cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 180 results. Next

A013613 Triangle of coefficients in expansion of (1+6x)^n.

Original entry on oeis.org

1, 1, 6, 1, 12, 36, 1, 18, 108, 216, 1, 24, 216, 864, 1296, 1, 30, 360, 2160, 6480, 7776, 1, 36, 540, 4320, 19440, 46656, 46656, 1, 42, 756, 7560, 45360, 163296, 326592, 279936, 1, 48, 1008, 12096, 90720, 435456, 1306368, 2239488, 1679616
Offset: 0

Views

Author

Keywords

Comments

T(n,k) equals the number of n-length words on {0,1,...,6} having n-k zeros. - Milan Janjic, Jul 24 2015

Examples

			Triangle begins:
1;
1, 6;
1, 12, 36;
1, 18, 108, 216;
1, 24, 216, 864, 1296;
...
		

Crossrefs

Cf. A038255 (mirrored).

Programs

  • Haskell
    import Data.List (inits)
    a013613 n k = a013613_tabl !! n !! k
    a013613_row n = a013613_tabl !! n
    a013613_tabl = zipWith (zipWith (*))
                   (tail $ inits a000400_list) a007318_tabl
    -- Reinhard Zumkeller, Nov 21 2013

Formula

G.f.: 1 / (1 - x(1+6y)).
T(n,k) = 6^k*C(n,k) = Sum_{i=n-k..n} C(i,n-k)*C(n,i)*5^(n-i). Row sums are 7^n = A000420. - Mircea Merca, Apr 28 2012
T(n,k) = A007318(n,k)*A000400(k), 0 <= k <= n. - Reinhard Zumkeller, Nov 21 2013

A038243 Triangle whose (i,j)-th entry is 5^(i-j)*binomial(i,j).

Original entry on oeis.org

1, 5, 1, 25, 10, 1, 125, 75, 15, 1, 625, 500, 150, 20, 1, 3125, 3125, 1250, 250, 25, 1, 15625, 18750, 9375, 2500, 375, 30, 1, 78125, 109375, 65625, 21875, 4375, 525, 35, 1, 390625, 625000, 437500, 175000, 43750, 7000, 700, 40, 1, 1953125, 3515625, 2812500, 1312500, 393750, 78750, 10500, 900, 45, 1
Offset: 0

Views

Author

Keywords

Comments

Mirror image of A013612. - Zerinvary Lajos, Nov 25 2007
T(i,j) is the number of i-permutations of 6 objects a,b,c,d,e,f, with repetition allowed, containing j a's. - Zerinvary Lajos, Dec 21 2007
Triangle of coefficients in expansion of (5+x)^n - N-E. Fahssi, Apr 13 2008
Also the convolution triangle of A000351. - Peter Luschny, Oct 09 2022

Examples

			Triangle begins as:
       1;
       5,      1;
      25,     10,      1;
     125,     75,     15,      1;
     625,    500,    150,     20,     1;
    3125,   3125,   1250,    250,    25,    1;
   15625,  18750,   9375,   2500,   375,   30,   1;
   78125, 109375,  65625,  21875,  4375,  525,  35,  1;
  390625, 625000, 437500, 175000, 43750, 7000, 700, 40, 1;
		

Crossrefs

Sequences of the form q^(n-k)*binomial(n, k): A007318 (q=1), A038207 (q=2), A027465 (q=3), A038231 (q=4), this sequence (q=5), A038255 (q=6), A027466 (q=7), A038279 (q=8), A038291 (q=9), A038303 (q=10), A038315 (q=11), A038327 (q=12), A133371 (q=13), A147716 (q=14), A027467 (q=15).

Programs

  • Magma
    [5^(n-k)*Binomial(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 12 2021
    
  • Maple
    for i from 0 to 8 do seq(binomial(i, j)*5^(i-j), j = 0 .. i) od; # Zerinvary Lajos, Dec 21 2007
    # Uses function PMatrix from A357368. Adds column 1, 0, 0, ... to the left.
    PMatrix(10, n -> 5^(n-1)); # Peter Luschny, Oct 09 2022
  • Mathematica
    With[{q=5}, Table[q^(n-k)*Binomial[n,k], {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, May 12 2021 *)
  • Sage
    flatten([[5^(n-k)*binomial(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 12 2021

Formula

See A038207 and A027465 and replace 2 and 3 in analogous formulas with 5. - Tom Copeland, Oct 26 2012

A056308 Number of reversible strings with n beads using a maximum of six different colors.

Original entry on oeis.org

1, 6, 21, 126, 666, 3996, 23436, 140616, 840456, 5042736, 30236976, 181421856, 1088414496, 6530486976, 39182222016, 235093332096, 1410555793536, 8463334761216, 50779983373056, 304679900238336, 1828079250264576, 10968475501587456, 65810852102532096
Offset: 0

Views

Author

Keywords

Comments

A string and its reverse are considered to be equivalent. Thus aabc and cbaa are considered to be identical, but abca is a different string.

Examples

			For a(2)=21, the six achiral strings are AA, BB, CC, DD, EE, and FF; the 15 (equivalent) chiral pairs are AB-BA, AC-CA, AD-DA, AE-EA, AF-FA, BC-CB, BD-DB, BE-EB, BF-FB, CD-DC, CE-EC, CF-FC, DE-ED, DF-FD, and EF-FE.
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 6 of A277504.
Cf. A000400 (oriented), A320524 (chiral), A056452 (achiral).

Programs

  • Magma
    I:=[1,6,21]; [n le 3 select I[n] else 6*Self(n-1) +6*Self(n-2) - 36*Self(n-3): n in [1..30]]; // G. C. Greubel, Nov 10 2018
  • Mathematica
    k=6; Table[(k^n+k^Ceiling[n/2])/2,{n,0,30}] (* Robert A. Russell, Nov 25 2017 *)
    a[ n_] := (6^n + 6^Quotient[n + 1, 2]) / 2; (* Michael Somos, Jul 10 2018 *)
    LinearRecurrence[{6, 6, -36}, {1, 6, 21}, 31] (* Robert A. Russell, Nov 10 2018 *)
  • PARI
    Vec((1-21*x^2) / ((1 - 6*x)*(1 - 6*x^2)) + O(x^30)) \\ Colin Barker, Mar 20 2017 [Adapted to offset 0 by Robert A. Russell, Nov 10 2018]
    
  • PARI
    {a(n) = (6^n + 6^((n+1)\2)) / 2}; \\ Michael Somos, Jul 10 2018
    

Formula

a(n) = (6^n + 6^floor((n+1)/2))/2.
G.f.: (1-21*x^2) / ((1-6*x)*(1-6*x^2)). - R. J. Mathar, Jul 06 2011 [Adapted to offset 0 by Robert A. Russell, Nov 10 2018]
a(n) = 6*a(n-1) + 6*a(n-2) - 36*a(n-3) for n > 3. - Colin Barker, Mar 20 2017
a(n) = (A000400(n) + A056452(n)) / 2. - Robert A. Russell, Jun 19 2018
a(n) = 6^(n + floor((n-1)/2)) * a(1-n) for all n in Z. - Michael Somos, Jul 10 2018

Extensions

a(0)=1 prepended by Robert A. Russell, Nov 10 2018

A061980 Square array A(n,k) = A(n-1,k) + A(n-1, floor(k/2)) + A(n-1, floor(k/3)), with A(0,0) = 1, read by antidiagonals.

Original entry on oeis.org

1, 0, 3, 0, 2, 9, 0, 1, 8, 27, 0, 0, 6, 26, 81, 0, 0, 4, 23, 80, 243, 0, 0, 3, 20, 76, 242, 729, 0, 0, 3, 17, 72, 237, 728, 2187, 0, 0, 1, 17, 66, 232, 722, 2186, 6561, 0, 0, 1, 11, 66, 222, 716, 2179, 6560, 19683, 0, 0, 1, 11, 54, 222, 701, 2172, 6552, 19682, 59049
Offset: 0

Views

Author

Henry Bottomley, May 24 2001

Keywords

Examples

			Array begins as:
    1,   0,   0,   0,   0,   0,   0, ...;
    3,   2,   1,   0,   0,   0,   0, ...;
    9,   8,   6,   4,   3,   3,   1, ...;
   27,  26,  23,  20,  17,  17,  11, ...;
   81,  80,  76,  72,  66,  66,  54, ...;
  243, 242, 237, 232, 222, 222, 202, ...;
  729, 728, 722, 716, 701, 701, 671, ...;
Antidiagonal rows begin as:
  1;
  0, 3;
  0, 2, 9;
  0, 1, 8, 27;
  0, 0, 6, 26, 81;
  0, 0, 4, 23, 80, 243;
  0, 0, 3, 20, 76, 242, 729;
  0, 0, 3, 17, 72, 237, 728, 2187;
  0, 0, 1, 17, 66, 232, 722, 2186, 6561;
		

Crossrefs

Row sums are 6^n: A000400.
Columns are A000244, A024023, A060188, A061981, A061982 twice, A061983 twice, etc.

Programs

  • Mathematica
    A[n_, k_]:= A[n, k]= If[n==0, Boole[k==0], A[n-1,k] +A[n-1,Floor[k/2]] +A[n-1, Floor[k/3]]];
    T[n_, k_]:= A[k, n-k];
    Table[A[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 18 2022 *)
  • SageMath
    @CachedFunction
    def A(n,k):
        if (n==0): return 0^k
        else: return A(n-1, k) + A(n-1, (k//2)) + A(n-1, (k//3))
    def T(n, k): return A(k, n-k)
    flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 18 2022

Formula

A(n,k) = A(n-1,k) + A(n-1, floor(k/2)) + A(n-1, floor(k/3)), with A(0,0) = 1.
T(n, k) = A(k, n-k).
Sum_{k=0..n} A(n, k) = A000400(n).
T(n, n) = A(n, 0) = A000244(n). - G. C. Greubel, Jun 18 2022

A067864 Numbers k such that k divides the sum of digits of 6^k.

Original entry on oeis.org

1, 3, 9, 18, 90
Offset: 1

Views

Author

Keywords

Comments

Conjecture: the sequence is finite, since (sum of the digits of 6^k)/k -> log_10(6)*4.5 ~ 3.50168 as k->infinity (this is also a conjecture). - Robert Gerbicz, May 08 2008
Next term, if it exists, exceeds 100000. - Sean A. Irvine, Apr 05 2010
The keyword "hard" refers to the difficulty of finding, or disproving the existence of, the next term. - N. J. A. Sloane, Nov 09 2024

Examples

			a(1)=3, so 3 divides the sum of digits of 6^3 (i.e., 2 + 1 + 6 = 9).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Mod[Total[IntegerDigits[6^#]],#]==0&] (* Harvey P. Dale, Nov 09 2024 *)

A169604 a(n) = 3*6^n.

Original entry on oeis.org

3, 18, 108, 648, 3888, 23328, 139968, 839808, 5038848, 30233088, 181398528, 1088391168, 6530347008, 39182082048, 235092492288, 1410554953728, 8463329722368, 50779978334208, 304679870005248, 1828079220031488, 10968475320188928, 65810851921133568, 394865111526801408
Offset: 0

Views

Author

Klaus Brockhaus, Apr 04 2010

Keywords

Comments

a(n) = A081341(n+1).
Essentially first differences of A125682.
Binomial transform of A005053 without initial term 1.
Second binomial transform of A164346.
Inverse binomial transform of A169634.
Second inverse binomial transform of A103333 without initial term 1.
Contribution from Reinhard Zumkeller, May 02 2010: (Start)
a(n) = 3*A000400(n) = A000400(n+1)/2;
subsequence of A003586; a(n)=A003586(A014105(n)) for n<6. (End)

Crossrefs

Cf. A081341, A125682 ((6^n-1)*3/5), A005053 (expand (1-2x)/(1-5x)), A164346 (3*4^n), A169634 (3*7^n), A103333 (expand (1-5x)/(1-8x)).

Programs

Formula

a(n) = 6*a(n-1) for n > 0; a(0) = 3.
G.f.: 3/(1-6*x).

A210436 Number of digits in 6^n.

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 5, 6, 7, 8, 8, 9, 10, 11, 11, 12, 13, 14, 15, 15, 16, 17, 18, 18, 19, 20, 21, 22, 22, 23, 24, 25, 25, 26, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 36, 36, 37, 38, 39, 39, 40, 41, 42, 43, 43, 44, 45, 46, 46, 47, 48, 49, 50, 50, 51, 52, 53
Offset: 0

Views

Author

Luc Comeau-Montasse, Mar 21 2012

Keywords

Examples

			a(4) = 4 because 6^4 = 1296, which has 4 digits.
a(5) = 4 because 6^5 = 7776, which has 4 digits.
		

Crossrefs

Programs

  • Magma
    [#Intseq(6^n): n in [0..67]]; // Bruno Berselli, Mar 22 2012
  • Maple
    a:= n-> length(6^n): seq (a(n), n=0..100); # Alois P. Heinz, Mar 22 2012
  • Mathematica
    Table[Length[IntegerDigits[6^n]], {n, 0, 99}] (* Alonso del Arte, Mar 22 2012 *)

Formula

a(n) = A055642(A000400(n)) = A055642(6^n) = floor(log_10(10*(6^n))). - Jonathan Vos Post, Mar 23 2012

A239011 Exponents m such that the decimal expansion of 6^m exhibits its first zero from the right later than any previous exponent.

Original entry on oeis.org

0, 2, 3, 4, 6, 7, 8, 12, 17, 24, 29, 42, 44, 101, 104, 128, 1015, 1108, 2629, 9683, 676076, 917474, 34882222, 53229360, 58230015, 90064345, 309000041, 319582553, 342860474, 382090917, 2770253437, 4380407969, 4407585753, 6966554399, 21235488251, 99404304146
Offset: 1

Views

Author

Keywords

Comments

Assume that a zero precedes all decimal expansions. This will take care of those cases in A030702.
Inspired by the seqfan list discussion Re: "possible sequence", beginning with David Wilson 7:57 PM Mar 06 2014 and continued by M. F. Hasler, Allan C. Wechsler and Franklin T. Adams-Watters.

Crossrefs

Programs

  • Mathematica
    f[n_] := Position[ Reverse@ Join[{0}, IntegerDigits[ PowerMod[6, n, 10^500]]], 0, 1, 1][[1, 1]]; k = mx = 0; lst = {}; While[k < 10000001, c = f[k]; If[c > mx, mx = c; AppendTo[ lst, k]; Print@ k]; k++]; lst

Extensions

a(27)-a(34) from Bert Dobbelaere, Jan 21 2019
a(35)-a(36) from Chai Wah Wu, Jan 23 2020

A288211 Irregular triangle read by rows of normalized Girard-Waring formula (cf. A210258), for m=6 data values.

Original entry on oeis.org

1, 6, -5, 36, -45, 10, 216, -360, 80, 75, -10, 1296, -2700, 600, 1125, -250, -75, 5, 7776, -19440, 4320, 12150, -3600, -1125, -540, 225, 200, 36, -1, 46656, -136080, 30240, 113400, -37800, -23625, 2800, 5250, -3780, 3150, -350, 252, -105, -7
Offset: 1

Views

Author

Gregory Gerard Wojnar, Jun 06 2017

Keywords

Comments

Let SM_k = Sum( d_(t_1, t_2, ..., t_6)* eM_1^t_1 * eM_2^t_2 * ... * eM_6^t_6) summed over all length 6 integer partitions of k, i.e., 1*t_1 + 2*t_2 + 3*t_3 + ... + 6*t_6 = k, where SM_k are the averaged k-th power sum symmetric polynomials in 6 data (i.e., SM_k = S_k/6 where S_k are the k-th power sum symmetric polynomials, and where eM_k are the averaged k-th elementary symmetric polynomials, eM_k = e_k/binomial(6,k) with e_k being the k-th elementary symmetric polynomials. The data d_(t_1, t_2, t_3, ..., t_6) form a triangle, with one row for each k value starting with k=1; the number of terms in successive rows is nondecreasing.
Row sums of positive entries give 1,6,46,371,3026,24707,201748. Row sums of negative entries are always 1 less than corresponding row sums of positive entries.

Examples

			Triangle begins:
 1;
 6,-5;
 36,-45,10;
 216,-360,80,75,-10;
 1296,-2700,600,1125,-250,-75,5;
 7776,-19440,4320,12150,-3600,-1125,-540,225,200,36,-1;
 ...
Above represents:
 SM_1 = eM_1;
 SM_2 = 6*(eM_1)^2 - 5*eM_2;
 SM_3 = 36*(eM_1)^3 - 45*eM_1*eM_2 + 10*eM_3;
 SM_4 = 216*(eM_1)^4 - 360*(eM_1)^2*eM_2 + 80*eM_1*eM_3 + 75*(eM_2)^2 - 10*eM_4;
 SM_5 = 1296*(eM_1)^5 - 2700*(eM_1)^3*eM_2 + 600*(eM_1)^2*eM_3 + 1125*eM_1*(eM_2)^2 - 250*eM_2*eM_3 - 75*eM_1*eM_4 + 5*eM_5;
 ...
		

Crossrefs

Cf. A028297 (m=2), A287768 (m=3), A288199 (m=4), A288207 (m=5), A288245 (m=7), A288188 (m=8). Also see A210258 Girard-Waring.
First column of triangle is powers of m=6, A000400.

Programs

  • Java
    // See link.

A367246 a(n) is the number of n-digit numbers whose difference between the largest and smallest digits is equal to 5.

Original entry on oeis.org

0, 9, 139, 1419, 12079, 92859, 669319, 4617699, 30878959, 201792939, 1295974999, 8212422579, 51499341439, 320287850619, 1978857202279, 12161478061059, 74421280021519, 453832688077899, 2759692966903159, 16742329188365139, 101377580843991199, 612894508749226779, 3700556151386869639
Offset: 1

Views

Author

Stefano Spezia, Nov 11 2023

Keywords

Comments

a(n) is the number of n-digit numbers in A366962.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{15,-74,120},{0,9,139},23]

Formula

a(n) = 29*6^(n-1) - 49*5^(n-1) + 5*4^n.
a(n) = 15*a(n-1) - 74*a(n-2) + 120*a(n-3) for n > 3.
O.g.f.: x^2*(9 + 4*x)/((1 - 4*x)*(1 - 5*x)*(1 - 6*x)).
E.g.f.: (145*exp(6*x) - 294*exp(5*x) + 150*exp(4*x) - 1)/30.
Previous Showing 71-80 of 180 results. Next