cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 131 results. Next

A178867 Irregular triangle read by rows: multinomial coefficients, version 3; alternatively, row n gives coefficients of the n-th complete exponential Bell polynomial B_n(x_1, x_2, ...) with monomials sorted into some unknown order.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 4, 3, 1, 1, 10, 10, 15, 5, 10, 1, 1, 15, 20, 45, 15, 60, 6, 15, 15, 10, 1, 1, 21, 35, 105, 35, 210, 21, 105, 105, 70, 7, 105, 35, 21, 1, 1, 28, 56, 210, 70, 560, 56, 420, 420, 280, 28, 840, 280, 168, 8, 280, 210, 105, 56, 35, 28, 1
Offset: 1

Views

Author

Johannes W. Meijer and Manuel Nepveu (Manuel.Nepveu(AT)tno.nl), Jun 21 2010, Jun 24 2010

Keywords

Comments

"Exponential" here means in contrast to "ordinary", cf. A263633 (see Comtet). "Standard order" means as produced by Maple's "sort" command. - N. J. A. Sloane, Oct 28 2015
From Petros Hadjicostas, May 27 2020: (Start)
According to the Maple help files for the "sort" command, polynomials in multiple variables are "sorted in total degree with ties broken by lexicographic order (this is called graded lexicographic order)."
Thus, for example, x_1^2*x_3 = x_1*x_1*x_3 > x_1*x_2*x_2 = x_1*x_2^2, while x_1^2*x_4 = x_1*x_1*x_4 > x_1*x_2*x_3.
It appears that the authors' n-th row does give the coefficients of the n-th complete exponential Bell polynomial. Starting with row 6, however, it is unknown in what order the monomials of the n-th complete exponential Bell polynomial follow. It is definitely not the standard order nor any other known order. (End)
This version of the multinomial coefficients was discovered while calculating the probability that two 23 year old chessplayers would play each other on their birthday during a Dutch Chess Championship. This unique encounter took place on Apr 05 2008. Its probability is 1 in 50000 years, see the Meijer-Nepveu article.
The third version of the multinomial coefficients can be constructed with the basic multinomial coefficients A178866; see the formulas below. These multinomial coefficients appear in the columns of the multinomial coefficient matrix MCM[n,m] (n >= 1 and m >= 1).
We observe that the sum of the C(m,n) coefficients follow the A000296(n) sequence. The missing C(m, n=1) corresponds to A000296(1) = 0.
The number of multinomial coefficients in a triangle row leads to the partition numbers A000041. The row sums lead to the Bell numbers A000110.

Examples

			The first few complete exponential Bell polynomials are:
(1) x[1];
(2) x[1]^2 + x[2];
(3) x[1]^3 + 3*x[1]*x[2] + x[3];
(4) x[1]^4 + 6*x[1]^2*x[2] + 4*x[1]*x[3] + 3*x[2]^2 + x[4];
(5) x[1]^5 + 10*x[1]^3*x[2] + 10*x[1]^2*x[3] + 15*x[1]*x[2]^2 + 5*x[1]*x[4] + 10*x[2]*x[3] + x[5];
(6) x[1]^6 + 15*x[1]^4*x[2] + 20*x[1]^3*x[3] + 45*x[1]^2*x[2]^2 + 15*x[1]^2*x[4] + 60*x[1]*x[2]*x[3] + 6*x[1]*x[5] + 15*x[2]^3 + 15*x[2]*x[4] + 10*x[3]^2 + x[6].
(7) x[1]^7 + 21*x[1]^5*x[2] + 35*x[1]^4*x[3] + 105*x[1]^3*x[2]^2 + 35*x[1]^3*x[4] + 210*x[1]^2*x[2]*x[3] + 21*x[1]^2*x[5] + 105*x[1]*x[2]^3 + 105*x[1]*x[2]*x[4] + 70*x[1]*x[3]^2 + 7*x[1]*x[6] + 105*x[2]^2*x[3] + 35*x[3]*x[4] + 21*x[2]*x[5] + x[7].
...
The first few rows of the triangle are
  1;
  1,  1;
  1,  3,  1;
  1,  6,  4,   3,  1;
  1, 10, 10,  15,  5,  10,  1;
  1, 15, 20,  45, 15,  60,  6,  15,  15, 10, 1;
  1, 21, 35, 105, 35, 210, 21, 105, 105, 70, 7, 105, 35, 21, 1;
  ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 134, 307-310.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, Chapter 2, Section 8 and table on page 49.

Crossrefs

Cf. A036040 (version 1 of multinomial coefficients), A080575 (version 2).

Programs

  • Maple
    with(combinat): nmax:=11; A178866(1):=1: T:=1: for n from 1 to nmax do y(n):=numbpart(n): P(n):=sort(partition(n)): k:=0: for r from 1 to y(n) do if P(n)[r,1]>1 then k:=k+1; B(k):=P(n)[r]: fi; od: A002865(n):=k; for k from 1 to A002865(n) do s:=0: j:=1: while sA002865(n))], `>`): for k from 1 to A002865(n) do M3[n,k]:=a[k] od: for k from 1 to A002865(n) do T:=T+1: A178866(T):= M3[n,k]: od: od:
    mmax:=nmax: n:=1: for m from 1 to mmax do MCM[n,m]:= A178866(n) od: n:=2: r:=1: for i from 2 to nmax do p:=A002865(i): r:=r+1: while p>0 do for m from 1 to mmax do MCM[n,m]:=A178866(n)*binomial(m,r) od: p:=p-1: n:=n+1: od: od: T:=0: for m from 1 to mmax do for n from 1 to numbpart(m) do T:=T+1; A178867(T):= MCM[n,m]; od: od; seq(A178867(n), n=1..T);
    # To produce the complete exponential Bell polynomials in standard order, from N. J. A. Sloane, Oct 28 2015
    M:=12;
    EE:=add(x[i]*t^i/i!,i=1..M);
    t1:=exp(EE);
    t2:=series(t1,t,M);
    Q:=k->sort(expand(k!*coeff(t2,t,k)));
    for k from 1 to 8 do lprint(k,Q(k)); od;
    # To produce the coefficients of the complete exponential Bell polynomials in standard order:
    triangle := proc(numrows) local E, s, Q;
    E := add(x[i]*t^i/i!, i=1..numrows);
    s := series(exp(E), t, numrows+1);
    Q := k -> sort(expand(k!*coeff(s, t, k)));
    seq(print(coeffs(Q(k))), k=1..numrows) end:
    triangle(6); # Peter Luschny, May 27 2020

Formula

G.f.: Exp(Sum_{i >= 1} x_i*t^i/i!) = 1 + Sum_{n >= 1} B_n(x_1, x_2,...)*t^n/n!. [Comtet, p. 134, Eq. [3b]. - N. J. A. Sloane, Oct 28 2015]
For m >= 1, the formulas for the first few matrix columns are:
MCM[1,m] = A178866(1)*C(m,0) = 1*C(m,0);
MCM[2,m] = A178866(2)*C(m,2) = 1*C(m,2);
MCM[3,m] = A178866(3)*C(m,3) = 1*C(m,3);
MCM[4,m] = A178866(4)*C(m,4) = 3*C(m,4) and
MCM[5,m] = A178866(5)*C(m,4) = 1*C(m,4);
MCM[6,m] = A178866(6)*C(m,5) = 10*C(m,5) and
MCM[7,m] = A178866(7)*C(m,5) = 1*C(m,5);
MCM[8,m] = A178866(8)*C(m,6) = 15*C(m,6) and
MCM[9,m] = A178866(9)*C(m,6) = 15*C(m,6) and
MCM[10,m] = A178866(10)*C(m,6) = 10*C(m,6) and
MCM[11,m] = A178866(11)*C(m,6) = 1*C(m,6).

Extensions

Alternative definition as coefficients of complete Bell polynomials added by N. J. A. Sloane, Oct 28 2015
Various sections and name edited by Petros Hadjicostas, May 28 2020

A006343 Arkons: number of elementary maps with n-1 nodes.

Original entry on oeis.org

1, 0, 1, 1, 4, 10, 34, 112, 398, 1443, 5387, 20482, 79177, 310102, 1228187, 4910413, 19792582, 80343445, 328159601, 1347699906, 5561774999, 23052871229, 95926831442, 400587408251, 1678251696379, 7051768702245, 29710764875014
Offset: 0

Views

Author

Keywords

References

  • K. Appel and W. Haken, Every planar map is four colorable. With the collaboration of J. Koch. Contemporary Mathematics, 98. American Mathematical Society, Providence, RI, 1989. xvi+741 pp. ISBN: 0-8218-5103-9.
  • F. R. Bernhart, Topics in Graph Theory Related to the Five Color Conjecture. Ph.D. Dissertation, Kansas State Univ., 1974.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006343 0 = 1
    a006343 n = sum $ zipWith div
       (zipWith (*) (map (a007318 n) ks)
                    (map (\k -> a007318 (2*n - 3*k - 4) (n - 2*k - 2)) ks))
       (map (toInteger . (n - 1 -)) ks)
       where ks = [0 .. (n - 2) `div` 2]
    -- Reinhard Zumkeller, Aug 23 2012
  • Maple
    A006343:=n->add(binomial(n,k)*binomial(2*n-3*k-4,n-2*k-2)/(n-k-1), k=0..(n-2)/2): (1, seq(A006343(n), n=1..30)); # Wesley Ivan Hurt, Jun 22 2015
  • Mathematica
    a[n_] := Sum[ Binomial[n, k]*Binomial[2*n-3*k-4, n-2*k-2]/(n-k-1), {k, 0, (n-2)/2}]; a[0] = 1; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Dec 14 2012, from formula *)

Formula

a(n-1) = Sum (n-k-1)^(-1)*binomial(n, k)*binomial(2*n-3*k-4, n-2*k-2); k = 0..[ (n-2)/2 ], n >= 3.
From Peter Bala, Jun 22 2015: (Start)
O.g.f. A(x) equals 1/x * series reversion ( x/(1 + x^2*C(x)) ), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for A000108.
A(x) is an algebraic function satisfying x^3*A^3(x) - (x - 1)*A^2(x) + (x - 2)*A(x) + 1 = 0. (End)
a(n) ~ sqrt(s*(1 - s + 3*r^2*s^2) / (1 - r + 3*r^3*s)) / (2*sqrt(Pi) * n^(3/2) * r^(n - 1/2)), where r = 0.2229935155751761877673240243525445951244491757706... and s = 1.116796494086474135831052534637944909439048671327... are real roots of the system of equations 1 + (r-2)*s + r^3*s^3 = (r-1)*s^2, r + 2*s + 3*r^3*s^2 = 2 + 2*r*s. - Vaclav Kotesovec, Nov 27 2017
Conjecture: D-finite with recurrence: -(n+3)*(n-1)*a(n) +(11*n^2-2*n-45)*a(n-1) -(37*n+29)*(n-3)*a(n-2) +(29*n^2-125*n+78)*a(n-3) +(61*n-106)*(n-3)*a(n-4) -155*(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Feb 20 2020

Extensions

Erroneously duplicated term 4 removed per Frank Bernhart's report by Max Alekseyev, Feb 11 2010

A011968 Apply (1+Shift) to Bell numbers.

Original entry on oeis.org

1, 2, 3, 7, 20, 67, 255, 1080, 5017, 25287, 137122, 794545, 4892167, 31858034, 218543759, 1573857867, 11863100692, 93345011951, 764941675963, 6514819011216, 57556900440429, 526593974392123, 4981585554604074, 48658721593531669, 490110875149889635
Offset: 0

Views

Author

Keywords

Comments

Number of set partitions of n+2 with at least one singleton and the smallest element in any singleton is exactly n. The maximum number of singletons is therefore 3. Alternatively, number of set partitions of n+2 with at least one singleton and the largest element in any singleton is exactly 3 (or n+2 if n+2 < 3). For example, a(3)=7 counts the following set partitions of [5]: {1245, 3}, {12, 3, 45}, {124, 3, 5}, {15, 24, 3}, {125, 3, 4}, {14, 25, 3}, {12, 3, 4, 5}. - Olivier Gérard, Oct 29 2007
Let V(N)={v(1),v(2),...,v(N)} denote an ordered set of increasing positive integers containing a pair of adjacent elements that differ by at least 2, that is, v(i),v(i+1) with v(i+1)-v(i) > 1. Then for n > 0, a(n) is the number of partitions of V(n+1) into blocks of nonconsecutive integers. - Augustine O. Munagi, Jul 17 2008

Examples

			a(3)=7 because the set {1,3,4,5} has 7 different partitions into blocks of nonconsecutive integers: 14/35, 135/4, 1/35/4, 13/4/5, 14/3/5, 15/3/4, 1/3/4/5.
		

References

  • Olivier Gérard and Karol Penson, A budget of set partitions statistics, in preparation, unpublished as of Sep 22 2011

Crossrefs

A diagonal of A011971 and A106436. - N. J. A. Sloane, Jul 31 2012

Programs

  • Maple
    with(combinat): seq(`if`(n>0,bell(n)+bell(n-1),1),n=0..21); # Augustine O. Munagi, Jul 17 2008
  • Python
    # requires python 3.2 or higher. Otherwise use def'n of accumulate in python docs.
    from itertools import accumulate
    A011968_list, blist, b = [1,2], [1], 1
    for _ in range(10**2):
        blist = list(accumulate([b]+blist))
        A011968_list.append(b+blist[-1])
        b = blist[-1] # Chai Wah Wu, Sep 02 2014, updated Chai Wah Wu, Sep 20 2014

Formula

For n >= 1, a(n+1) = exp(-1)*Sum_{k>=0} ((k+1)/k!)*k^n. - Benoit Cloitre, Mar 09 2008
For n >= 1, a(n) = Bell(n) + Bell(n-1). - Augustine O. Munagi, Jul 17 2008
G.f.: G(0) where G(k) = 1 - 2*x*(k+1)/((2*k+1)*(2*x*k-1) - x*(2*k+1)*(2*k+3)*(2*x*k-1)/(x*(2*k+3) - 2*(k+1)*(2*x*k+x-1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 19 2012
G.f.: 1 + x*E(0) where E(k) = 1 + 1/(1-x*k-x)/(1-x/(x+1/E(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 20 2013
G.f.: 1 + Sum_{k>=0} ( 1+1/(1-x-x*k) )*x^(k+1)/Product_{i=0..k} (1-x*i). - Sergei N. Gladkovskii, Jan 20 2013
a(n) ~ Bell(n) * (1 + LambertW(n)/n). - Vaclav Kotesovec, Jul 28 2021

A324011 Number of set partitions of {1, ..., n} with no singletons or cyclical adjacencies (successive elements in the same block, where 1 is a successor of n).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 5, 14, 66, 307, 1554, 8415, 48530, 296582, 1913561, 12988776, 92467629, 688528288, 5349409512, 43270425827, 363680219762, 3170394634443, 28619600156344, 267129951788160, 2574517930001445, 25587989366964056, 261961602231869825
Offset: 0

Views

Author

Gus Wiseman, Feb 12 2019

Keywords

Comments

These set partitions are fixed points under Callan's bijection phi on set partitions.

Examples

			The a(4) = 1, a(6) = 5, and a(7) = 14 set partitions:
  {{13}{24}}  {{135}{246}}    {{13}{246}{57}}
              {{13}{25}{46}}  {{13}{257}{46}}
              {{14}{25}{36}}  {{135}{26}{47}}
              {{14}{26}{35}}  {{135}{27}{46}}
              {{15}{24}{36}}  {{136}{24}{57}}
                              {{136}{25}{47}}
                              {{14}{257}{36}}
                              {{14}{26}{357}}
                              {{146}{25}{37}}
                              {{146}{27}{35}}
                              {{15}{246}{37}}
                              {{15}{247}{36}}
                              {{16}{24}{357}}
                              {{16}{247}{35}}
		

Crossrefs

Cf. A000110, A000126, A000296 (singletons allowed, or adjacencies allowed), A001610, A124323, A169985, A261139, A324012, A324014, A324015.

Programs

  • Mathematica
    Table[Select[sps[Range[n]],And[Count[#,{_}]==0,Total[If[First[#]==1&&Last[#]==n,1,0]+Count[Subtract@@@Partition[#,2,1],-1]&/@#]==0]&]//Length,{n,0,10}]

Extensions

a(11)-a(26) from Alois P. Heinz, Feb 12 2019

A108087 Array, read by antidiagonals, where A(n,k) = exp(-1)*Sum_{i>=0} (i+k)^n/i!.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 5, 3, 1, 15, 15, 10, 4, 1, 52, 52, 37, 17, 5, 1, 203, 203, 151, 77, 26, 6, 1, 877, 877, 674, 372, 141, 37, 7, 1, 4140, 4140, 3263, 1915, 799, 235, 50, 8, 1, 21147, 21147, 17007, 10481, 4736, 1540, 365, 65, 9, 1, 115975, 115975, 94828, 60814, 29371, 10427, 2727, 537, 82, 10, 1
Offset: 0

Views

Author

Gerald McGarvey, Jun 05 2005

Keywords

Comments

The column for k=0 is A000110 (Bell or exponential numbers). The column for k=1 is A000110 starting at offset 1. The column for k=2 is A005493 (Sum_{k=0..n} k*Stirling2(n,k).). The column for k=3 is A005494 (E.g.f.: exp(3*z+exp(z)-1).). The column for k=4 is A045379 (E.g.f.: exp(4*z+exp(z)-1).). The row for n=0 is 1's sequence, the row for n=1 is the natural numbers. The row for n=2 is A002522 (n^2 + 1.). The row for n=3 is A005491 (n^3 + 3n + 1.). The row for n=4 is A005492.
Number of ways of placing n labeled balls into n+k boxes, where k of the boxes are labeled and the rest are indistinguishable. - Bradley Austin (artax(AT)cruzio.com), Apr 24 2006
The column for k = -1 (not shown) is A000296 (Number of partitions of an n-set into blocks of size >1. Also number of cyclically spaced (or feasible) partitions.). - Gerald McGarvey, Oct 08 2006
Equals antidiagonals of an array in which (n+1)-th column is the binomial transform of n-th column, with leftmost column = the Bell sequence, A000110. - Gary W. Adamson, Apr 16 2009
Number of partitions of [n+k] where at least k blocks contain their own index element. A(2,2) = 10: 134|2, 13|24, 13|2|4, 14|23, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4. - Alois P. Heinz, Jan 07 2022

Examples

			Array A(n,k) begins:
   1,   1,   1,    1,    1,     1,     1,     1,     1,      1, ... A000012;
   1,   2,   3,    4,    5,     6,     7,     8,     9,     10, ... A000027;
   2,   5,  10,   17,   26,    37,    50,    65,    82,    101, ... A002522;
   5,  15,  37,   77,  141,   235,   365,   537,   757,   1031, ... A005491;
  15,  52, 151,  372,  799,  1540,  2727,  4516,  7087,  10644, ... A005492;
  52, 203, 674, 1915, 4736, 10427, 20878, 38699, 67340, 111211, ... ;
Antidiagonal triangle, T(n, k), begins as:
     1;
     1,    1;
     2,    2,    1;
     5,    5,    3,    1;
    15,   15,   10,    4,   1;
    52,   52,   37,   17,   5,   1;
   203,  203,  151,   77,  26,   6,  1;
   877,  877,  674,  372, 141,  37,  7,  1;
  4140, 4140, 3263, 1915, 799, 235, 50,  8,  1;
		

References

  • F. Ruskey, Combinatorial Generation, preprint, 2001.

Crossrefs

Main diagonal gives A134980.
Antidiagonal sums give A347420.

Programs

  • Magma
    A108087:= func< n,k | (&+[Binomial(n-k,j)*k^j*Bell(n-k-j): j in [0..n-k]]) >;
    [A108087(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Dec 02 2022
    
  • Maple
    with(combinat):
    A:= (n, k)-> add(binomial(n, i) * k^i * bell(n-i), i=0..n):
    seq(seq(A(d-k, k), k=0..d), d=0..12);  # Alois P. Heinz, Jul 18 2012
  • Mathematica
    Unprotect[Power]; 0^0 = 1; A[n_, k_] := Sum[Binomial[n, i] * k^i * BellB[n - i], {i, 0, n}]; Table[Table[A[d - k, k], {k, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Nov 05 2015, after Alois P. Heinz *)
  • PARI
    f(n,k)=round (suminf(i=0,(i+k)^n/i!)/exp(1));
    g(n,k)=for(k=0,k,print1(f(n,k),",")) \\ prints k+1 terms of n-th row
    
  • SageMath
    def A108087(n,k): return sum( k^j*bell_number(n-k-j)*binomial(n-k,j) for j in range(n-k+1))
    flatten([[A108087(n,k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Dec 02 2022

Formula

For n> 1, A(n, k) = k^n + sum_{i=0..n-2} A086659(n, i)*k^i. (A086659 is set partitions of n containing k-1 blocks of length 1, with e.g.f: exp(x*y)*(exp(exp(x)-1-x)-1).)
A(n, k) = k * A(n-1, k) + A(n-1, k+1), A(0, k) = 1. - Bradley Austin (artax(AT)cruzio.com), Apr 24 2006
A(n,k) = Sum_{i=0..n} C(n,i) * k^i * Bell(n-i). - Alois P. Heinz, Jul 18 2012
Sum_{k=0..n-1} A(n-k,k) = A005490(n). - Alois P. Heinz, Jan 05 2022
From G. C. Greubel, Dec 02 2022: (Start)
T(n, n) = A000012(n).
T(n, n-1) = A000027(n).
T(n, n-2) = A002522(n-1).
T(n, n-3) = A005491(n-2).
T(n, n-4) = A005492(n+1).
T(2*n, n) = A134980(n).
T(2*n, n+1) = A124824(n), n >= 1.
Sum_{k=0..n} T(n, k) = A347420(n). (End)

A087650 a(n) = Sum_{k=0..n} (-1)^(n-k)*Bell(k).

Original entry on oeis.org

1, 0, 2, 3, 12, 40, 163, 714, 3426, 17721, 98254, 580316, 3633281, 24011156, 166888166, 1216070379, 9264071768, 73600798036, 608476008123, 5224266196934, 46499892038438, 428369924118313, 4078345814329010, 40073660040755336
Offset: 0

Views

Author

Vladeta Jovovic, Sep 23 2003

Keywords

Comments

a(n) is the number of set partitions of [n] that contain exactly one singleton block and all other blocks contain an entry > this singleton. For example, a(3)=3 counts 124/3, 134/2, 1/234 but not 123/4. - David Callan, Aug 27 2014
Partial sums are A173109. - Vladimir Reshetnikov, Oct 29 2015

Examples

			G.f. = 1 + 2*x^2 + 3*x^3 + 12*x^4 + 40*x^5 + 163*x^6 + 714*x^7 + ...
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Sum[ StirlingS2[n, k], {k, 1, n}]; Table[(-1)^n + Sum[(-1)^(n - k)*f[k], {k, 0, n}], {n, 0, 23}] (* Robert G. Wilson v *)
    Needs["DiscreteMath`Combinatorica`"]; Table[ Sum[(-1)^(n - k)*BellB[k], {k, 0, n}], {n, 0, 23}] (* Robert G. Wilson v *)
  • Maxima
    makelist(sum((-1)^(n-k)*belln(k),k,0,n),n,0,40); /* Emanuele Munarini, Sep 27 2012 */
    
  • PARI
    vector(30, n, n--; sum(k=0, n, (-1)^(n-k)*polcoeff(sum(i=0, k, prod( j=1, i, x / (1 - j*x)), x^k * O(x)), k))) \\ Altug Alkan, Oct 30 2015
  • Sage
    def A087650_list(len): # After the formula of David Callan.
        if len == 1: return [1]
        if len == 2: return [1,0]
        R = []; A = [1]; p = -1
        for i in (0..len-1):
            A.append(A[0] - A[i])
            A[i] = A[0]
            for k in range(i, 0, -1):
                A[k-1] += A[k]
            p = -p
            R.append(A[i+1] + p)
        return R
    A087650_list(24) # Peter Luschny, Aug 28 2014
    

Formula

E.g.f.: exp(-x)*((exp(x)-1)*exp(exp(x)-1)+1).
a(n) = (-1)^n + Bell(n) - A000296(n), with Bell(n) = A000110(n). - Wolfdieter Lang, Dec 01 2003
a(n) = A000296(n+1) + (-1)^n. - David Callan, Aug 27 2014
G.f.: 1/(1+x)/W(0), where W(k) = 1 - x/(1 - x*(k+1)/W(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 10 2014
a(0) = 1; a(n) = Sum_{k=1..n-1} binomial(n,k) * a(k-1). - Ilya Gutkovskiy, Mar 04 2021

A261139 S'_t(n) is the number of set partitions of {1,2,...,t} into exactly n parts such that no part contains both 1 and t or both i and i+1 for some i with 1 <= i < t; triangle S'_t(n), t >= 0, 0 <= n <= t, read by rows.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 2, 1, 0, 0, 0, 5, 5, 1, 0, 0, 1, 10, 20, 9, 1, 0, 0, 0, 21, 70, 56, 14, 1, 0, 0, 1, 42, 231, 294, 126, 20, 1, 0, 0, 0, 85, 735, 1407, 924, 246, 27, 1, 0, 0, 1, 170, 2290, 6363, 6027, 2400, 435, 35, 1
Offset: 0

Views

Author

Mark Wildon, Aug 10 2015

Keywords

Comments

S'A261137%20may%20be%20defined%20by%20B'_t(n)%20=%20Sum">t(n) is the number of sequences of t non-identity top-to-random shuffles of a deck of n cards that move each card at some time, and overall leave the deck invariant. (See link below.) A261137 may be defined by B'_t(n) = Sum{m=0..n} S'_t(m).

Examples

			Triangle starts:
  1;
  0, 0;
  0, 0, 1;
  0, 0, 0,  1;
  0, 0, 1,  2,   1;
  0, 0, 0,  5,   5,    1;
  0, 0, 1, 10,  20,    9,   1;
  0, 0, 0, 21,  70,   56,  14,   1;
  0, 0, 1, 42, 231,  294, 126,  20,  1;
  0, 0, 0, 85, 735, 1407, 924, 246, 27,  1;
  ...
		

Crossrefs

Columns n=3,4 give: A000975, A243869.
Row sums give A000296.
Cf. A261137.
The same as A105794, except for the first two columns.

Programs

  • Maple
    g:= proc(t, l, h) option remember; `if`(t=0, `if`(l=1, 0, x^h),
           add(`if`(j=l, 0, g(t-1, j, max(h,j))), j=1..h+1))
        end:
    S:= t-> (p-> seq(coeff(p, x, i), i=0..t))(g(t, 0$2)):
    seq(S(t), t=0..12);  # Alois P. Heinz, Aug 10 2015
  • Mathematica
    StirPrimedGF[n_, x_] := x^n/(1 + x)*Product[1/(1 - j*x), {j, 1, n - 1}]; T[0, 0] = 1; T[, 0] = T[, 1] = 0; T[n_, k_] := SeriesCoefficient[ StirPrimedGF[k, x], {x, 0, n}]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* script completed by Jean-François Alcover, Jan 31 2016 *)
  • PARI
    a(n,k)=if(k==0, n==0, sum(j=0, k, binomial(k, j) * (-1)^(k-j) * ((j-1)^n + (-1)^n * (j-1))) / k!);
    for(n=0, 10, for(k=0, n, print1( a(n, k), ", "); ); print(); ); \\ Andrew Howroyd, Apr 08 2017

Formula

G.f. for column n > 1: x^n/((1+x)*Product_{j=1..n-1} (1-j*x)).
S'_t(n) ~ (n-1)^t/n! as t tends to infinity.
Recurrence: S't(n) = S'{t-1}(n-1) + (n-1)*S'_{t-1}(n) for n >= 3.
S't(n) = (1/n!) * Sum{j=0..n} (-1)^(n-j) * binomial(n, j) * ((j-1)^t + (-1)^t * (j-1)) for t>0. - Andrew Howroyd, Apr 08 2017
Sum_{n=0..t} (n-1)*S'{t-1}(n) + n*S'{t-2}(n) = A000296(t) for t >= 3. - Yuchun Ji, Feb 23 2021
T(m, k) = Sum_{i=k..m} Stirling2(i-1, k-1)*(-1)^(i+m), for k >= 2. (See Peter Bala's original formula at A105794 dated Jul 10 2013.) - Igor Victorovich Statsenko, May 31 2024
T(m, k) = (Sum_{i=0..m} Stirling2(i, k)*binomial(m,i)*(-1)^(m-i))*I(m,k), where I(m,k) = (1-Sum_{i=0..m} Stirling1(k, i))^(m+k) for k >= 0. (See Peter Bala's original formula at A105794 dated Jul 10 2013.) - Igor Victorovich Statsenko, Jun 01 2024

A346738 Expansion of e.g.f.: exp(exp(x) - 3*x - 1).

Original entry on oeis.org

1, -2, 5, -13, 36, -101, 293, -848, 2523, -7365, 22402, -64395, 205285, -541802, 2057617, -3403993, 28685420, 43885023, 824532745, 4878097904, 44263112047, 357891860463, 3169228222338, 28506399763969, 266822555964441, 2573194635922990, 25606751525353741
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 31 2021

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 50);
    Coefficients(R!(Laplace( Exp(Exp(x)-3*x-1) ))) // G. C. Greubel, Jun 12 2024
    
  • Mathematica
    nmax = 26; CoefficientList[Series[Exp[Exp[x] - 3 x - 1], {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[Binomial[n, k] (-3)^(n - k) BellB[k], {k, 0, n}], {n, 0, 26}]
    a[0] = 1; a[n_] := a[n] = -3 a[n - 1] + Sum[Binomial[n - 1, k] a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 26}]
  • SageMath
    [factorial(n)*( exp(exp(x)-3*x-1) ).series(x, n+1).list()[n] for n in (0..30)] # G. C. Greubel, Jun 12 2024

Formula

G.f. A(x) satisfies: A(x) = (1 - x + x * A(x/(1 - x))) / ((1 - x) * (1 + 3*x)).
a(n) = Sum_{k=0..n} binomial(n,k) * (-3)^(n-k) * Bell(k).
a(n) = exp(-1) * Sum_{k>=0} (k - 3)^n / k!.
a(0) = 1; a(n) = -3 * a(n-1) + Sum_{k=0..n-1} binomial(n-1,k) * a(k).

A290219 a(n) = n! * [x^n] exp(exp(x) - n*x - 1).

Original entry on oeis.org

1, 0, 2, -13, 127, -1573, 23711, -421356, 8626668, -199971255, 5177291275, -148078588667, 4636966634653, -157786054331852, 5797411243015250, -228749440644895405, 9646951350227609155, -433035586385769361001, 20614401475233006857035, -1037331650810058231498688
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 06 2017

Keywords

Comments

The n-th term of the n-th inverse binomial transform of A000110.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 50);
    A290219:= func< n | Coefficient(R!(Laplace( Exp(Exp(x)-n*x-1) )), n) >;
    [A290219(n): n in [0..30]]; // G. C. Greubel, Jun 12 2024
    
  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1,
          k*b(n-1, k)+ b(n-1, k+1))
        end:
    a:= n-> b(n, -n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 04 2021
  • Mathematica
    Table[n! SeriesCoefficient[Exp[Exp[x] - n x - 1], {x, 0, n}], {n, 0, 19}]
    Join[{1}, Table[Sum[(-n)^(n - k) Binomial[n, k] BellB[k] , {k, 0, n}], {n, 1, 19}]]
  • SageMath
    [factorial(n)*( exp(exp(x) -n*x -1) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Jun 12 2024

Formula

a(n) ~ (-1)^n * exp(exp(-1) - 1) * n^n. - Vaclav Kotesovec, Aug 04 2021

A293024 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. exp(exp(x) - Sum_{i=0..k} x^i/i!).

Original entry on oeis.org

1, 1, 1, 1, 0, 2, 1, 0, 1, 5, 1, 0, 0, 1, 15, 1, 0, 0, 1, 4, 52, 1, 0, 0, 0, 1, 11, 203, 1, 0, 0, 0, 1, 1, 41, 877, 1, 0, 0, 0, 0, 1, 11, 162, 4140, 1, 0, 0, 0, 0, 1, 1, 36, 715, 21147, 1, 0, 0, 0, 0, 0, 1, 1, 92, 3425, 115975, 1, 0, 0, 0, 0, 0, 1, 1, 36, 491, 17722, 678570
Offset: 0

Views

Author

Seiichi Manyama, Sep 28 2017

Keywords

Comments

A(n,k) is the number of set partitions of [n] into blocks of size > k.

Examples

			Square array begins:
    1,   1,  1, 1, 1, 1, 1, 1, ...
    1,   0,  0, 0, 0, 0, 0, 0, ...
    2,   1,  0, 0, 0, 0, 0, 0, ...
    5,   1,  1, 0, 0, 0, 0, 0, ...
   15,   4,  1, 1, 0, 0, 0, 0, ...
   52,  11,  1, 1, 1, 0, 0, 0, ...
  203,  41, 11, 1, 1, 1, 0, 0, ...
  877, 162, 36, 1, 1, 1, 1, 0, ...
		

Crossrefs

Columns k=0..5 give A000110, A000296, A006505, A057837, A057814, A293025.
Rows n=0..1 give A000012, A000007.
Main diagonal gives A000007.
Cf. A182931, A282988 (as triangle), A293051, A293053.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, add(
          A(n-j, k)*binomial(n-1, j-1), j=1+k..n))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..14);  # Alois P. Heinz, Sep 28 2017
  • Mathematica
    A[0, _] = 1;
    A[n_, k_] /; 0 <= k <= n := A[n, k] = Sum[A[n-j, k] Binomial[n-1, j-1], {j, k+1, n}];
    A[, ] = 0;
    Table[A[n-k, k], {n, 0, 11}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 06 2019 *)
  • Ruby
    def ncr(n, r)
      return 1 if r == 0
      (n - r + 1..n).inject(:*) / (1..r).inject(:*)
    end
    def A(k, n)
      ary = [1]
      (1..n).each{|i| ary << (k..i - 1).inject(0){|s, j| s + ncr(i - 1, j) * ary[-1 - j]}}
      ary
    end
    def A293024(n)
      a = []
      (0..n).each{|i| a << A(i, n - i)}
      ary = []
      (0..n).each{|i|
        (0..i).each{|j|
          ary << a[i - j][j]
        }
      }
      ary
    end
    p A293024(20)

Formula

E.g.f. of column k: Product_{i>k} exp(x^i/i!).
A(0,k) = 1, A(1,k) = A(2,k) = ... = A(k,k) = 0 and A(n,k) = Sum_{i=k..n-1} binomial(n-1,i)*A(n-1-i,k) for n > k.
Previous Showing 31-40 of 131 results. Next