A001865
Number of connected functions on n labeled nodes.
Original entry on oeis.org
1, 3, 17, 142, 1569, 21576, 355081, 6805296, 148869153, 3660215680, 99920609601, 2998836525312, 98139640241473, 3478081490967552, 132705415800984825, 5423640496274200576, 236389784118231290049, 10944997108429625524224, 536484538620663729658993
Offset: 1
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, p. 112.
- Ulrike Sattler, Decidable classes of formal power series with nice closure properties, Diplomarbeit im Fach Informatik, Univ. Erlangen - Nuernberg, Jul 27 1994
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 1..380 (first 50 terms from T. D. Noe)
- H. Bergeron, E. M. F. Curado, J. P. Gazeau and L. M. C. S. Rodrigues, A note about combinatorial sequences and Incomplete Gamma function, arXiv preprint arXiv: 1309.6910 [math.CO], 2013.
- Christian Brouder, William J. Keith, and Ângela Mestre, Closed forms for a multigraph enumeration, arXiv preprint arXiv:1301.0874 [math.CO], 2013.
- Giulio Cerbai and Anders Claesson, Counting fixed-point-free Cayley permutations, arXiv:2507.09304 [math.CO], 2025. See pp. 8, 19.
- Camille Combe, A geometric and combinatorial exploration of Hochschild lattices, arXiv:2007.00048 [math.CO], 2020. See p. 22.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 37
- Leo Katz, Probability of indecomposability of a random mapping function, Ann. Math. Statist. 26, (1955), 512-517.
- John Riordan, Letter to N. J. A. Sloane, Aug. 1970
- Frank Schmidt and Rodica Simion, Card shuffling and a transformation on S_n, Aequationes Math. 44 (1992), no. 1, 11-34.
- Bernd Sturmfels and Ngoc Mai Tran, Combinatorial Types of Tropical Eigenvectors, arXiv:1105.5504 [math.CO], 2011-2012.
-
spec := [B, {A=Prod(Z,Set(A)), B=Cycle(A)}, labeled]; [seq(combstruct[count](spec,size=n), n=0..20)];
seq(simplify(GAMMA(n,n)*exp(n)),n=1..20); # Vladeta Jovovic, Jul 21 2005
-
t=Sum[n^(n-1)x^n/n!,{n,1,20}];
Range[0,20]! CoefficientList[Series[Log[1/(1-t)]+1,{x,0,20}],x] (* Geoffrey Critzer, Mar 12 2011 *)
f[n_] := Sum[n! n^(n - k - 1)/(n - k)!, {k, n}]; Array[f, 18] (* Robert G. Wilson v *)
a[n_] := Exp[n]*Gamma[n, n]; Table[a[n] // FunctionExpand, {n, 1, 18}] (* Jean-François Alcover, May 13 2013, after Vladeta Jovovic *)
-
a(n)=if(n<0,0,n!*sum(k=1,n,n^(n-k-1)/(n-k)!))
-
a(n)=(1/n)*sum(k=1,n,binomial(n,k)*(n-k)^(n-k)*k^k) \\ Paul D. Hanna, Jul 04 2013
-
N=20; x='x+O('x^N); Vec(serlaplace(log(sum(k=0, N, (k*x)^k/k!)))) \\ Seiichi Manyama, May 27 2019
-
from math import comb
def A001865(n): return ((sum(comb(n,k)*(n-k)**(n-k)*k**k for k in range(1,(n+1>>1)))<<1) + (0 if n&1 else comb(n,m:=n>>1)*m**n))//n + n**(n-1) # Chai Wah Wu, Apr 25-26 2023
A001864
Total height of rooted trees with n labeled nodes.
Original entry on oeis.org
0, 2, 24, 312, 4720, 82800, 1662024, 37665152, 952401888, 26602156800, 813815035000, 27069937855488, 972940216546896, 37581134047987712, 1552687346633913000, 68331503866677657600, 3191386068123595166656, 157663539876436721860608
Offset: 1
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 1..100
- Hien D. Nguyen and G. J. McLachlan, Progress on a Conjecture Regarding the Triangular Distribution, arXiv preprint arXiv:1607.04807 [stat.OT], 2016.
- J. Riordan, Letter to N. J. A. Sloane, Aug. 1970
- J. Riordan and N. J. A. Sloane, Enumeration of rooted trees by total height, J. Austral. Math. Soc., vol. 10 pp. 278-282, 1969.
- N. J. A. Sloane, Illustration of terms a(3) and a(4) in A000435
- D. Zvonkine, Home Page
- D. Zvonkine, An algebra of power series arising in the intersection theory of moduli spaces of curves and in the enumeration of ramified coverings of the sphere, arXiv:0403092v2 [math.AG], 2004.
- D. Zvonkine, Enumeration of ramified coverings of the sphere and 2-dimensional gravity, arXiv:math/0506248 [math.AG], 2005.
- D. Zvonkine, Counting ramified coverings and intersection theory on Hurwitz spaces II (local structure of Hurwitz spaces and combinatorial results), Moscow Mathematical Journal, vol. 7 (2007), no. 1, 135-162.
- Index entries for sequences related to rooted trees
- Index entries for sequences related to trees
-
A001864 := proc(n) local k; add(n!*n^k/k!, k=0..n-2); end;
-
Table[Sum[Binomial[n,k](n-k)^(n-k) k^k,{k,1,n-1}],{n,20}] (* Harvey P. Dale, Oct 10 2011 *)
a[n_] := n*(n-1)*Exp[n]*Gamma[n-1, n] // Round; Table[a[n], {n, 1, 18}] (* Jean-François Alcover, Jun 24 2013 *)
-
a(n)=sum(k=1,n-1,binomial(n,k)*(n-k)^(n-k)*k^k)
-
from math import comb
def A001864(n): return (sum(comb(n,k)*(n-k)**(n-k)*k**k for k in range(1,(n+1>>1)))<<1) + (0 if n&1 else comb(n,m:=n>>1)*m**n) # Chai Wah Wu, Apr 25-26 2023
A274804
The exponential transform of sigma(n).
Original entry on oeis.org
1, 1, 4, 14, 69, 367, 2284, 15430, 115146, 924555, 7991892, 73547322, 718621516, 7410375897, 80405501540, 914492881330, 10873902417225, 134808633318271, 1738734267608613, 23282225008741565, 323082222240744379, 4638440974576329923, 68794595993688306903
Offset: 0
Some a(n) formulas, see A178867:
a(0) = 1
a(1) = x(1)
a(2) = x(1)^2 + x(2)
a(3) = x(1)^3 + 3*x(1)*x(2) + x(3)
a(4) = x(1)^4 + 6*x(1)^2*x(2) + 4*x(1)*x(3) + 3*x(2)^2 + x(4)
a(5) = x(1)^5 + 10*x(1)^3*x(2) + 10*x(1)^2*x(3) + 15*x(1)*x(2)^2 + 5*x(1)*x(4) + 10*x(2)*x(3) + x(5)
- Frank Harary and Edgar M. Palmer, Graphical Enumeration, 1973.
- Robert James Riddell, Contributions to the theory of condensation, Dissertation, University of Michigan, Ann Arbor, 1951.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.
- Alois P. Heinz, Table of n, a(n) for n = 0..531
- M. Bernstein and N. J. A. Sloane, Some Canonical Sequences of Integers, Linear Algebra and its Applications, Vol. 226-228 (1995), pp. 57-72. Erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms.
- Eric W. Weisstein MathWorld, Exponential Transform.
Cf.
A177208,
A177209,
A006351,
A197505,
A144180,
A256180,
A033462,
A198046,
A134954,
A145460,
A188489,
A005432,
A029725,
A124213,
A002801.
-
nmax:=21: with(numtheory): b := proc(n): sigma(n) end: a:= proc(n) option remember; if n=0 then 1 else add(binomial(n-1, j-1) * b(j) *a(n-j), j=1..n) fi: end: seq(a(n), n=0..nmax); # End first EXP program.
nmax:= 21: with(numtheory): b := proc(n): sigma(n) end: t1 := exp(add(b(n)*x^n/n!, n=1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n!*coeff(t2, x, n) end: seq(a(n), n=0..nmax); # End second EXP program.
nmax:=21: with(numtheory): b := proc(n): sigma(n) end: f := series(log(1+add(q(n)*x^n/n!, n=1..nmax+1)), x, nmax+1): d := proc(n): n!*coeff(f, x, n) end: a(0):=1: q(0):=1: a(1):=b(1): q(1):=b(1): for n from 2 to nmax+1 do q(n) := solve(d(n)-b(n), q(n)): a(n):=q(n): od: seq(a(n), n=0..nmax); # End third EXP program.
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n-1, j-1]*DivisorSigma[1, j]*a[n-j], {j, 1, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 22 2017 *)
nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[1, k]*x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 08 2021 *)
A001863
Normalized total height of rooted trees with n nodes.
Original entry on oeis.org
0, 1, 4, 26, 236, 2760, 39572, 672592, 13227804, 295579520, 7398318500, 205075286784, 6236796259916, 206489747516416, 7393749269685300, 284714599444490240, 11733037015160276348, 515240326393584058368, 24019843795708471562564, 1184776250223810469888000
Offset: 1
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- G. C. Greubel, Table of n, a(n) for n = 1..385 (terms 1..100 from T. D. Noe)
- H. Bergeron, E. M. F. Curado, J. P. Gazeau and L. M. C. S. Rodrigues, A note about combinatorial sequences and Incomplete Gamma function, arXiv preprint arXiv: 1309.6910 [math.CO], 2013.
- J. Riordan, Letter to N. J. A. Sloane, Aug. 1970
- J. Riordan and N. J. A. Sloane, Enumeration of rooted trees by total height, J. Austral. Math. Soc., vol. 10 pp. 278-282, 1969.
- Index entries for sequences related to rooted trees
- Index entries for sequences related to trees
-
[0] cat [&+[Factorial(n-2)*n^k div Factorial(k): k in [0..n-2]]: n in [2..24]]; // Vincenzo Librandi, Dec 10 2018
-
A001863 := n->add((n-2)!*n^k/k!, k=0..n-2); # for n>1. Equals A001864(n)/(n^2-n)
seq(simplify(GAMMA(n-1,n)*exp(n)),n=2..20); # Vladeta Jovovic, Jul 21 2005
-
a[n_] := Sum[(n-2)!*n^k/k!, {k, 0, n-2}]; Table[a[n], {n, 1, 15}] (* Jean-François Alcover, Oct 09 2012, from Maple *)
Table[Sum[(n-2)! n^k/k!,{k,0,n-2}],{n,30}] (* Harvey P. Dale, Jun 19 2016 *)
-
apply( A001863(n)=sum(k=0,n-2,(n-2)!/k!*n^k), [1..20]) \\ This defines the function A001863; apply(...) provides a check and illustration. - G. C. Greubel, Nov 14 2017, edited by M. F. Hasler, Dec 09 2018
-
from math import comb
def A001863(n): return 0 if n<2 else ((sum(comb(n,k)*(n-k)**(n-k)*k**k for k in range(1,(n+1>>1)))<<1) + (0 if n&1 else comb(n,m:=n>>1)*m**n))//n//(n-1) # Chai Wah Wu, Apr 25-26 2023
A034855
Triangle read by rows giving number of rooted labeled trees with n >= 2 nodes and height d >= 1.
Original entry on oeis.org
2, 3, 6, 4, 36, 24, 5, 200, 300, 120, 6, 1170, 3360, 2520, 720, 7, 7392, 38850, 43680, 22680, 5040, 8, 50568, 475776, 757680, 551040, 221760, 40320, 9, 372528, 6231960, 13747104, 12836880, 7136640, 2358720, 362880, 10, 2936070, 87530400, 264181680
Offset: 2
2;
3, 6;
4, 36, 24;
5, 200, 300, 120;
6, 1170, 3360, 2520, 720;
7, 7392, 38850, 43680, 22680, 5040;
- Alois P. Heinz, Rows n = 2..101, flattened
- Marko Riedel, Counting the number of rooted trees of a certain height
- Marko Riedel, Maple code for sequence (EGF)
- J. Riordan, Enumeration of trees by height and diameter, IBM J. Res. Dev. 4 (1960), 473-478. [broken link]
- J. Riordan, Enumeration of trees by height and diameter, IBM J. Res. Dev. 4 (1960), 473-478.
- J. Riordan, The enumeration of trees by height and diameter, IBM Journal 4 (1960), 473-478. (Annotated scanned copy)
- Index entries for sequences related to trees
-
gf:= proc(k) gf(k):= `if`(k=0, x, x*exp(gf(k-1))) end:
A:= proc(n, k) A(n, k):= n!*coeff(series(gf(k), x, n+1), x, n) end:
T:= (n, d)-> A(n, d) -A(n, d-1):
seq(seq(T(n, d), d=1..n-1), n=2..12); # Alois P. Heinz, Sep 21 2012
-
gf[k_] := gf[k] = If[k == 0, x, x*E^gf[k - 1]]; a[n_, k_] := n!*Coefficient[ Series[gf[k], {x, 0, n + 1}], x, n]; t[n_, d_] := a[n, d] - a[n, d - 1]; Table[t[n, d], {n, 2, 12}, {d, 1, n - 1}] // Flatten (* Jean-François Alcover, Jan 15 2013, translated from Alois P. Heinz's Maple program *)
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 27 2004
A001854
Total height of all rooted trees on n labeled nodes.
Original entry on oeis.org
0, 2, 15, 148, 1785, 26106, 449701, 8927192, 200847681, 5053782070, 140679853941, 4293235236324, 142553671807729, 5116962926162738, 197459475792232725, 8152354312656732976, 358585728464893234305, 16741214317684425260142, 826842457727306803110997, 43073414675338753123113980
Offset: 1
- Rényi, A., and G. Szekeres. "On the height of trees." Journal of the Australian Mathematical Society 7.04 (1967): 497-507. See (4.7).
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
nn=20;a=NestList[ x Exp[#]&,x,nn];f[list_]:=Sum[list[[i]]*i,{i,1,Length[list]}];Drop[Map[f,Transpose[Table[Range[0,nn]!CoefficientList[Series[a[[i+1]]-a[[i]],{x,0,nn}],x],{i,1,nn-1}]]],1] (* Geoffrey Critzer, Mar 14 2013 *)
A133297
a(n) = n!*Sum_{k=1..n} (-1)^(k+1)*n^(n-k-1)/(n-k)!.
Original entry on oeis.org
0, 1, 1, 5, 34, 329, 4056, 60997, 1082320, 22137201, 512801920, 13269953861, 379400765184, 11877265764025, 404067857880064, 14843708906336325, 585606019079612416, 24693567694861202273, 1108343071153648926720, 52757597474618636748421, 2654611611461360017408000
Offset: 0
-
a:= function(n)
if n=0 then return 0;
else return Factorial(n)*Sum([1..n], k-> (-1)^(k+1)*n^(n-k-1)/Factorial(n-k));
fi;
end;
List([0..25], n-> a(n) ); # G. C. Greubel, Aug 02 2019
-
a:= func< n | n eq 0 select 0 else Factorial(n)*(&+[(-1)^(k+1)*n^(n-k-1)/Factorial(n-k): k in [1..n]]) >;
[a(n): n in [0..25]]; // G. C. Greubel, Aug 02 2019
-
Table[n!*Sum[(-1)^(k+1)*n^(n-k-1)/(n-k)!, {k,n}], {n,0,25}] (* Stefan Steinerberger, Oct 19 2007 *)
With[{m=25}, CoefficientList[Series[Log[1-LambertW[-x]], {x,0,m}], x]*Range[0,m]!] (* G. C. Greubel, Aug 02 2019 *)
-
my(x='x+O('x^25)); concat([0], Vec(serlaplace( log(1-lambertw(-x)) ))) \\ G. C. Greubel, Aug 02 2019
-
def a(n):
if (n==0): return 0
else: return factorial(n)*sum((-1)^(k+1)*n^(n-k-1)/factorial(n-k) for k in (1..n))
[a(n) for n in (0..25)] # G. C. Greubel, Aug 02 2019
A234953
Normalized total height of all rooted trees on n labeled nodes.
Original entry on oeis.org
0, 1, 5, 37, 357, 4351, 64243, 1115899, 22316409, 505378207, 12789077631, 357769603027, 10965667062133, 365497351868767, 13163965052815515, 509522144541045811, 21093278144993719665, 930067462093579181119, 43518024090910884374263, 2153670733766937656155699
Offset: 1
-
gf[k_] := gf[k] = If[k == 0, x, x*E^gf[k-1]]; a[n_, k_] := n!*Coefficient[Series[gf[k], {x, 0, n+1}], x, n]; a[n_] := Sum[k*(a[n, k] - a[n, k-1]), {k, 1, n-1}]/n; Array[a, 20] (* Jean-François Alcover, Mar 18 2014, after Alois P. Heinz *)
-
from sympy import binomial
from sympy.core.cache import cacheit
@cacheit
def b(n, h): return 1 if min(n, h)==0 else sum([binomial(n - 1, j - 1)*j*b(j - 1, h - 1)*b(n - j, h) for j in range(1, n + 1)])
def T(n, k): return b(n - 1, k - 1) - b(n - 1, k - 2)
def a(n): return sum([k*T(n, k) for k in range(1, n)])
print([a(n) for n in range(1, 31)]) # Indranil Ghosh, Aug 26 2017
A368849
Triangle read by rows: T(n, k) = binomial(n, k - 1)*(k - 1)^(k - 1)*(n - k)*(n - k + 1)^(n - k).
Original entry on oeis.org
0, 0, 0, 0, 2, 0, 0, 18, 6, 0, 0, 192, 72, 48, 0, 0, 2500, 960, 720, 540, 0, 0, 38880, 15000, 11520, 9720, 7680, 0, 0, 705894, 272160, 210000, 181440, 161280, 131250, 0, 0, 14680064, 5647152, 4354560, 3780000, 3440640, 3150000, 2612736, 0
Offset: 0
Triangle starts:
[0] [0]
[1] [0, 0]
[2] [0, 2, 0]
[3] [0, 18, 6, 0]
[4] [0, 192, 72, 48, 0]
[5] [0, 2500, 960, 720, 540, 0]
[6] [0, 38880, 15000, 11520, 9720, 7680, 0]
[7] [0, 705894, 272160, 210000, 181440, 161280, 131250, 0]
[8] [0, 14680064, 5647152, 4354560, 3780000, 3440640, 3150000, 2612736, 0]
T(n, 1)/(n - 1) =
A000169(n) for n >= 2.
T(n, n - 1) = 2*
A081133(n) for n >= 1.
(Sum_{k=0..n} T(n, k)) / n =
A000435(n) for n >= 1.
(Sum_{k=0..n} T(n, k)) * n / 2 =
A262973(n) for n >= 1.
(Sum_{k=2..n} T(n, k)) / (2*n) =
A057500(n) for n >= 1.
T(n, 1)/(n - 1) + (Sum_{k=2..n} T(n, k)) / (2*n) =
A368951(n) for n >= 2.
Sum_{k=0..n} (-1)^(k-1) * T(n, k) =
A368981(n).
-
A368849[n_, k_] := Binomial[n, k-1] If[k == 1, 1, (k-1)^(k-1)] (n-k) (n-k+1)^(n-k);
Table[A368849[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 13 2024 *)
-
def T(n, k):
return binomial(n, k - 1)*(k - 1)^(k - 1)*(n - k)*(n - k + 1)^(n - k)
for n in range(0, 9): print([n], [T(n, k) for k in range(n + 1)])
A235595
Triangle read by rows: the triangle in A034855, with the n-th row normalized by dividing it by n.
Original entry on oeis.org
1, 1, 2, 1, 9, 6, 1, 40, 60, 24, 1, 195, 560, 420, 120, 1, 1056, 5550, 6240, 3240, 720, 1, 6321, 59472, 94710, 68880, 27720, 5040, 1, 41392, 692440, 1527456, 1426320, 792960, 262080, 40320, 1, 293607, 8753040, 26418168, 30560544, 21213360, 9676800, 2721600, 362880, 1, 2237920, 119723130, 490458240, 691331760, 570810240, 323114400, 125798400, 30844800, 3628800
Offset: 2
Triangle begins:
1.
1, 2,
1, 9, 6,
1, 40, 60, 24,
1, 195, 560, 420, 120,
1, 1056, 5550, 6240, 3240, 720,
1, 6321, 59472, 94710, 68880, 27720, 5040,
1, 41392, 692440, 1527456,1426320, 792960, 262080, 40320,
1, 293607, 8753040, 26418168, 30560544, 21213360, 9676800, 2721600, 362880,
...
-
b:= proc(n, h) option remember; `if`(min(n, h)=0, 1, add(
binomial(n-1, j-1)*j*b(j-1, h-1)*b(n-j, h), j=1..n))
end:
T:= (n,k)-> b(n-1, k-1)-b(n-1, k-2):
seq(seq(T(n, d), d=1..n-1), n=2..12); # Alois P. Heinz, Aug 21 2017
-
gf[k_] := gf[k] = If[k == 0, x, x*E^gf[k-1]]; a[n_, k_] := n!*Coefficient[Series[gf[k], {x, 0, n+1}], x, n]; t[n_, k_] := (a[n, k] - a[n, k-1])/n; Table[t[n, k], {n, 2, 11}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Mar 18 2014, after Alois P. Heinz *)
-
from sympy import binomial
from sympy.core.cache import cacheit
@cacheit
def b(n, h): return 1 if min(n, h)==0 else sum([binomial(n - 1, j - 1)*j*b(j - 1, h - 1)*b(n - j, h) for j in range(1, n + 1)])
def T(n, k): return b(n - 1, k - 1) - b(n - 1, k - 2)
for n in range(2, 13): print([T(n, d) for d in range(1, n)]) # Indranil Ghosh, Aug 26 2017, after Maple code
Showing 1-10 of 20 results.
Comments