cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 324 results. Next

A006495 Real part of (1 + 2*i)^n, where i is sqrt(-1).

Original entry on oeis.org

1, 1, -3, -11, -7, 41, 117, 29, -527, -1199, 237, 6469, 11753, -8839, -76443, -108691, 164833, 873121, 922077, -2521451, -9653287, -6699319, 34867797, 103232189, 32125393, -451910159, -1064447283, 130656229, 5583548873
Offset: 0

Views

Author

Keywords

Comments

Row sums of the Euler related triangle A117411. Partial sums are A006495. - Paul Barry, Mar 16 2006
Binomial transform of [1, 0, -4, 0, 16, 0, -64, 0, 256, 0, ...], i.e. powers of -4 with interpolated zeros. - Philippe Deléham, Dec 02 2008
The absolute values of these numbers are the odd numbers y such that x^2 + y^2 = 5^n with x and y coprime. See A098122. - T. D. Noe, Apr 14 2011
Pisano period lengths: 1, 1, 8, 1, 4, 8, 48, 4, 24, 4, 60, 8, 12, 48, 8, 8, 16, 24, 90, 4, ... - R. J. Mathar, Aug 10 2012
Multiplied by a signed sequence of 2's we obtain 2, -2, -6, 22, -14, -82, 234, -58, -1054, 2398, 474, -12938, ..., the Lucas V(-2,5) sequence. - R. J. Mathar, Jan 08 2013

Examples

			1 + x - 3*x^2 - 11*x^3 - 7*x^4 + 41*x^5 + 117*x^6 + 29*x^7 - 527*x^8 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006496, A045873 (partial sums).

Programs

  • Magma
    A006495:=func< n | Integers()!Real((1+2*Sqrt(-1))^n) >; [ A006495(n): n in [0..30] ]; // Klaus Brockhaus, Feb 04 2011
    
  • Maple
    a := n -> hypergeom([1/2 - n/2, -n/2], [1/2], -4):
    seq(simplify(a(n)), n=0..28); # Peter Luschny, Jul 26 2020
  • Mathematica
    Table[Re[(1+2I)^n],{n,0,29}] (* Giovanni Resta, Mar 28 2006 *)
  • PARI
    {a(n) = local(A); n++; if( n<1, 0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (4*k + 1) * A[k-1] - 8 * sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 23 2011 */
    
  • PARI
    a(n) = real( (1 + 2*I)^n ) \\ Charles R Greathouse IV, Nov 21 2014
    
  • PARI
    {a(n) = my(A=1);
    A = sum(m=0, n+1, (1 + (-1)^m*I)^m * x^m / (1 - (-1)^m*I*x +x*O(x^n))^(m+1) ); polcoeff(A, n)} \\ Paul D. Hanna, Mar 09 2019
  • Sage
    [lucas_number2(n,2,5)/2 for n in range(0,30)] # Zerinvary Lajos, Jul 08 2008
    

Formula

a(n) = (1/2)*((1+2*i)^n + (1-2*i)^n). - Benoit Cloitre, Oct 28 2002
From Paul Barry, Mar 16 2006: (Start)
G.f.: (1-x)/(1 - 2*x + 5*x^2);
a(n) = 2*a(n-1) - 5*a(n-2);
a(n) = 5^(n/2)*cos(n*atan(1/3) + Pi*n/4);
a(n) = Sum_{k=0..n} Sum_{j=0..n-k} C(n,k-j)*C(j,n-k)*(-4)^(n-k). (End)
A000351(n) = a(n)^2 + A006496(n)^2. - Fabrice Baubet (intih(AT)free.fr), May 28 2007
a(n) = upper left and lower right terms of the 2 X 2 matrix [1,-2; 2,1]^n. - Gary W. Adamson, Mar 28 2008
a(n) = Sum_{k=0..n} A124182(n,k)*(-5)^(n-k). - Philippe Deléham, Nov 01 2008
a(n) = Sum_{k=0..n} A098158(n,k)*(-4)^(n-k). - Philippe Deléham, Nov 14 2008
a(n) = (4*n+5)*a(n-1) - 8*Sum_{k=1..n} a(k-1)*a(n-k) if n > 0. - Michael Somos, Jul 23 2011
E.g.f.: exp(x)*cos(2*x). - Sergei N. Gladkovskii, Jul 22 2012
a(n) = 5^(n/2) * cos(n*arctan(2)). - Sergei N. Gladkovskii, Aug 13 2012
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(4*k+1)/(x*(4*k+5) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013
From Paul D. Hanna, Mar 09 2019: (Start)
G.f.: Sum_{n>=0} (1 + (-1)^n*i)^n * x^n / (1 - (-1)^n*i*x)^(n+1).
G.f.: Sum_{n>=0} (1 - (-1)^n*i)^n * x^n / (1 + (-1)^n*i*x)^(n+1).
(End)
a(n) = hypergeom([1/2 - n/2, -n/2], [1/2], -4). - Peter Luschny, Jul 26 2020

Extensions

Signs from Christian G. Bower, Nov 15 1998
Corrected by Giovanni Resta, Mar 28 2006

A020858 Decimal expansion of log_2(5).

Original entry on oeis.org

2, 3, 2, 1, 9, 2, 8, 0, 9, 4, 8, 8, 7, 3, 6, 2, 3, 4, 7, 8, 7, 0, 3, 1, 9, 4, 2, 9, 4, 8, 9, 3, 9, 0, 1, 7, 5, 8, 6, 4, 8, 3, 1, 3, 9, 3, 0, 2, 4, 5, 8, 0, 6, 1, 2, 0, 5, 4, 7, 5, 6, 3, 9, 5, 8, 1, 5, 9, 3, 4, 7, 7, 6, 6, 0, 8, 6, 2, 5, 2, 1, 5, 8, 5, 0, 1, 3, 9, 7, 4, 3, 3, 5, 9, 3, 7, 0, 1, 5
Offset: 1

Views

Author

Keywords

Comments

Equals the Hausdorff dimension of the Sierpinski fractal square-based pyramid, when each square-based pyramid is replaced by 5 half-size such square-based pyramids (see IREM link). - Bernard Schott, Nov 30 2022

Examples

			2.3219280...
		

Crossrefs

Cf. decimal expansion of log_2(m): A020857 (m=3), this sequence, A020859 (m=6), A020860 (m=7), A020861 (m=9), A020862 (m=10), A020863 (m=11), A020864 (m=12), A152590 (m=13), A154462 (m=14), A154540 (m=15), A154847 (m=17), A154905 (m=18), A154995 (m=19), A155172 (m=20), A155536 (m=21), A155693 (m=22), A155793 (m=23), A155921 (m=24).
Sierpinski pyramid: A000351 (number of pyramids), A279511 (number of vertices).

Programs

Extensions

Definition improved by J. Lowell, May 03 2014

A076512 Denominator of cototient(n)/totient(n).

Original entry on oeis.org

1, 1, 2, 1, 4, 1, 6, 1, 2, 2, 10, 1, 12, 3, 8, 1, 16, 1, 18, 2, 4, 5, 22, 1, 4, 6, 2, 3, 28, 4, 30, 1, 20, 8, 24, 1, 36, 9, 8, 2, 40, 2, 42, 5, 8, 11, 46, 1, 6, 2, 32, 6, 52, 1, 8, 3, 12, 14, 58, 4, 60, 15, 4, 1, 48, 10, 66, 8, 44, 12, 70, 1, 72, 18, 8, 9, 60, 4, 78, 2, 2, 20, 82, 2, 64, 21
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 15 2002

Keywords

Comments

a(n)=1 iff n=A007694(k) for some k.
Numerator of phi(n)/n=Prod_{p|n} (1-1/p). - Franz Vrabec, Aug 26 2005
From Wolfdieter Lang, May 12 2011: (Start)
For n>=2, a(n)/A109395(n) = sum(((-1)^r)*sigma_r,r=0..M(n)) with the elementary symmetric functions (polynomials) sigma_r of the indeterminates {1/p_1,...,1/p_M(n)} if n = prod((p_j)^e(j),j=1..M(n)) where M(n)=A001221(n) and sigma_0=1.
This follows by expanding the above given product for phi(n)/n.
The n-th member of this rational sequence 1/2, 2/3, 1/2, 4/5, 1/3, 6/7, 1/2, 2/3, 2/5,... is also (2/n^2)*sum(k,with 1<=k=2.
Therefore, this scaled sum depends only on the distinct prime factors of n.
See also A023896. Proof via PIE (principle of inclusion and exclusion). (End)
In the sequence of rationals r(n)=eulerphi(n)/n: 1, 1/2, 2/3, 1/2, 4/5, 1/3, 6/7, 1/2, 2/3, 2/5, 10/11, 1/3, ... one can observe that new values are obtained for squarefree indices (A005117); while for a nonsquarefree number n (A013929), r(n) = r(A007947(n)), where A007947(n) is the squarefree kernel of n. - Michel Marcus, Jul 04 2015

Crossrefs

Cf. A076511 (numerator of cototient(n)/totient(n)), A051953.
Phi(m)/m = k: A000079 \ {1} (k=1/2), A033845 (k=1/3), A000244 \ {1} (k=2/3), A033846 (k=2/5), A000351 \ {1} (k=4/5), A033847 (k=3/7), A033850 (k=4/7), A000420 \ {1} (k=6/7), A033848 (k=5/11), A001020 \ {1} (k=10/11), A288162 (k=6/13), A001022 \ {1} (12/13), A143207 (k=4/15), A033849 (k=8/15), A033851 (k=24/35).

Programs

  • Magma
    [Numerator(EulerPhi(n)/n): n in [1..100]]; // Vincenzo Librandi, Jul 04 2015
  • Mathematica
    Table[Denominator[(n - EulerPhi[n])/EulerPhi[n]], {n, 80}] (* Alonso del Arte, May 12 2011 *)
  • PARI
    vector(80, n, numerator(eulerphi(n)/n)) \\ Michel Marcus, Jul 04 2015
    

Formula

a(n) = A000010(n)/A009195(n).

A038231 Triangle whose (i,j)-th entry is binomial(i,j)*4^(i-j).

Original entry on oeis.org

1, 4, 1, 16, 8, 1, 64, 48, 12, 1, 256, 256, 96, 16, 1, 1024, 1280, 640, 160, 20, 1, 4096, 6144, 3840, 1280, 240, 24, 1, 16384, 28672, 21504, 8960, 2240, 336, 28, 1, 65536, 131072, 114688, 57344, 17920, 3584, 448, 32, 1, 262144, 589824, 589824, 344064, 129024, 32256, 5376, 576, 36, 1
Offset: 0

Views

Author

Keywords

Comments

Triangle of coefficients in expansion of (4+x)^n. - N-E. Fahssi, Apr 13 2008

Examples

			Triangle begins:
      1;
      4,      1;
     16,      8,      1;
     64,     48,     12,     1;
    256,    256,     96,    16,     1;
   1024,   1280,    640,   160,    20,    1;
   4096,   6144,   3840,  1280,   240,   24,   1;
  16384,  28672,  21504,  8960,  2240,  336,  28,  1;
  65536, 131072, 114688, 57344, 17920, 3584, 448, 32, 1;
		

Crossrefs

Cf. A000302, A013611 (row-reversed), A000351 (row sums).

Programs

  • GAP
    Flat(List([0..10], n-> List([0..n], k-> 4^(n-k)*Binomial(n, k) ))); # G. C. Greubel, Jul 20 2019
  • Magma
    [4^(n-k)*Binomial(n, k): k in [0..n], n in [0..10]]; // G. C. Greubel, Jul 20 2019
    
  • Maple
    for i from 0 to 10 do seq(binomial(i, j)*4^(i-j), j = 0 .. i) od; # Zerinvary Lajos, Dec 21 2007
    # Uses function PMatrix from A357368. Adds column 1, 0, 0, ... to the left.
    PMatrix(10, n -> 4^(n-1)); # Peter Luschny, Oct 09 2022
  • Mathematica
    Table[4^(n-k)*Binomial[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 20 2019 *)
  • PARI
    T(n,k) = 4^(n-k)*binomial(n, k); \\ G. C. Greubel, Jul 20 2019
    
  • Sage
    [[4^(n-k)*binomial(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jul 20 2019
    

Formula

G.f. for j-th column is (x^j)/(1-4*x)^(j+1).
Convolution triangle of A000302 (powers of 4).
Sum_{k=0..n} T(n,k)*(-1)^k*A000108(k) = A001700(n). - Philippe Deléham, Nov 27 2009
See A038207 and A027465 and replace 2 and 3 in analogous formulas with 4. - Tom Copeland, Oct 26 2012

A056273 Word structures of length n using a 6-ary alphabet.

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 203, 876, 4111, 20648, 109299, 601492, 3403127, 19628064, 114700315, 676207628, 4010090463, 23874362200, 142508723651, 852124263684, 5101098232519, 30560194493456, 183176170057707, 1098318779272060, 6586964947803695, 39510014478620232, 237013033135668883
Offset: 0

Views

Author

Keywords

Comments

Set partitions of the n-set into at most 6 parts; also restricted growth strings (RGS) with six letters s(1),s(2),...,s(6) where the first occurrence of s(j) precedes the first occurrence of s(k) for all j < k. - Joerg Arndt, Jul 06 2011
Permuting the alphabet will not change a word structure. Thus aabc and bbca have the same structure.
Density of regular language L over {1,2,3,4,5,6}^* (i.e., number of strings of length n in L) described by regular expression with c=6: Sum_{i=1..c} Product_{j=1..i} (j(1+...+j)*) where Sum stands for union and Product for concatenation. - Nelma Moreira, Oct 10 2004
Word structures of length n using an N-ary alphabet are generated by taking M^n* the vector [(N 1's),0,0,0,...], leftmost column term = a(n+1). In the case of A056273, the vector = [1,1,1,1,1,1,0,0,0,...]. As the vector approaches all 1's, the leftmost column terms approach A000110, the Bell sequence. - Gary W. Adamson, Jun 23 2011
From Gary W. Adamson, Jul 06 2011: (Start)
Construct an infinite array of sequences representing word structures of length n using an N-ary alphabet as follows:
.
1, 1, 1, 1, 1, 1, 1, 1, ...; N=1, A000012
1, 2, 4, 8, 16, 32, 64, 128, ...; N=2, A000079
1, 2, 5, 14, 41, 122, 365, 1094, ...; N=3, A007051
1, 2, 5, 15, 51, 187, 715, 2795, ...; N=4, A007581
1, 2, 5, 15, 52, 202, 855, 3845, ...; N=5, A056272
1, 2, 5, 15, 52, 203, 876, 4111, ...; N=6, A056273
...
The sequences tend to A000110. Finite differences of columns reinterpreted as rows generate A008277 as a triangle: (1; 1,1; 1,3,1; 1,7,6,1; ...). (End)

Examples

			For a(4) = 15, the 7 achiral patterns are AAAA, AABB, ABAB, ABBA, ABBC, ABCA, and ABCD; the 8 chiral patterns are the 4 pairs AAAB-ABBB, AABA-ABAA, AABC-ABCC, and ABAC-ABCB.
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

A row of the array in A278984 and A320955.
Cf. A056325 (unoriented), A320936 (chiral), A305752 (chiral).

Programs

  • GAP
    List([0..25],n->Sum([0..6],k->Stirling2(n,k))); # Muniru A Asiru, Oct 30 2018
    
  • Magma
    [(&+[StirlingSecond(n, i): i in [0..6]]): n in [0..30]]; // Vincenzo Librandi, Nov 07 2018
  • Maple
    egf := (265+264*exp(x)+135*exp(x*2)+40*exp(x*3)+15*exp(x*4)+exp(6*x))/6!:
    ser := series(egf,x,30): seq(n!*coeff(ser,x,n),n=0..22); # Peter Luschny, Nov 06 2018
  • Mathematica
    Table[Sum[StirlingS2[n,k],{k,0,6}],{n,0,30}] (* or *) LinearRecurrence[ {16,-95,260,-324,144},{1,1,2,5,15,52},30] (* Harvey P. Dale, Jun 05 2015 *)
  • PARI
    Vec((1 - 15*x + 81*x^2 - 192*x^3 + 189*x^4 - 53*x^5)/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)*(1-6*x)) + O(x^30)) \\ Michel Marcus, Nov 07 2018
    

Formula

a(n) = Sum_{k=0..6} Stirling2(n, k).
For n > 0, a(n) = (1/6!)*(6^n + 15*4^n + 40*3^n + 135*2^n + 264). - Vladeta Jovovic, Aug 17 2003
From Nelma Moreira, Oct 10 2004: (Start)
For n > 0 and c = 6:
a(n) = (c^n)/c! + Sum_{k=0..c-2} ((k^n)/k!*(Sum_{j=2..c-k}(((-1)^j)/j!))).
a(n) = Sum_{k=1..c} (g(k, c)*k^n) where g(1, 1) = 1; g(1, c) = g(1, c-1) + ((-1)^(c-1))/(c-1)! if c>1. For 2 <= k <= c: g(k, c) = g(k-1, c-1)/k if c>1. (End)
G.f.: (1 - 15*x + 81*x^2 - 192*x^3 + 189*x^4 - 53*x^5)/((1-x)*(1-2x)*(1-3x)*(1-4x)*(1-6x)). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009 [corrected by R. J. Mathar, Sep 16 2009] [Adapted to offset 0 by Robert A. Russell, Nov 06 2018]
G.f.: Sum_{j=0..k} A248925(k,j)*x^j / Product_{j=1..k} 1-j*x with k=6. - Robert A. Russell, Apr 25 2018
E.g.f.: (265 + 264*exp(x) + 135*exp(x*2) + 40*exp(x*3) + 15*exp(x*4) + exp(6*x))/6!. - Peter Luschny, Nov 06 2018

Extensions

a(0)=1 prepended by Robert A. Russell, Nov 06 2018

A011754 Number of ones in the binary expansion of 3^n.

Original entry on oeis.org

1, 2, 2, 4, 3, 6, 6, 5, 6, 8, 9, 13, 10, 11, 14, 15, 11, 14, 14, 17, 17, 20, 19, 22, 16, 18, 24, 30, 25, 25, 25, 26, 26, 34, 29, 32, 27, 34, 36, 32, 28, 39, 38, 39, 34, 34, 45, 38, 41, 33, 41, 46, 42, 35, 39, 42, 39, 40, 42, 48, 56, 56, 49, 57, 56, 51, 45, 47, 55, 55, 64, 68, 58
Offset: 0

Views

Author

Allan C. Wechsler, Dec 11 1999

Keywords

Comments

Conjecture: a(n)/n tends to log(3)/(2*log(2)) = 0.792481250... (A094148). - Ed Pegg Jr, Dec 05 2002
Senge & Straus prove that for every m, there is some N such that for all n > N, a(n) > m. Dimitrov & Howe make this effective, proving that for n > 25, a(n) > 22. - Charles R Greathouse IV, Aug 23 2021
Ed Pegg's conjecture means that about half of the bits of 3^n are nonzero. It appears that the same is true for 5^n (A000351, cf. A118738) and 7^n (A000420). - M. F. Hasler, Apr 17 2024

References

  • S. Wolfram, "A new kind of science", p. 903.

Crossrefs

Cf. A007088, A000120 (Hamming weight), A000244 (3^n), A004656, A261009, A094148.
Cf. A118738 (same for 5^n).

Programs

Formula

a(n) = A000120(3^n). - Benoit Cloitre, Dec 06 2002
a(n) = A000120(A000244(n)). - Reinhard Zumkeller, Aug 14 2015

Extensions

More terms from Stefan Steinerberger, Apr 03 2006

A081135 5th binomial transform of (0,0,1,0,0,0, ...).

Original entry on oeis.org

0, 0, 1, 15, 150, 1250, 9375, 65625, 437500, 2812500, 17578125, 107421875, 644531250, 3808593750, 22216796875, 128173828125, 732421875000, 4150390625000, 23345947265625, 130462646484375, 724792480468750
Offset: 0

Views

Author

Paul Barry, Mar 08 2003

Keywords

Comments

Starting at 1, three-fold convolution of A000351 (powers of 5).

Crossrefs

Sequences similar to the form q^(n-2)*binomial(n, 2): A000217 (q=1), A001788 (q=2), A027472 (q=3), A038845 (q=4), this sequence (q=5), A081136 (q=6), A027474 (q=7), A081138 (q=8), A081139 (q=9), A081140 (q=10), A081141 (q=11), A081142 (q=12), A027476 (q=15).

Programs

  • Magma
    [5^(n-2)*Binomial(n, 2): n in [0..30]]; // Vincenzo Librandi, Aug 06 2013
  • Maple
    seq(n*(n-1)*5^(n-2)/2, n=0..30); # Zerinvary Lajos, May 03 2007
  • Mathematica
    CoefficientList[Series[x^2/(1-5x)^3, {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *)
    LinearRecurrence[{15,-75,125},{0,0,1},30] (* Harvey P. Dale, Sep 13 2017 *)
  • Sage
    [5^(n-2)*binomial(n,2) for n in range(0, 30)] # Zerinvary Lajos, Mar 12 2009
    

Formula

a(n) = 15*a(n-1) - 75*a(n-2) + 125*a(n-3), a(0)=a(1)=0, a(2)=1.
a(n) = 5^(n-2)*binomial(n, 2).
G.f.: x^2/(1-5*x)^3.
E.g.f.: (x^2/2)*exp(5*x). - G. C. Greubel, May 14 2021
From Amiram Eldar, Jan 05 2022: (Start)
Sum_{n>=2} 1/a(n) = 10 - 40*log(5/4).
Sum_{n>=2} (-1)^n/a(n) = 60*log(6/5) - 10. (End)

A113849 Numbers whose prime factors are raised to the fourth power.

Original entry on oeis.org

16, 81, 625, 1296, 2401, 10000, 14641, 28561, 38416, 50625, 83521, 130321, 194481, 234256, 279841, 456976, 707281, 810000, 923521, 1185921, 1336336, 1500625, 1874161, 2085136, 2313441, 2825761, 3111696, 3418801, 4477456, 4879681, 6765201, 7890481
Offset: 1

Views

Author

Cino Hilliard, Jan 25 2006

Keywords

Comments

This is essentially A005117 (the squarefree numbers) raised to the fourth power. - T. D. Noe, Mar 13 2013
All positive integers have a unique factorization into powers of squarefree numbers with distinct exponents that are powers of two. So every positive number is a product of at most one squarefree number (A005117), at most one square of a squarefree number (A062503), at most one 4th power of a squarefree number (term of this sequence), at most one 8th power of a squarefree number, and so on. - Peter Munn, Mar 12 2020

Examples

			1296 = 16*81 = 2^4*3^4 so the prime factors of 1296, 2 and 3, are raised to the fourth power.
		

Crossrefs

Proper subset of A000583.
Other powers of squarefree numbers: A005117(1), A062503(2), A062838(3), A113850(5), A113851(6), A113852(7), A072774(all).

Programs

  • Mathematica
    Select[ Range@50^4, Union[Last /@ FactorInteger@# ] == {4} &] (* Robert G. Wilson v, Jan 26 2006 *)
    nn = 50; t = Select[Range[2, nn], Union[Transpose[FactorInteger[#]][[2]]] == {1} &]; t^4 (* T. D. Noe, Mar 13 2013 *)
    Rest[Select[Range[100], SquareFreeQ]^4] (* Vaclav Kotesovec, May 22 2020 *)
  • PARI
    allpwrfact(n,p) = { local(x,j,ln,y,flag); for(x=4,n, y=Vec(factor(x)); ln = length(y[1]); flag=0; for(j=1,ln, if(y[2][j]==p,flag++); ); if(flag==ln,print1(x",")); ) } \\ All prime factors are raised to the power p
    
  • Python
    from math import isqrt
    from sympy import mobius
    def A113849(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax**4 # Chai Wah Wu, Aug 19 2024

Formula

From Peter Munn, Oct 31 2019: (Start)
a(n) = A005117(n+1)^4.
{a(n)} = {A225546(A000351(n)) : n >= 0} \ {1}, where {a(n)} denotes the set of integers in the sequence.
(End)
Sum_{k>=1} 1/a(k) = zeta(4)/zeta(8) - 1 = 105/Pi^4 - 1. - Amiram Eldar, May 22 2020

Extensions

More terms from Robert G. Wilson v, Jan 26 2006

A195948 Powers of 5 which have no zero in their decimal expansion.

Original entry on oeis.org

1, 5, 25, 125, 625, 3125, 15625, 78125, 1953125, 9765625, 48828125, 762939453125, 3814697265625, 931322574615478515625, 116415321826934814453125, 34694469519536141888238489627838134765625
Offset: 1

Views

Author

M. F. Hasler, Sep 25 2011

Keywords

Comments

Probably finite. Is 34694469519536141888238489627838134765625 the largest term?

Crossrefs

Programs

  • Mathematica
    Select[5^Range[0,60],DigitCount[#,10,0]==0&] (* Harvey P. Dale, Aug 30 2016 *)
  • PARI
    for( n=0,9999, is_A052382(5^n) && print1(5^n,","))

Formula

a(n) = 5^A008839(n).
A000351 intersect A052382.

Extensions

Keyword:fini removed by Jianing Song, Jan 28 2023 as finiteness is only conjectured.

A329050 Square array A(n,k) = prime(n+1)^(2^k), read by descending antidiagonals (0,0), (0,1), (1,0), (0,2), (1,1), (2,0), ...; Fermi-Dirac primes (A050376) in matrix form, sorted into rows by their prime divisor.

Original entry on oeis.org

2, 4, 3, 16, 9, 5, 256, 81, 25, 7, 65536, 6561, 625, 49, 11, 4294967296, 43046721, 390625, 2401, 121, 13, 18446744073709551616, 1853020188851841, 152587890625, 5764801, 14641, 169, 17, 340282366920938463463374607431768211456, 3433683820292512484657849089281, 23283064365386962890625, 33232930569601, 214358881, 28561, 289, 19
Offset: 0

Views

Author

Antti Karttunen and Peter Munn, Nov 02 2019

Keywords

Comments

This sequence is a permutation of A050376, so every positive integer is the product of a unique subset, S_factors, of its terms. If we restrict S_factors to be chosen from a subset, S_0, consisting of numbers from specified rows and/or columns of this array, there are notable sequences among those that may be generated. See the examples. Other notable sequences can be generated if we restrict the intersection of S_factors with specific rows/columns to have even cardinality. In any of the foregoing cases, the numbers in the resulting sequence form a group under the binary operation A059897(.,.).
Shares with array A246278 the property that columns grow downward by iterating A003961, and indeed, this array can be obtained from A246278 by selecting its columns 1, 2, 8, 128, ..., 2^((2^k)-1), for k >= 0.
A(n,k) is the image of the lattice point with coordinates X=n and Y=k under the inverse of the bijection f defined in the first comment of A306697. This geometric relationship can be used to construct an isomorphism from the polynomial ring GF(2)[x,y] to a ring over the positive integers, using methods similar to those for constructing A297845 and A306697. See A329329, the ring's multiplicative operator, for details.

Examples

			The top left 5 X 5 corner of the array:
  n\k |   0     1       2           3                   4
  ----+-------------------------------------------------------
   0  |   2,    4,     16,        256,              65536, ...
   1  |   3,    9,     81,       6561,           43046721, ...
   2  |   5,   25,    625,     390625,       152587890625, ...
   3  |   7,   49,   2401,    5764801,     33232930569601, ...
   4  |  11,  121,  14641,  214358881,  45949729863572161, ...
Column 0 continues as a list of primes, column 1 as a list of their squares, column 2 as a list of their 4th powers, and so on.
Every nonnegative power of 2 (A000079) is a product of a unique subset of numbers from row 0; every squarefree number (A005117) is a product of a unique subset of numbers from column 0. Likewise other rows and columns generate the sets of numbers from sequences:
Row 1:                 A000244 Powers of 3.
Column 1:              A062503 Squares of squarefree numbers.
Row 2:                 A000351 Powers of 5.
Column 2:              A113849 4th powers of squarefree numbers.
Union of rows 0 and 1:     A003586 3-smooth numbers.
Union of columns 0 and 1:  A046100 Biquadratefree numbers.
Union of row 0 / column 0: A122132 Oddly squarefree numbers.
Row 0 excluding column 0:  A000302 Powers of 4.
Column 0 excluding row 0:  A056911 Squarefree odd numbers.
All rows except 0:         A005408 Odd numbers.
All columns except 0:      A000290\{0} Positive squares.
All rows except 1:         A001651 Numbers not divisible by 3.
All columns except 1:      A252895 (have odd number of square divisors).
If, instead of restrictions on choosing individual factors of the product, we restrict the product to be of an even number of terms from each row of the array, we get A262675. The equivalent restriction applied to columns gives us A268390; applied only to column 0, we get A028260 (product of an even number of primes).
		

Crossrefs

Transpose: A329049.
Permutation of A050376.
Rows 1-4: A001146, A011764, A176594, A165425 (after the two initial terms).
Antidiagonal products: A191555.
Subtable of A182944, A242378, A246278, A329332.
A000290, A003961, A225546 are used to express relationship between terms of this sequence.
Related binary operations: A059897, A306697, A329329.
See also the table in the example section.

Programs

  • Mathematica
    Table[Prime[#]^(2^k) &[m - k + 1], {m, 0, 7}, {k, m, 0, -1}] // Flatten (* Michael De Vlieger, Dec 28 2019 *)
  • PARI
    up_to = 105;
    A329050sq(n,k) = (prime(1+n)^(2^k));
    A329050list(up_to) = { my(v = vector(up_to), i=0); for(a=0, oo, for(col=0, a, i++; if(i > up_to, return(v)); v[i] = A329050sq(col, a-col))); (v); };
    v329050 = A329050list(up_to);
    A329050(n) = v329050[1+n];
    for(n=0,up_to-1,print1(A329050(n),", ")); \\ Antti Karttunen, Nov 06 2019

Formula

A(0,k) = 2^(2^k), and for n > 0, A(n,k) = A003961(A(n-1,k)).
A(n,k) = A182944(n+1,2^k).
A(n,k) = A329332(2^n,2^k).
A(k,n) = A225546(A(n,k)).
A(n,k+1) = A000290(A(n,k)) = A(n,k)^2.

Extensions

Example annotated for clarity by Peter Munn, Feb 12 2020
Previous Showing 41-50 of 324 results. Next