also A324573, A324653.

Programs

  • Mathematica
    Array[If[# == 0, 0, DivisorSigma[1, #]] &@ Floor@ Total@ Flatten@ MapIndexed[#1 2^(#2 - 1) &, Flatten[Table[2^(PrimePi@ #1 - 1), {#2}] & @@@ FactorInteger@ #]] &, 75] (* Michael De Vlieger, Apr 21 2019 *)
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n))));
    A323243(n) = if(1==n, 0, sigma(A156552(n)));
    
  • PARI
    \\ For computing terms a(n), with n > ~4000 use Hans Havermann's factorization file https://oeis.org/A156552/a156552.txt
    v156552sigs = readvec("a156552.txt"); \\ First read it in as a PARI-vector.
    A323243(n) = if(n<=2,n-1,my(prsig=v156552sigs[n],ps=prsig[1],es=prsig[2]); prod(i=1,#ps,((ps[i]^(1+es[i]))-1)/(ps[i]-1))); \\ Then play sigma
    \\ Antti Karttunen, Mar 15 2019
    
  • Python
    from sympy import divisor_sigma, primepi, factorint
    def A323243(n): return divisor_sigma(sum((1< 1 else 0 # Chai Wah Wu, Mar 10 2023

Formula

a(1) = 0; for n > 1, a(n) = A000203(A156552(n)).
a(n) = 2*A156552(n) - A323244(n).
a(n) = A323247(n) - A323248(n).
From Antti Karttunen, Mar 12 2019: (Start)
a(A000040(n)) = A000225(n).
a(n) = Sum_{d|n} A324543(d).
For n > 1, a(2*A246277(n)) = A324118(n).
gcd(a(n), A156552(n)) = A324396(n).
A000035(a(n)) = A324823(n).
(End)

A000788 Total number of 1's in binary expansions of 0, ..., n.

Original entry on oeis.org

0, 1, 2, 4, 5, 7, 9, 12, 13, 15, 17, 20, 22, 25, 28, 32, 33, 35, 37, 40, 42, 45, 48, 52, 54, 57, 60, 64, 67, 71, 75, 80, 81, 83, 85, 88, 90, 93, 96, 100, 102, 105, 108, 112, 115, 119, 123, 128, 130, 133, 136, 140, 143, 147, 151, 156, 159, 163, 167, 172, 176, 181, 186
Offset: 0

Views

Author

Keywords

Comments

Partial sums of A000120.
The graph of this sequence is a version of the Takagi curve: see Lagarias (2012), Section 9, especially Theorem 9.1. - N. J. A. Sloane, Mar 12 2016
a(n-1) is the largest possible number of ordered pairs (a,b) such that a/b is a prime in a subset of the positive integers with n elements. - Yifan Xie, Feb 21 2025

References

  • J.-P. Allouche & J. Shallit, Automatic sequences, Cambridge University Press, 2003, p. 94
  • R. Bellman and H. N. Shapiro, On a problem in additive number theory, Annals Math., 49 (1948), 333-340. See Eq. 1.9. [From N. J. A. Sloane, Mar 12 2009]
  • L. E. Bush, An asymptotic formula for the average sums of the digits of integers, Amer. Math. Monthly, 47 (1940), pp. 154-156. [From the bibliography of Stolarsky, 1977]
  • P. Cheo and S. Yien, A problem on the k-adic representation of positive integers (Chinese; English summary), Acta Math. Sinica, 5 (1955), pp. 433-438. [From the bibliography of Stolarsky, 1977]
  • M. P. Drazin and J. S. Griffith, On the decimal representation of integers, Proc. Cambridge Philos. Soc., (4), 48 (1952), pp. 555-565. [From the bibliography of Stolarsky, 1977]
  • E. N. Gilbert, Games of identification or convergence, SIAM Review, 4 (1962), 16-24.
  • Grabner, P. J.; Kirschenhofer, P.; Prodinger, H.; Tichy, R. F.; On the moments of the sum-of-digits function. Applications of Fibonacci numbers, Vol. 5 (St. Andrews, 1992), 263-271, Kluwer Acad. Publ., Dordrecht, 1993.
  • R. L. Graham, On primitive graphs and optimal vertex assignments, pp. 170-186 of Internat. Conf. Combin. Math. (New York, 1970), Annals of the NY Academy of Sciences, Vol. 175, 1970.
  • E. Grosswald, Properties of some arithmetic functions, J. Math. Anal. Appl., 28 (1969), pp.405-430.
  • Donald E. Knuth, The Art of Computer Programming, volume 3 Sorting and Searching, section 5.3.4, subsection Bitonic sorting, with C'(p) = a(p-1).
  • Hiu-Fai Law, Spanning tree congestion of the hypercube, Discrete Math., 309 (2009), 6644-6648 (see p(m) on page 6647).
  • Z. Li and E. M. Reingold, Solution of a divide-and-conquer maximin recurrence, SIAM J. Comput., 18 (1989), 1188-1200.
  • B. Lindström, On a combinatorial problem in number theory, Canad. Math. Bull., 8 (1965), 477-490.
  • Mauclaire, J.-L.; Murata, Leo; On q-additive functions. I. Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), no. 6, 274-276.
  • Mauclaire, J.-L.; Murata, Leo; On q-additive functions. II. Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), no. 9, 441-444.
  • M. D. McIlroy, The number of 1's in binary integers: bounds and extremal properties, SIAM J. Comput., 3 (1974), 255-261.
  • L. Mirsky, A theorem on representations of integers in the scale of r, Scripta Math., 15 (1949), pp. 11-12.
  • I. Shiokawa, On a problem in additive number theory, Math. J. Okayama Univ., 16 (1974), pp.167-176. [From the bibliography of Stolarsky, 1977]
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • K. B. Stolarsky, Power and exponential sums of digital sums related to binomial coefficient parity, SIAM J. Appl. Math., 32 (1977), 717-730.
  • Trollope, J. R. An explicit expression for binary digital sums. Math. Mag. 41 1968 21-25.

Crossrefs

For number of 0's in binary expansion of 0, ..., n see A059015.
The basic sequences concerning the binary expansion of n are A000120, A000788, A000069, A001969, A023416, A059015, A070939, A083652.

Programs

  • Haskell
    a000788_list = scanl1 (+) A000120_list
    -- Walt Rorie-Baety, Jun 30 2012
    
  • Haskell
    {a000788 0 = 0; a00788 n = a000788 n2 + a000788 (n-n2-1) + (n-n2) where n2 = n `div` 2}
    -- Walt Rorie-Baety, Jul 15 2012
    
  • Maple
    a:= proc(n) option remember; `if`(n=0, 0, a(n-1)+add(i, i=Bits[Split](n))) end:
    seq(a(n), n=0..62);  # Alois P. Heinz, Nov 11 2024
  • Mathematica
    a[n_] := Count[ Table[ IntegerDigits[k, 2], {k, 0, n}], 1, 2]; Table[a[n], {n, 0, 62}] (* Jean-François Alcover, Dec 16 2011 *)
    Table[Plus@@Flatten[IntegerDigits[Range[n], 2]], {n, 0, 62}] (* Alonso del Arte, Dec 16 2011 *)
    Accumulate[DigitCount[Range[0,70],2,1]] (* Harvey P. Dale, Jun 08 2013 *)
  • PARI
    A000788(n)={ n<3 && return(n); if( bittest(n,0) \\
    , n+1 == 1<A000788(n>>1)*2+n>>1+1 \\
    , n == 1<A000788(n>>=1)+A000788(n-1)+n )} \\ M. F. Hasler, Nov 22 2009
    
  • PARI
    a(n)=sum(k=1,n,hammingweight(k)) \\ Charles R Greathouse IV, Oct 04 2013
    
  • PARI
    a(n) = if (n==0, 0, m = logint(n, 2); r = n % 2^m; m*2^(m-1) + r + 1 + a(r)); \\ Michel Marcus, Mar 27 2018
    
  • PARI
    a(n)={n++; my(t, i, s); c=n; while(c!=0, i++; c\=2); for(j=1, i, d=(n\2^(i-j))%2; t+=(2^(i-j)*(s*d+d*(i-j)/2)); s+=d); t} \\ David A. Corneth, Nov 26 2024
    (C++) /* See David W. Wilson link. */
    
  • Python
    def A000788(n): return sum(i.bit_count() for i in range(1,n+1)) # Chai Wah Wu, Mar 01 2023
    
  • Python
    def A000788(n): return (n+1)*n.bit_count()+(sum((m:=1<>j)-(r if n<<1>=m*(r:=k<<1|1) else 0)) for j in range(1,n.bit_length()+1))>>1) # Chai Wah Wu, Nov 11 2024

Formula

McIlroy (1974) gives bounds and recurrences. - N. J. A. Sloane, Mar 24 2014
Stolarsky (1977) studies the asymptotics, and gives at least nine references to earlier work on the problem. I have added all the references that were not here already. - N. J. A. Sloane, Apr 06 2014
a(n) = Sum_{k=1..n} A000120(k). - Benoit Cloitre, Dec 19 2002
a(0) = 0, a(2n) = a(n)+a(n-1)+n, a(2n+1) = 2a(n)+n+1. - Ralf Stephan, Sep 13 2003
a(n) = n*log_2(n)/2 + O(n); a(2^n)=n*2^(n-1)+1. - Benoit Cloitre, Sep 25 2003 (The first result is due to Bellman and Shapiro, - N. J. A. Sloane, Mar 24 2014)
a(n) = n*log_2(n)/2+n*F(log_2(n)) where F is a nowhere differentiable continuous function of period 1 (see Allouche & Shallit). - Benoit Cloitre, Jun 08 2004
G.f.: (1/(1-x)^2) * Sum_{k>=0} x^2^k/(1+x^2^k). - Ralf Stephan, Apr 19 2003
a(2^n-1) = A001787(n) = n*2^(n-1). - M. F. Hasler, Nov 22 2009
a(4^n-2) = n(4^n-2).
For real n, let f(n) = [n]/2 if [n] even, n-[n+1]/2 otherwise. Then a(n) = Sum_{k>=0} 2^k*f((n+1)/2^k).
a(A000225(n)) = A173921(A000225(n)) = A001787(n); a(A000079(n)) = A005183(n). - Reinhard Zumkeller, Mar 04 2010
From Hieronymus Fischer, Jun 10 2012: (Start)
a(n) = (1/2)*Sum_{j=1..m+1} (floor(n/2^j + 1/2)*(2n + 2 - floor(n/2^j + 1/2))*2^j - floor(n/2^j)*(2n + 2 - (1 + floor(n/2^j)) * 2^j)), where m=floor(log_2(n)).
a(n) = (n+1)*A000120(n) - 2^(m-1) + 1/4 + (1/2)*Sum_{j=1..m+1} ((floor(n/2^j) + 1/2)^2 - floor(n/2^j + 1/2)^2)*2^j, where m=floor(log_2(n)).
a(2^m-1) = m*2^(m-1).
(This is the total number of '1' digits occurring in all the numbers with <= m bits.)
Generic formulas for the number of digits >= d in the base p representations of all integers from 0 to n, where 1<= d < p.
a(n) = (1/2)*Sum_{j=1..m+1} (floor(n/p^j + (p-d)/p)*(2n + 2 + ((p-2*d)/p - floor(n/p^j + (p-d)/p))*p^j) - floor(n/p^j)*(2n + 2 - (1+floor(n/p^j)) * p^j)), where m=floor(log_p(n)).
a(n) = (n+1)*F(n,p,d) + (1/2)*Sum_{j=1..m+1} ((((p-2*d)/p)*floor(n/p^j+(p-d)/p) + floor(n/p^j))*p^j - (floor(n/p^j+(p-d)/p)^2 - floor(n/p^j)^2)*p^j), where m=floor(log_p(n)) and F(n,p,d) = number of digits >= d in the base p representation of n.
a(p^m-1) = (p-d)*m*p^(m-1).
(This is the total number of digits >= d occurring in all the numbers with <= m digits in base p representation.)
G.f.: g(x) = (1/(1-x)^2)*Sum_{j>=0} (x^(d*p^j) - x^(p*p^j))/(1-x^(p*p^j)). (End)
a(n) = Sum_{k=1..n} A000120(A240857(n,k)). - Reinhard Zumkeller, Apr 14 2014
For n > 0, if n is written as 2^m + r with 0 <= r < 2^m, then a(n) = m*2^(m-1) + r + 1 + a(r). - Shreevatsa R, Mar 20 2018
a(n) = n*(n+1)/2 + Sum_{k=1..floor(n/2)} ((2k-1)((g(n,k)-1)*2^(g(n,k) + 1) + 2) - (n+1)*(g(n,k)+1)*g(n,k)/2), where g(n,k) = floor(log_2(n/(2k-1))). - Fabio Visonà, Mar 17 2020
From Jeffrey Shallit, Aug 07 2021: (Start)
A 2-regular sequence, satisfying the identities
a(4n+1) = -a(2n) + a(2n+1) + a(4n)
a(4n+2) = -2a(2n) + 2a(2n+1) + a(4n)
a(4n+3) = -4a(n) + 4a(2n+1)
a(8n) = 4a(n) - 8a(2n) + 5a(4n)
a(8n+4) = -9a(2n) + 5a(2n+1) + 4a(4n)
for n>=0. (End)
a(n) = Sum_{k=0..floor(log_2(n+1))} k * A360189(n,k). - Alois P. Heinz, Mar 06 2023

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jan 15 2001

A022166 Triangle of Gaussian binomial coefficients (or q-binomial coefficients) [n,k] for q = 2.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 35, 15, 1, 1, 31, 155, 155, 31, 1, 1, 63, 651, 1395, 651, 63, 1, 1, 127, 2667, 11811, 11811, 2667, 127, 1, 1, 255, 10795, 97155, 200787, 97155, 10795, 255, 1, 1, 511, 43435, 788035, 3309747, 3309747, 788035, 43435, 511, 1
Offset: 0

Views

Author

Keywords

Comments

Also number of distinct binary linear [n,k] codes.
Row sums give A006116.
Central terms are A006098.
T(n,k) is the number of subgroups of the Abelian group (C_2)^n that have order 2^k. - Geoffrey Critzer, Mar 28 2016
T(n,k) is the number of k-subspaces of the finite vector space GF(2)^n. - Jianing Song, Jan 31 2020

Examples

			Triangle begins:
  1;
  1,   1;
  1,   3,    1;
  1,   7,    7,     1;
  1,  15,   35,    15,     1;
  1,  31,  155,   155,    31,    1;
  1,  63,  651,  1395,   651,   63,   1;
  1, 127, 2667, 11811, 11811, 2667, 127, 1;
		

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. A006516, A218449, A135950 (matrix inverse), A000225 (k=1), A006095 (k=2), A006096 (k=3), A139382.
Cf. this sequence (q=2), A022167 (q=3), A022168 (q=4), A022169 (q=5), A022170 (q=6), A022171 (q=7), A022172 (q=8), A022173 (q=9), A022174 (q=10), A022175 (q=11), A022176 (q=12), A022177 (q=13), A022178 (q=14), A022179 (q=15), A022180 (q=16), A022181 (q=17), A022182 (q=18), A022183 (q=19), A022184 (q=20), A022185 (q=21), A022186 (q=22), A022187 (q=23), A022188 (q=24).
Analogous triangles for other q: A015109 (q=-2), A015110 (q=-3), A015112 (q=-4), A015113 (q=-5), A015116 (q=-6), A015117 (q=-7), A015118 (q=-8), A015121 (q=-9), A015123 (q=-10), A015124 (q=-11), A015125 (q=-12), A015129 (q=-13), A015132 (q=-14), A015133 (q=-15).

Programs

  • Magma
    q:=2; [[k le 0 select 1 else (&*[(1-q^(n-j))/(1-q^(j+1)): j in [0..(k-1)]]): k in [0..n]]: n in [0..20]]; // G. C. Greubel, Nov 17 2018
  • Maple
    A005329 := proc(n)
       mul( 2^i-1,i=1..n) ;
    end proc:
    A022166 := proc(n,m)
       A005329(n)/A005329(n-m)/A005329(m) ;
    end proc: # R. J. Mathar, Nov 14 2011
  • Mathematica
    Table[QBinomial[n, k, 2], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 08 2016 *)
    (* S stands for qStirling2 *) S[n_, k_, q_] /; 1 <= k <= n := S[n - 1, k - 1, q] + Sum[q^j, {j, 0, k - 1}]*S[n - 1, k, q]; S[n_, 0, ] := KroneckerDelta[n, 0]; S[0, k, ] := KroneckerDelta[0, k]; S[, , ] = 0;
    T[n_, k_] /; n >= k := Sum[Binomial[n, j]*S[n - j, n - k, q]*(q - 1)^(k - j) /. q -> 2, {j, 0, k}];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 08 2020, after Vladimir Kruchinin *)
  • PARI
    T(n,k)=polcoeff(x^k/prod(j=0,k,1-2^j*x+x*O(x^n)),n) \\ Paul D. Hanna, Oct 28 2006
    
  • PARI
    qp = matpascal(9,2);
    for(n=1,#qp,for(k=1,n,print1(qp[n,k],", "))) \\ Gerald McGarvey, Dec 05 2009
    
  • PARI
    {q=2; T(n,k) = if(k==0,1, if (k==n, 1, if (k<0 || nG. C. Greubel, May 27 2018
    
  • Sage
    def T(n,k): return gaussian_binomial(n,k).subs(q=2) # Ralf Stephan, Mar 02 2014
    

Formula

G.f.: A(x,y) = Sum_{k>=0} y^k/Product_{j=0..k} (1 - 2^j*x). - Paul D. Hanna, Oct 28 2006
For k = 1,2,3,... the expansion of exp( Sum_{n >= 1} (2^(k*n) - 1)/(2^n - 1)*x^n/n ) gives the o.g.f. for the k-th diagonal of the triangle (k = 1 corresponds to the main diagonal). - Peter Bala, Apr 07 2015
T(n,k) = T(n-1,k-1) + q^k * T(n-1,k). - Peter A. Lawrence, Jul 13 2017
T(m+n,k) = Sum_{i=0..k} q^((k-i)*(m-i)) * T(m,i) * T(n,k-i), q=2 (see the Sved link, page 337). - Werner Schulte, Apr 09 2019
T(n,k) = Sum_{j=0..k} qStirling2(n-j,n-k)*C(n,j) where qStirling2(n,k) is A139382. - Vladimir Kruchinin, Mar 04 2020

A289780 p-INVERT of the positive integers (A000027), where p(S) = 1 - S - S^2.

Original entry on oeis.org

1, 4, 14, 47, 156, 517, 1714, 5684, 18851, 62520, 207349, 687676, 2280686, 7563923, 25085844, 83197513, 275925586, 915110636, 3034975799, 10065534960, 33382471801, 110713382644, 367182309614, 1217764693607, 4038731742156, 13394504020957, 44423039068114
Offset: 0

Views

Author

Clark Kimberling, Aug 10 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x).
Taking p(S) = 1 - S gives the INVERT transform of s, so that p-INVERT is a generalization of the INVERT transform (e.g., A033453).
Guide to p-INVERT sequences using p(S) = 1 - S - S^2:
t(A000012) = t(1,1,1,1,1,1,1,...) = A001906
t(A000290) = t(1,4,9,16,25,36,...) = A289779
t(A000027) = t(1,2,3,4,5,6,7,8,...) = A289780
t(A000045) = t(1,2,3,5,8,13,21,...) = A289781
t(A000032) = t(2,1,3,4,7,11,14,...) = A289782
t(A000244) = t(1,3,9,27,81,243,...) = A289783
t(A000302) = t(1,4,16,64,256,...) = A289784
t(A000351) = t(1,5,25,125,625,...) = A289785
t(A005408) = t(1,3,5,7,9,11,13,...) = A289786
t(A005843) = t(2,4,6,8,10,12,14,...) = A289787
t(A016777) = t(1,4,7,10,13,16,...) = A289789
t(A016789) = t(2,5,8,11,14,17,...) = A289790
t(A008585) = t(3,6,9,12,15,18,...) = A289795
t(A000217) = t(1,3,6,10,15,21,...) = A289797
t(A000225) = t(1,3,7,15,31,63,...) = A289798
t(A000578) = t(1,8,27,64,625,...) = A289799
t(A000984) = t(1,2,6,20,70,252,...) = A289800
t(A000292) = t(1,4,10,20,35,56,...) = A289801
t(A002620) = t(1,2,4,6,9,12,16,...) = A289802
t(A001906) = t(1,3,8,21,55,144,...) = A289803
t(A001519) = t(1,1,2,5,13,34,...) = A289804
t(A103889) = t(2,1,4,3,6,5,8,7,,...) = A289805
t(A008619) = t(1,1,2,2,3,3,4,4,...) = A289806
t(A080513) = t(1,2,2,3,3,4,4,5,...) = A289807
t(A133622) = t(1,2,1,3,1,4,1,5,...) = A289809
t(A000108) = t(1,1,2,5,14,42,...) = A081696
t(A081696) = t(1,1,3,9,29,97,...) = A289810
t(A027656) = t(1,0,2,0,3,0,4,0,5...) = A289843
t(A175676) = t(1,0,0,2,0,0,3,0,...) = A289844
t(A079977) = t(1,0,1,0,2,0,3,...) = A289845
t(A059841) = t(1,0,1,0,1,0,1,...) = A289846
t(A000040) = t(2,3,5,7,11,13,...) = A289847
t(A008578) = t(1,2,3,5,7,11,13,...) = A289828
t(A000142) = t(1!, 2!, 3!, 4!, ...) = A289924
t(A000201) = t(1,3,4,6,8,9,11,...) = A289925
t(A001950) = t(2,5,7,10,13,15,...) = A289926
t(A014217) = t(1,2,4,6,11,17,29,...) = A289927
t(A000045*) = t(0,1,1,2,3,5,...) = A289975 (* indicates prepended 0's)
t(A000045*) = t(0,0,1,1,2,3,5,...) = A289976
t(A000045*) = t(0,0,0,1,1,2,3,5,...) = A289977
t(A290990*) = t(0,1,2,3,4,5,...) = A290990
t(A290990*) = t(0,0,1,2,3,4,5,...) = A290991
t(A290990*) = t(0,0,01,2,3,4,5,...) = A290992

Examples

			Example 1:  s = (1,2,3,4,5,6,...) = A000027 and p(S) = 1 - S.
S(x) = x + 2x^2 + 3x^3 + 4x^4 + ...
p(S(x)) = 1 - (x + 2x^2 + 3x^3 + 4x^4 + ... )
- p(0) + 1/p(S(x)) = -1 + 1 + x + 3x^2 + 8x^3 + 21x^4 + ...
T(x) = 1 + 3x + 8x^2 + 21x^3 + ...
t(s) = (1,3,8,21,...) = A001906.
***
Example 2:  s = (1,2,3,4,5,6,...) = A000027 and p(S) = 1 - S - S^2.
S(x) =  x + 2x^2 + 3x^3 + 4x^4 + ...
p(S(x)) = 1 - ( x + 2x^2 + 3x^3 + 4x^4 + ...) - ( x + 2x^2 + 3x^3 + 4x^4 + ...)^2
- p(0) + 1/p(S(x)) = -1 + 1 + x + 4x^2 + 14x^3 + 47x^4 + ...
T(x) = 1 + 4x + 14x^2 + 47x^3 + ...
t(s) = (1,4,14,47,...) = A289780.
		

Crossrefs

Cf. A000027.

Programs

  • GAP
    P:=[1,4,14,47];; for n in [5..10^2] do P[n]:=5*P[n-1]-7*P[n-2]+5*P[n-3]-P[n-4]; od; P; # Muniru A Asiru, Sep 03 2017
  • Mathematica
    z = 60; s = x/(1 - x)^2; p = 1 - s - s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289780 *)
  • PARI
    x='x+O('x^99); Vec((1-x+x^2)/(1-5*x+7*x^2-5*x^3+x^4)) \\ Altug Alkan, Aug 13 2017
    

Formula

G.f.: (1 - x + x^2)/(1 - 5 x + 7 x^2 - 5 x^3 + x^4).
a(n) = 5*a(n-1) - 7*a(n-2) + 5*a(n-3) - a(n-4).
Previous Showing 91-100 of 1353 results. Next