cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 74 results. Next

A084869 Number of 2-multiantichains of an n-set.

Original entry on oeis.org

1, 2, 5, 17, 71, 317, 1415, 6197, 26591, 112157, 466775, 1923077, 7863311, 31972397, 129459335, 522571157, 2104535231, 8460991037, 33972711095, 136277478437, 546270602351, 2188566048077, 8764718254055, 35090241492917
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, Jun 10 2003

Keywords

Comments

Let P(A) be the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are disjoint and for which x is not a subset of y and y is not a subset of x, or 1) x and y are intersecting but for which x is not a subset of y and y is not a subset of x, or 2) x = y. - Ross La Haye, Jan 11 2008

Crossrefs

Programs

  • Mathematica
    Table[2^(2*n-1) - 3^n + 3*2^(n-1), {n, 0, 20}] (* Vaclav Kotesovec, Oct 30 2015 *)
  • PARI
    a(n) = 2^(2*n-1)-3^n+3*2^(n-1); \\ Altug Alkan, Sep 12 2017

Formula

a(n) = (1/2!)*(4^n - 2*3^n + 3*2^n).
a(n) = 3*StirlingS2(n+1,4) + StirlingS2(n+1,3) + StirlingS2(n+1,2) + 1. - Ross La Haye, Jan 11 2008
G.f.: -(13*x^2-7*x+1) / ((2*x-1)*(3*x-1)*(4*x-1)). - Colin Barker, Nov 27 2012
a(n) = 9*a(n-1) - 26*a(n-2) + 24*a(n-3). - Vaclav Kotesovec, Oct 30 2015
a(n) = 2^(2n-1) + 2^n + 2^(n-1) - 3^n = A000217(2^n+1) - A034472(n), for n >= 1. - Bob Selcoe, Sep 12 2017

A094033 Number of connected 2-element antichains on a labeled n-set.

Original entry on oeis.org

0, 0, 0, 3, 18, 75, 270, 903, 2898, 9075, 27990, 85503, 259578, 784875, 2366910, 7125303, 21425058, 64373475, 193317030, 580344303, 1741819338, 5227030875, 15684238350, 47059006503, 141189602418, 423593973075, 1270832250870
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, Apr 22 2004

Keywords

Comments

Let P(A) be the power set of an n-element set A. Then a(n+1) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are disjoint and for which x is not a subset of y and y is not a subset of x, or 1) x and y are intersecting and for which either x is a proper subset of y or y is a proper subset of x. - Ross La Haye, Jan 10 2008

Crossrefs

Programs

  • Maple
    [seq(stirling2(n,3)*3,n=0..26)]; # Zerinvary Lajos, Dec 06 2006
  • Mathematica
    Table[3 StirlingS2[n, 3], {n, 0, 26}] (* Michael De Vlieger, Nov 30 2015 *)
  • PARI
    x='x+O('x^50); concat([0,0,0],Vec(serlaplace((exp(3*x)-3*exp(2*x)+3*exp(x)-1)/2!))) \\ G. C. Greubel, Oct 06 2017

Formula

a(n) = 3 * A000392(n).
E.g.f.: (exp(3*x)-3*exp(2*x)+3*exp(x)-1)/2!.
From Colin Barker, Mar 31 2012: (Start)
a(n) = (3^n-3*2^n+3)/2.
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3).
G.f.: 3*x^3/((1-x)*(1-2*x)*(1-3*x)). (End)

A014827 a(1)=1, a(n) = 5*a(n-1) + n.

Original entry on oeis.org

1, 7, 38, 194, 975, 4881, 24412, 122068, 610349, 3051755, 15258786, 76293942, 381469723, 1907348629, 9536743160, 47683715816, 238418579097, 1192092895503, 5960464477534, 29802322387690, 149011611938471, 745058059692377, 3725290298461908, 18626451492309564, 93132257461547845
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = (5^(n+1) - 4*n - 5)/16.
G.f.: x/((1-5*x)*(1-x)^2).
From Paul Barry, Jul 30 2004: (Start)
a(n) = Sum_{k=0..n} (n-k)*5^k = Sum_{k=0..n} k*5^(n-k).
a(n) = Sum_{k=0..n} binomial(n+2,k+2)*4^k [Offset 0]. (End)
From Elmo R. Oliveira, Mar 29 2025: (Start)
E.g.f.: exp(x)*(5*exp(4*x) - 4*x - 5)/16.
a(n) = 7*a(n-1) - 11*a(n-2) + 5*a(n-3) for n > 3. (End)

A003468 Number of minimal 3-covers of a labeled n-set.

Original entry on oeis.org

1, 22, 305, 3410, 33621, 305382, 2619625, 21554170, 171870941, 1337764142, 10216988145, 76862115330, 571247591461, 4203844925302, 30687029023865, 222518183370890, 1604626924403181, 11518132293452862
Offset: 3

Views

Author

Keywords

Comments

This is also the fourth column of the Sheffer triangle A143496 (4-restricted Stirling2 numbers). See the e.g.f. given below. See also the Sheffer comments in A193685. - Wolfdieter Lang, Oct 08 2011

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [7^n/6 - 6^n/2 + 5^n/2 - 4^n/6: n in [3..30]]; // Vincenzo Librandi, May 03 2013
  • Maple
    A003468:=1/(6*z-1)/(4*z-1)/(7*z-1)/(5*z-1); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Table[7^n/6 - 6^n/2 + 5^n/2 - 4^n/6, {n, 3, 20}] (* Vaclav Kotesovec, Nov 19 2012 *)
    LinearRecurrence[{22,-179,638,-840},{1,22,305,3410},20] (* Harvey P. Dale, Jan 09 2024 *)

Formula

G.f.: x^3/((1 - 4*x)*(1 - 5*x)*(1 - 6*x)*(1 - 7*x)). - N. J. A. Sloane, May 12 1994, corrected by Vaclav Kotesovec, Nov 19 2012
E.g.f.: (exp(4*x)*(exp(x) - 1)^3)/6. More generally, e.g.f. for number of minimal m-covers of a labeled n-set is (exp((2^m - m - 1)*x)*(exp(x) - 1)^m)/m!. - Vladeta Jovovic, May 09 2004
If we define f(m, j, x) = sum(binomial(m, k)*stirling2(k, j)*x^(m - k),k = j .. m) then a(n) = f(n, 3, 4), (n >= 3). - Milan Janjic, Apr 26 2009
a(n) = 7^n/6 - 6^n/2 + 5^n/2 - 4^n/6. - Vaclav Kotesovec, Nov 19 2012

A057963 Triangle T(n,k) of number of minimal 2-covers of a labeled n-set that cover k points of that set uniquely (k=2,..,n).

Original entry on oeis.org

1, 3, 3, 6, 12, 7, 10, 30, 35, 15, 15, 60, 105, 90, 31, 21, 105, 245, 315, 217, 63, 28, 168, 490, 840, 868, 504, 127, 36, 252, 882, 1890, 2604, 2268, 1143, 255, 45, 360, 1470, 3780, 6510, 7560, 5715, 2550, 511, 55, 495, 2310, 6930, 14322, 20790, 20955, 14025
Offset: 2

Views

Author

Vladeta Jovovic, Oct 17 2000

Keywords

Comments

Row sums give A000392.

Examples

			There are 90=10+30+35+15 minimal 2-covers of a labeled 5-set.
Triangle starts:
1;
3, 3;
6, 12, 7;
10, 30, 35, 15;
15, 60, 105, 90, 31;
...
		

Crossrefs

Programs

  • Magma
    /* As triangle: */ [[Binomial(n, k)*(2^(k-1)-1): k in [2..n]]: n in [1.. 15]]; // Vincenzo Librandi, Feb 19 2016
  • Maple
    seq(seq(binomial(n,k)*(2^(k-1)-1),k=2..n), n=2..13); # Robert Israel, Feb 18 2016
  • Mathematica
    Table[ Binomial[n, k] (2^(k-1)-1), {n, 2, 13}, {k, 2, n}] // Flatten (* Jean-François Alcover, Sep 18 2018, from Maple *)
  • PARI
    T(n,k) = m=2; binomial(n, k)*stirling(k, m, 2)*(2^m-m-1)^(n-k); \\ Michel Marcus, Feb 18 2016
    

Formula

Number of minimal m-covers of a labeled n-set that cover k points of that set uniquely is C(n, k)*S(k, m)*(2^m-m-1)^(n-k), where S(k, m) are Stirling numbers of the second kind. Here m=2.
From Robert Israel, Feb 18 2016: (Start)
T(n,k) = C(n,k) * (2^(k-1)-1).
G.f. of triangle: x^2*y^2/((1-x)*(1-x-x*y)*(1-x-2*x*y)). (End)

A346894 Expansion of e.g.f. 1 / (1 - (exp(x) - 1)^3 / 3!).

Original entry on oeis.org

1, 0, 0, 1, 6, 25, 110, 721, 6286, 57625, 541470, 5558641, 64351166, 819480025, 11140978030, 160711583761, 2472834185646, 40597082635225, 706816137889790, 12974021811748081, 250395124862965726, 5074637684604691225, 107798916619788396750
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 06 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[1/(1 - (Exp[x] - 1)^3/3!), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] StirlingS2[k, 3] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 22}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(1/(1-(exp(x)-1)^3/3!))) \\ Michel Marcus, Aug 06 2021
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (3*k)!*x^(3*k)/(6^k*prod(j=1, 3*k, 1-j*x)))) \\ Seiichi Manyama, May 07 2022
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, binomial(i, j)*stirling(j, 3, 2)*v[i-j+1])); v; \\ Seiichi Manyama, May 07 2022
    
  • PARI
    a(n) = sum(k=0, n\3, (3*k)!*stirling(n, 3*k, 2)/6^k); \\ Seiichi Manyama, May 07 2022

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * Stirling2(k,3) * a(n-k).
a(n) ~ n! / (3*(1 + 6^(-1/3)) * log(1 + 6^(1/3))^(n+1)). - Vaclav Kotesovec, Aug 08 2021
From Seiichi Manyama, May 07 2022: (Start)
G.f.: Sum_{k>=0} (3*k)! * x^(3*k)/(6^k * Product_{j=1..3*k} (1 - j * x)).
a(n) = Sum_{k=0..floor(n/3)} (3*k)! * Stirling2(n,3*k)/6^k. (End)

A016208 Expansion of 1/((1-x)*(1-3*x)*(1-4*x)).

Original entry on oeis.org

1, 8, 45, 220, 1001, 4368, 18565, 77540, 320001, 1309528, 5326685, 21572460, 87087001, 350739488, 1410132405, 5662052980, 22712782001, 91044838248, 364760483725, 1460785327100, 5848371485001, 23409176469808, 93683777468645, 374876324642820, 1499928942876001
Offset: 0

Views

Author

Keywords

Comments

Binomial transform of A085277. - Paul Barry, Jun 25 2003
Number of walks of length 2n+5 between two nodes at distance 5 in the cycle graph C_12. - Herbert Kociemba, Jul 05 2004

Crossrefs

Programs

  • GAP
    a:=[1,8,45];; for n in [4..30] do a[n]:=8*a[n-1]-19*a[n-2]+12*a[n-3]; od; Print(a); # Muniru A Asiru, Apr 19 2019
  • Mathematica
    Table[(2^(2*n + 3) - 3^(n + 2) + 1)/6, {n, 40}] (* Vladimir Joseph Stephan Orlovsky, Jan 19 2011 *)
    CoefficientList[Series[1/((1-x)(1-3x)(1-4x)),{x,0,30}],x] (* or *) LinearRecurrence[ {8,-19,12},{1,8,45},30] (* Harvey P. Dale, Apr 09 2012 *)
  • PARI
    Vec(1/((1-x)*(1-3*x)*(1-4*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
    

Formula

a(n) = 16*4^n/3 + 1/6 - 9*3^n/2. - Paul Barry, Jun 25 2003
a(0) = 0, a(1) = 8, a(n) = 7*a(n-1) - 12*a(n-2) + 1. - Vincenzo Librandi, Feb 10 2011
a(0) = 1, a(1) = 8, a(2) = 45, a(n) = 8*a(n-1) - 19*a(n-2) + 12*a(n-3). - Harvey P. Dale, Apr 09 2012

A016209 Expansion of 1/((1-x)(1-3x)(1-5x)).

Original entry on oeis.org

1, 9, 58, 330, 1771, 9219, 47188, 239220, 1205941, 6059229, 30384718, 152189310, 761743711, 3811110039, 19062724648, 95335146600, 476740303081, 2383895225649, 11920057258978, 59602029687090
Offset: 0

Views

Author

Keywords

Comments

For a combinatorial interpretation following from a(n) = A039755(n+2,2) = h^{(3)}A039755.%20-%20_Wolfdieter%20Lang">n, the complete homogeneous symmetric function of degree n in the symbols {1, 3, 5} see A039755. - _Wolfdieter Lang, May 26 2017

Examples

			a(2) = h^{(3)}_2 = 1^2 + 3^2 + 5^2 + 1^1*(3^1 + 5^1) + 3^1*5^1 = 58. - _Wolfdieter Lang_, May 26 2017
		

Crossrefs

Programs

  • Magma
    [(5^(n+2)-2*3^(n+2)+1)/8: n in [0..20]]; // Vincenzo Librandi, Sep 17 2011
  • Maple
    A016209 := proc(n) (5^(n+2)-2*3^(n+2)+1)/8; end proc: # R. J. Mathar, Mar 22 2011
  • Mathematica
    Join[{a=1,b=9},Table[c=8*b-15*a+1;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 07 2011 *)
    CoefficientList[Series[1/((1-x)(1-3x)(1-5x)),{x,0,30}],x] (* or *) LinearRecurrence[ {9,-23,15},{1,9,58},30] (* Harvey P. Dale, Feb 20 2020 *)
  • PARI
    a(n)=if(n<0,0,n+=2; (5^n-2*3^n+1)/8)
    

Formula

a(n) = A039755(n+2, 2).
a(n) = (5^(n+2) - 2*3^(n+2)+1)/8 = a(n-1) + A005059(n+1) = 8*a(n-1) - 15*a(n-2) + 1 = (A003463(n+2) - A003462(n+2))/2. - Henry Bottomley, Jun 06 2000
G.f.: 1/((1-x)(1-3*x)(1-5*x)). See the name.
E.g.f.: (25*exp(5*x) - 18*exp(3*x) + exp(x))/8, from the e.g.f. of the third column (k=2) of A039755. - Wolfdieter Lang, May 26 2017

A134057 a(n) = binomial(2^n-1,2).

Original entry on oeis.org

0, 0, 3, 21, 105, 465, 1953, 8001, 32385, 130305, 522753, 2094081, 8382465, 33542145, 134193153, 536821761, 2147385345, 8589737985, 34359345153, 137438167041, 549754241025, 2199020109825, 8796086730753, 35184359505921
Offset: 0

Views

Author

Ross La Haye, Jan 11 2008, Jun 01 2008

Keywords

Comments

Let P(A) be the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are disjoint and for which x is not a subset of y and y is not a subset of x, or 1) x and y are intersecting but for which x is not a subset of y and y is not a subset of x, or 2) x and y are intersecting and for which either x is a proper subset of y or y is a proper subset of x.
Or: Number of connections between the nodes of the perfect depth n binary tree and the nodes of a perfect depth (n-1) binary tree. - Alex Ratushnyak, Jun 02 2013
a(n) is the number of positive entries in the positive rows and columns of a Walsh matrix of order 2^n. It is also the size of the smallest nontrivial conjugacy class in the general linear group GL(n,2). See the link "3-bit Walsh permutation...". - Tilman Piesk, Sep 15 2022

Examples

			a(2) = 3 because for P(A) = {{},{1},{2},{1,2}} we have for case 0 {{1},{2}} and we have for case 2 {{1},{1,2}}, {{2},{1,2}}. There are 0 {x,y} of P(A) in this example that fall under case 1.
		

Crossrefs

Programs

  • Magma
    [Binomial(2^n-1, 2): n in [0..30]]; // Vincenzo Librandi, Nov 30 2015
  • Maple
    seq((2^n-1)*(2^(n-1)-1), n=0..100); # Robert Israel, Nov 30 2015
  • Mathematica
    Table[Binomial[2^n - 1, 2], {n, 0, 30}] (* Vincenzo Librandi, Nov 30 2015 *)
  • PARI
    a(n) = binomial(2^n-1, 2); \\ Michel Marcus, Nov 30 2015
    
  • Python
    print([(2**n-1)*(2**(n-1)-1) for n in range(23)])
    # Alex Ratushnyak, Jun 02 2013
    

Formula

a(n) = (1/2)*(4^n - 3*2^n + 2) = 3*(Stirling2(n+1,4) + Stirling2(n+1,3)).
a(n) = 3 *A006095(n).
a(n) = (2^n-1)*(2^(n-1)-1). - Alex Ratushnyak, Jun 02 2013
a(n) = Stirling2(2^n - 1,2^n - 2).
G.f.: 3*x^2/(1-x)/(1-2*x)/(1-4*x). - Colin Barker, Feb 22 2012
a(n) = A000225(n)*A000225(n-1). - Michel Marcus, Nov 30 2015
a(n) = A000217(2^n-2). - Michel Marcus, Nov 30 2015
a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3). - Wesley Ivan Hurt, May 17 2021
E.g.f.: exp(x)*(exp(x) - 1)^2*(exp(x) + 2)/2. - Stefano Spezia, Apr 06 2022

A281773 Number of distinct topologies on an n-set that have exactly 4 open sets.

Original entry on oeis.org

0, 0, 1, 9, 43, 165, 571, 1869, 5923, 18405, 56491, 172029, 521203, 1573845, 4742011, 14266989, 42882883, 128812485, 386765131, 1160950749, 3484162963, 10455110325, 31370573851, 94122207309, 282387593443, 847204723365, 2541698056171, 7625261940669
Offset: 0

Views

Author

Submitted on behalf of Moussa Benoumhani by Geoffrey Critzer, Jan 29 2017

Keywords

Examples

			a(3) = 9 because we have: {{}, {c}, {a,b}, {a,b,c}} with 3 labelings and {{}, {c}, {b,c}, {a,b,c}} with 6 labelings.
		

Crossrefs

The number of distinct topologies on an n-set with exactly k open sets for k=2..12 is given by A000012, A000918, A281773, A028244, A281774, A281775, A281776, A281777, A281778, A281779, A281780.
Partial sums are given in A298564.

Programs

  • Mathematica
    CoefficientList[Series[x^2*(1 + 3 x)/((1 - x) (1 - 2 x) (1 - 3 x)), {x, 0, 27}], x] (* Michael De Vlieger, Jan 21 2018 *)
  • PARI
    a(n) = stirling(n,2,2) + 3!*stirling(n,3,2) \\ Colin Barker, Jan 30 2017
    
  • PARI
    concat(vector(2), Vec(x^2*(1 + 3*x) / ((1 - x)*(1 - 2*x)*(1 - 3*x)) + O(x^30))) \\ Colin Barker, Jan 30 2017

Formula

a(n) = A000392(n+1) + 3*A000392(n).
E.g.f.: (exp(x)-1)^3 + (exp(x)-1)^2/2!.
From Colin Barker, Jan 30 2017: (Start)
G.f.: x^2*(1 + 3*x)/((1 - x)*(1 - 2*x)*(1 - 3*x)).
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) for n>3.
a(n) = 2 - 5*2^(n-1) + 3^n for n>0. (End)
Previous Showing 11-20 of 74 results. Next