cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 288 results. Next

A046716 Coefficients of a special case of Poisson-Charlier polynomials.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 8, 1, 1, 10, 29, 24, 1, 1, 15, 75, 145, 89, 1, 1, 21, 160, 545, 814, 415, 1, 1, 28, 301, 1575, 4179, 5243, 2372, 1, 1, 36, 518, 3836, 15659, 34860, 38618, 16072, 1, 1, 45, 834, 8274, 47775, 163191, 318926, 321690, 125673, 1, 1, 55, 1275, 16290, 125853, 606417, 1809905, 3197210, 2995011, 1112083, 1
Offset: 0

Views

Author

Keywords

Comments

Diagonals: A000012, A000217; A000012, A002104. - Philippe Deléham, Jun 12 2004
The sequence a(n) = Sum_{k = 0..n} T(n,k)*x^(n-k) is the binomial transform of the sequence b(n) = (n+x-1)! / (x-1)!. - Philippe Deléham, Jun 18 2004

Examples

			Triangle starts:
  1;
  1,  1;
  1,  3,   1;
  1,  6,   8,    1;
  1, 10,  29,   24,     1;
  1, 15,  75,  145,    89,     1;
  1, 21, 160,  545,   814,   415,     1;
  1, 28, 301, 1575,  4179,  5243,  2372,     1;
  1, 36, 518, 3836, 15659, 34860, 38618, 16072,   1;
		

Crossrefs

Diagonals include: A000012, A000217, A002104.
Sums include: A000522 (row), A001339, A023443 (alternating sign row), A082030, A081367.

Programs

  • Magma
    A046716:= func< n,k | (&+[(-1)^j*Binomial(n,k-j)*StirlingFirst(j+n-k, n-k): j in [0..k]]) >;
    [A046716(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 31 2024
    
  • Maple
    a := proc(n,k) option remember;
       if k = 0 then 1
    elif k < 0 then 0
    elif k = n then (-1)^n
    else a(n-1,k) - n*a(n-1,k-1) - (n-1)*a(n-2,k-2) fi end:
    A046716 := (n,k) -> abs(a(n,k));
    seq(seq(A046716(n,k),k=0..n),n=0..9); # Peter Luschny, Apr 05 2011
  • Mathematica
    t[, 0] = 1; t[n, k_] := (-1)^k*Sum[(-1)^i*Binomial[n, i]*StirlingS1[i, n-k], {i, n-k, n}]; Table[t[n, k] // Abs, {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 10 2014 *)
    T[n_, k_]:= T[n,k]= If[k<0 || k>n, 0, If[k==0 || k==n, 1, T[n-1,k] +n*T[n-1,k-1] - (n-1)*T[n-2,k-2]]];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 31 2024 *)
  • SageMath
    def A046716(n, k): return sum(binomial(n, k-j)*stirling_number1(j+n-k, n-k) for j in range(k+1))
    flatten([[A046716(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 31 2024

Formula

Enneking and Ahuja reference gives the recurrence t(n, k) = t(n-1, k) - n*t(n-1, k-1) - (n-1)*t(n-2, k-2), with t(n, 0) = 1 and t(n, n) = (-1)^n. This sequence is T(n, k) = (-1)^k * t(n, k).
Sum_{k = 0..n} T(n, k)*x^(n-k) = A000522(n), A001339(n), A082030(n) for x = 1, 2, 3 respectively.
Sum_{k = 0..n} T(n, k)*2^k = A081367(n). - Philippe Deléham, Jun 12 2004
Let P(x, n) = Sum_{k = 0..n} T(n, k)*x^k, then Sum_{n>=0} P(x, n)*t^n / n! = exp(xt)/(1-xt)^(1/x). - Philippe Deléham, Jun 12 2004
T(n, 0) = 1, T(n, k) = (-1)^k * Sum_{i=n-k..n} (-1)^i*C(n, i)*S1(i, n-k), where S1 = Stirling numbers of first kind (A008275).
From G. C. Greubel, Jul 31 2024: (Start)
T(n, k) = T(n-1, k) + n*T(n-1, k-1) - (n-1)*T(n-2, k-2), with T(n, 0) = T(n, n) = 1.
Sum_{k=0..n} (-1)^k*T(n, k) = (-1)^(n+1)*A023443(n). (End)

Extensions

More terms from Vladeta Jovovic, Jun 15 2004

A082030 Expansion of e.g.f. exp(x)/(1-x)^3.

Original entry on oeis.org

1, 4, 19, 106, 685, 5056, 42079, 390454, 4000441, 44881660, 547457611, 7215589954, 102211815589, 1548801969976, 25000879886935, 428332610385166, 7763306399014129, 148412806214119924, 2984692721713278211
Offset: 0

Views

Author

Paul Barry, Apr 02 2003

Keywords

Comments

Binomial transform of A001710 (when preceded by 0).
From Peter Bala, Jul 10 2008: (Start)
a(n) is a difference divisibility sequence, that is, the difference a(n) - a(m) is divisible by n - m for all n and m (provided n is not equal to m). See A000522 for further properties of difference divisibility sequences.
Recurrence relation: a(0) = 1, a(1) = 4, a(n) = (n+3)*a(n-1) - (n-1)*a(n-2) for n >= 2. The sequence b(n) := n!*(n^2+n+1) = A001564(n) satisfies the same recurrence with the initial conditions b(0) = 1, b(1) = 3. This leads to the finite continued fraction expansion a(n)/b(n) = 1/(1-1/(4-1/(5-2/(6-...-(n-1)/(n+3))))).
Lim_{n -> infinity} a(n)/b(n) = e/2 = 1/(1-1/(4-1/(5-2/(6-...-n/((n+4)-...))))).
a(n) = n!*(n^2+n+1)*Sum_{k = 0..n} 1/(k!*(k^4+k^2+1)) since the rhs satisfies the above recurrence with the same initial conditions. Hence e = 2*Sum_{k >= 0} 1/(k!*(k^4+k^2+1)).
For sequences satisfying the more general recurrence a(n) = (n+1+r)*a(n-1) - (n-1)*a(n-2), which yield series acceleration formulas for e/r! that involve the Poisson-Charlier polynomials c_r(-n;-1), refer to A000522 (r = 0), A001339 (r=1), A095000 (r=3) and A095177 (r=4). (End)

Crossrefs

Programs

  • Maple
    a := n -> hypergeom([3, -n], [], -1); seq(simplify(a(n)), n=0..18); # Peter Luschny, Sep 20 2014
    seq(simplify(KummerU(-n, -n - 2, 1)), n = 0..20); # Peter Luschny, May 10 2022
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, (n (n^2 + n + 1) a[n-1] + 1)/(n^2 - n + 1)];
    a /@ Range[0, 18] (* Jean-François Alcover, Oct 16 2019 *)
    With[{nn=20},CoefficientList[Series[Exp[x]/(1-x)^3,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 07 2022 *)
  • PARI
    {a(n)=n!*polcoeff(exp(x+x*O(x^n))/(1-x)^3,n)} /* Paul D. Hanna, Sep 30 2011 */
    
  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)*(k+2)!/2)} /* Paul D. Hanna, Sep 30 2011 */
    
  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)*(k+1)^(k+1)*(-k)^(n-k))} /* Paul D. Hanna, Sep 30 2011 */
    
  • PARI
    {a(n)=polcoeff(sum(m=0,n,(m+1)^(m+1)*x^m/(1+m*x)^(m+1)+x*O(x^n)),n)} /* Paul D. Hanna, Sep 30 2011 */

Formula

E.g.f.: exp(x)/(1-x)^3.
a(n) = A001340(n)/2.
a(n) = Sum_{k=0..n} A046716(n, k)*3^(n-k). - Philippe Deléham, Jun 12 2004
a(n) = Sum_{k=0..n} binomial(n, k)*(k+2)!/2. - Philippe Deléham, Jun 19 2004
a(n) = Sum_{k=0..n} binomial(n,k)*(k+1)^(k+1)*(-k)^(n-k). - Paul D. Hanna, Sep 30 2011
O.g.f.: Sum_{n>=0} (n+1)^(n+1)*x^n/(1+n*x)^(n+1) = Sum_{n>=0} a(n)*x^n. - Paul D. Hanna, Sep 30 2011
Conjecture: a(n) + (-n-3)*a(n-1) + (n-1)*a(n-2) = 0. - R. J. Mathar, Dec 03 2012
G.f.: (1-x)/(2*x*Q(0)) - 1/2/x, where Q(k) = 1 - x - x*(k+2)/(1 - x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 22 2013
a(n) = hypergeometric([3, -n], [], -1). - Peter Luschny, Sep 20 2014
First-order recurrence: P(n-1)*a(n) = n*P(n)*a(n-1) + 1 with a(0) = 1, where P(n) = n^2 + n + 1 = A001564(n). - Peter Bala, Jul 26 2021
a(n) = KummerU(-n, -n - 2, 1). - Peter Luschny, May 10 2022

A090802 Triangle read by rows: a(n,k) = number of k-length walks in the Hasse diagram of a Boolean algebra of order n.

Original entry on oeis.org

1, 2, 1, 4, 4, 2, 8, 12, 12, 6, 16, 32, 48, 48, 24, 32, 80, 160, 240, 240, 120, 64, 192, 480, 960, 1440, 1440, 720, 128, 448, 1344, 3360, 6720, 10080, 10080, 5040, 256, 1024, 3584, 10752, 26880, 53760, 80640, 80640, 40320
Offset: 0

Views

Author

Ross La Haye, Feb 10 2004

Keywords

Comments

Row sums = A010842(n); Row sums from column 1 on = A066534(n) = n*A010842(n-1) = A010842(n) - 2^n.
a(n,k) = n! = k! = A000142(n) for n = k; a(n,n-1) = 2*n! = A052849(n) for n > 1; a(n,n-2) = 2*n! = A052849(n) for n > 2; a(n,n-3) = (4/3)*n! = A082569(n) for n > 3; a(n,n-1)/a(2,1) = n!/2! = A001710(n) for n > 1; a(n,n-2)/ a(3,1) = n!/3! = A001715(n) for n > 2; a(n,n-3)/a(4,1) = n!/4! = A001720(n) for n > 3.
a(2k, k) = A052714(k+1). a(2k-1, k) = A034910(k).
a(n,0) = A000079(n); a(n,1) = A001787(n) = row sums of A003506; a(n,2) = A001815(n) = 2!*A001788(n-1); a(n,3) = A052771(n) = 3!*A001789(n); a(n,4) = A052796(n) = 4!*A003472(n); ceiling[a(n,1) / 2] = A057711(n); a(n,5) = 5!*A054849(n).
In a class of n students, the number of committees (of any size) that contain an ordered k-sized subcommittee is a(n,k). - Ross La Haye, Apr 17 2006
Antidiagonal sums [1,2,5,12,30,76,198,528,1448,4080,...] appear to be binomial transform of A000522 interleaved with itself, i.e., 1,1,2,2,5,5,16,16,65,65,... - Ross La Haye, Sep 09 2006
Let P(A) be the power set of an n-element set A. Then a(n,k) = the number of ways to add k elements of A to each element x of P(A) where the k elements are not elements of x and order of addition is important. - Ross La Haye, Nov 19 2007
The derivatives of x^n evaluated at x=2. - T. D. Noe, Apr 21 2011

Examples

			{1};
{2, 1};
{4, 4, 2};
{8, 12, 12, 6};
{16, 32, 48, 48, 24};
{32, 80, 160, 240, 240, 120};
{64, 192, 480, 960, 1440, 1440, 720};
{128, 448, 1344, 3360, 6720, 10080, 10080, 5040};
{256, 1024, 3584, 10752, 26880, 53760, 80640, 80640, 40320}
a(5,3) = 240 because P(5,3) = 60, 2^(5-3) = 4 and 60 * 4 = 240.
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[n!/(n-k)! * 2^(n-k), {n, 0, 8}, {k, 0, n}]] (* Ross La Haye, Feb 10 2004 *)

Formula

a(n, k) = 0 for n < k. a(n, k) = k!*C(n, k)*2^(n-k) = P(n, k)*2^(n-k) = (2n)!!/((n-k)!*2^k) = k!*A038207(n, k) = A068424*2^(n-k) = Sum[C(n, m)*P(n-m, k), {m, 0, n-k}] = Sum[C(n, n-m)*P(n-m, k), {m, 0, n-k}] = n!*Sum[1/(m!*(n-m-k)!), {m, 0, n-k}] = k!*Sum[C(n, m)*C(n-m, k), {m, 0, n-k}] = k!*Sum[C(n, n-m)*C(n-m, k), {m, 0, n-k}] = k!*C(n, k)*Sum[C(n-k, n-m-k), {m, 0, n-k}] = k!*C(n, k)*Sum[C(n-k, m), {m, 0, n-k}] for n >= k.
a(n, k) = 0 for n < k. a(n, k) = n*a(n-1, k-1) for n >= k >= 1.
E.g.f. (by columns): exp(2x)*x^k.

Extensions

More terms from Ray Chandler, Feb 26 2004
Entry revised by Ross La Haye, Aug 18 2006

A128229 A natural number transform, inverse of signed A094587.

Original entry on oeis.org

1, 1, 1, 0, 2, 1, 0, 0, 3, 1, 0, 0, 0, 4, 1, 0, 0, 0, 0, 5, 1, 0, 0, 0, 0, 0, 6, 1, 0, 0, 0, 0, 0, 0, 7, 1, 0, 0, 0, 0, 0, 0, 0, 8, 1, 0, 0, 0, 0, 0, 0, 0, 0, 9, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 1
Offset: 1

Views

Author

Gary W. Adamson, Feb 19 2007

Keywords

Comments

Signed version of the transform (with -1, -2, -3, ... in the subdiagonal) gives A094587 having row sums A000522: (1, 2, 5, 16, 65, 236, ...). Unsigned inverse gives signed A094587 (with alternate signs); giving row sums = a signed variation of A094587 as follows: (1, 0, 1, -2, 9, -44, 265, -1854, ...). Binomial transform of the triangle = A093375.
Eigensequence of the triangle = A000085 starting (1, 2, 4, 10, 26, 76, ...). - Gary W. Adamson, Dec 29 2008

Examples

			First few rows of the triangle are:
1;
1, 1;
0, 2, 1;
0, 0, 3, 1;
0, 0, 0, 4, 1;
0, 0, 0, 0, 5, 1;
0, 0, 0, 0, 0, 6, 1;
0, 0, 0, 0, 0, 0, 7, 1;
...
		

Crossrefs

Programs

  • Mathematica
    a128229[n_] := Table[Which[r==q, 1, r-1==q, q, True, 0], {r, 1, n}, {q, 1, r}]
    Flatten[a128229[13]] (* data *)
    TableForm[a128229[8]] (* triangle *)
    (* Hartmut F. W. Hoft, Jun 10 2017 *)
  • Python
    def T(n, k): return 1 if n==k else n - 1 if k==n - 1 else 0
    for n in range(1, 11): print([T(n, k) for k in range(1, n + 1)]) # Indranil Ghosh, Jun 10 2017

Formula

Infinite lower triangular matrix with (1,1,1,...) in the main diagonal and (1,2,3,...) in the subdiagonal.
T(n,n)=1, T(n,n-1)=n-1 and T(n,k)=0 for 1<=k<=n, 1<=n. - Hartmut F. W. Hoft, Jun 10 2017

A130905 Expansion of e.g.f. exp(x^2 / 2) / (1 - x).

Original entry on oeis.org

1, 1, 3, 9, 39, 195, 1185, 8295, 66465, 598185, 5982795, 65810745, 789739335, 10266611355, 143732694105, 2155990411575, 34495848612225, 586429426407825, 10555729709800275, 200558864486205225, 4011177290378833575
Offset: 0

Views

Author

Karol A. Penson, Jun 08 2007

Keywords

Comments

a(n) is also the number of oriented simple graphs on n labeled vertices, such that each weakly connected component with 3 or more vertices is a directed cycle. - Austin Shapiro, Apr 17 2009
The Kn2p sums, p>=1, see A180662 for the definition of these sums, of triangle A193229 lead to this sequence. - Johannes W. Meijer, Jul 21 2011
Compare with A000266 with e.g.f. exp( -x^2 / 2) / (1 - x). - Michael Somos, Jul 24 2011
a(n) is the number of permutations of an n-set where each transposition (two cycle) is counted twice. That is, each transposition is an involution and is its own inverse, but if we imagine each transposition can be oriented in one of two ways, then a permutation with oriented transpositions is just a oriented simple graph. Conversely, an oriented simple graph with restrictions on connected components comes from a permutation with oriented transpositions. - Michael Somos, Jul 25 2011

Examples

			1 + x + 3*x^2 + 9*x^3 + 39*x^4 + 195*x^5 + 1185*x^6 + 8295*x^7 + ...
a(2) = 3 because there are 3 oriented simple graphs on two labeled vertices. a(3) = 9 because for oriented simple graphs on three labeled vertices there is 1 with no edges, 6 with one edge, 0 with two edges, and 2 with three edges which are directed cycles such that each weakly connected component with 3 or more vertices is a directed cycle.
		

Crossrefs

Programs

  • Maple
    A130905 := proc(n) local x: n!*coeftayl(exp(x^2/2)/(1-x), x=0, n) end: seq(A130905(n), n=0..25); # Johannes W. Meijer, Jul 21 2011
  • Mathematica
    CoefficientList[Series[E^(x^2/2)/(1-x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 20 2012 *)
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( exp( x^2 / 2 + x * O(x^n)) / (1 - x), n))} /* Michael Somos, Jul 24 2011 */

Formula

E.g.f.: exp(x^2/2) / (1-x) = exp( x^2 / 2 + sum(k>=1, x^k/k ) ).
E.g.f.: 1/E(0) where E(k)=1 - x/(1 - x/(x + (2*k+2)/E(k+1))); (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Sep 20 2012
D-finite with recurrence: a(n) = n*a(n-1) + (n-1)*a(n-2) - (n-2)*(n-1)*a(n-3) . - Vaclav Kotesovec, Oct 20 2012
a(n) ~ n!*exp(1/2) . - Vaclav Kotesovec, Oct 20 2012
E.g.f.: E(0)/(1-x)^2, where E(k)= 1 - x/(1 - x/(x - 2*(k+1)/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 10 2013
a(n) = n! * Sum_{k=0..floor(n/2)} 1/(2^k * k!). - Seiichi Manyama, Feb 27 2024

Extensions

Superfluous leading 1 deleted by Johannes W. Meijer, Jul 21 2011

A265609 Array read by ascending antidiagonals: A(n,k) the rising factorial, also known as Pochhammer symbol, for n >= 0 and k >= 0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 6, 6, 0, 1, 4, 12, 24, 24, 0, 1, 5, 20, 60, 120, 120, 0, 1, 6, 30, 120, 360, 720, 720, 0, 1, 7, 42, 210, 840, 2520, 5040, 5040, 0, 1, 8, 56, 336, 1680, 6720, 20160, 40320, 40320, 0
Offset: 0

Views

Author

Peter Luschny, Dec 19 2015

Keywords

Comments

The Pochhammer function is defined P(x,n) = x*(x+1)*...*(x+n-1). By convention P(0,0) = 1.
From Antti Karttunen, Dec 19 2015: (Start)
Apart from the initial row of zeros, if we discard the leftmost column and divide the rest of terms A(n,k) with (n+k) [where k is now the once-decremented column index of the new, shifted position] we get the same array back. See the given recursive formula.
When the numbers in array are viewed in factorial base (A007623), certain repeating patterns can be discerned, at least in a few of the topmost rows. See comment in A001710 and arrays A265890, A265892. (End)
A(n,k) is the k-th moment (about 0) of a gamma (Erlang) distribution with shape parameter n and rate parameter 1. - Geoffrey Critzer, Dec 24 2018

Examples

			Square array A(n,k) [where n=row, k=column] is read by ascending antidiagonals as:
A(0,0), A(1,0), A(0,1), A(2,0), A(1,1), A(0,2), A(3,0), A(2,1), A(1,2), A(0,3), ...
Array starts:
n\k [0  1   2    3     4      5        6         7          8]
--------------------------------------------------------------
[0] [1, 0,  0,   0,    0,     0,       0,        0,         0]
[1] [1, 1,  2,   6,   24,   120,     720,     5040,     40320]
[2] [1, 2,  6,  24,  120,   720,    5040,    40320,    362880]
[3] [1, 3, 12,  60,  360,  2520,   20160,   181440,   1814400]
[4] [1, 4, 20, 120,  840,  6720,   60480,   604800,   6652800]
[5] [1, 5, 30, 210, 1680, 15120,  151200,  1663200,  19958400]
[6] [1, 6, 42, 336, 3024, 30240,  332640,  3991680,  51891840]
[7] [1, 7, 56, 504, 5040, 55440,  665280,  8648640, 121080960]
[8] [1, 8, 72, 720, 7920, 95040, 1235520, 17297280, 259459200]
.
Seen as a triangle, T(n, k) = Pochhammer(n - k, k), the first few rows are:
   [0] 1;
   [1] 1, 0;
   [2] 1, 1,  0;
   [3] 1, 2,  2,   0;
   [4] 1, 3,  6,   6,    0;
   [5] 1, 4, 12,  24,   24,    0;
   [6] 1, 5, 20,  60,  120,  120,     0;
   [7] 1, 6, 30, 120,  360,  720,   720,     0;
   [8] 1, 7, 42, 210,  840, 2520,  5040,  5040,     0;
   [9] 1, 8, 56, 336, 1680, 6720, 20160, 40320, 40320, 0.
		

References

  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, Addison-Wesley, 1994.
  • H. S. Wall, Analytic Theory of Continued Fractions, Chelsea 1973, p. 355.

Crossrefs

Triangle giving terms only up to column k=n: A124320.
Row 0: A000007, row 1: A000142, row 3: A001710 (from k=1 onward, shifted two terms left).
Column 0: A000012, column 1: A001477, column 2: A002378, columns 3-7: A007531, A052762, A052787, A053625, A159083 (shifted 2 .. 6 terms left respectively, i.e. without the extra initial zeros), column 8: A239035.
Row sums of the triangle: A000522.
A(n, n) = A000407(n-1) for n>0.
2^n*A(1/2,n) = A001147(n).
Cf. also A007623, A008279 (falling factorial), A173333, A257505, A265890, A265892.

Programs

  • Maple
    for n from 0 to 8 do seq(pochhammer(n,k), k=0..8) od;
  • Mathematica
    Table[Pochhammer[n, k], {n, 0, 8}, {k, 0, 8}]
  • Sage
    for n in (0..8): print([rising_factorial(n,k) for k in (0..8)])
    
  • Scheme
    (define (A265609 n) (A265609bi (A025581 n) (A002262 n)))
    (define (A265609bi row col) (if (zero? col) 1 (* (+ row col -1) (A265609bi row (- col 1)))))
    ;; Antti Karttunen, Dec 19 2015

Formula

A(n,k) = Gamma(n+k)/Gamma(n) for n > 0 and n^k for n=0.
A(n,k) = Sum_{j=0..k} n^j*S1(k,j), S1(n,k) the Stirling cycle numbers A132393(n,k).
A(n,k) = (k-1)!/(Sum_{j=0..k-1} (-1)^j*binomial(k-1, j)/(j+n)) for n >= 1, k >= 1.
A(n,k) = (n+k-1)*A(n,k-1) for k >= 1, A(n,0) = 1. - Antti Karttunen, Dec 19 2015
E.g.f. for row k: 1/(1-x)^k. - Geoffrey Critzer, Dec 24 2018
A(n, k) = FallingFactorial(n + k - 1, k). - Peter Luschny, Mar 22 2022
G.f. for row n as a continued fraction of Stieltjes type: 1/(1 - n*x/(1 - x/(1 - (n+1)*x/(1 - 2*x/(1 - (n+2)*x/(1 - 3*x/(1 - ... ))))))). See Wall, Chapter XVIII, equation 92.5. Cf. A226513. - Peter Bala, Aug 27 2023

A087208 Expansion of e.g.f. exp(x)/(1-x^2).

Original entry on oeis.org

1, 1, 3, 7, 37, 141, 1111, 5923, 62217, 426457, 5599531, 46910271, 739138093, 7318002277, 134523132927, 1536780478171, 32285551902481, 418004290062513, 9879378882159187, 142957467201379447, 3754163975220491061, 60042136224579367741, 1734423756551866870183
Offset: 0

Views

Author

Vladeta Jovovic, Oct 19 2003

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[x]/(1-x^2),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Aug 11 2017 *)

Formula

a(n) = Sum_{k=0..floor(n/2)} n!/(n-2*k)!.
a(n) = n*(n-1)*a(n-2) + 1. - Vladeta Jovovic, Aug 24 2004
a(n) = (A000522(n) + (-1)^n*A000166(n))/2. - Vladeta Jovovic, Aug 24 2004
a(n) = Sum_{k=0..n} binomial(n, k)*(1+(-1)^k)k!/2. Binomial transform of A010050 (with interpolated zeros). - Paul Barry, Sep 14 2004
a(n) = Sum_{k=0..n} P(n, k)[1, 0, 1, 0, 1, 0, ...](k). - Ross La Haye, Aug 29 2005
a(n) = (1/(2*exp(1))) * (Integral_{t=0..2} t^n*exp(1-abs(1-t)) dt + Integral_{t=0..oo} ((2+t)^n + (-t)^n) * exp(-t) dt). - Groux Roland, Jan 15 2011
E.g.f.: 1/U(0) where U(k) = 1 - x^2/(1 - 1/(1 + x*(k+1)/U(k+1))); (continued fraction). - Sergei N. Gladkovskii, Oct 16 2012
If n is even then a(n) ~ n!*(e/2 + 1/(2*e)) = 1.543080634815243... * n!, if n is odd then a(n) ~ n!*(e/2 - 1/(2*e)) = 1.175201193643801... * n!. - Vaclav Kotesovec, Nov 20 2012
Conjecture: a(n) -a(n-1) -n*(n-1)*a(n-2) +(n-1)*(n-2)*a(n-3)=0. - R. J. Mathar, May 29 2013
From Peter Bala, Sep 05 2022: (Start)
The e.g.f. A(x) satisfies the differential equation (x^2 - 1)*A'(x) + (1 + 2*x - x^2)*A(x) = 0 with A(0) = 1. Mathar's recurrence above follows from this.
For k a positive integer, reducing the sequence modulo k produces a purely periodic sequence whose period divides k. For example, modulo 5 the sequence becomes [1, 1, 3, 2, 2, 1, 1, 3, 2, 2, ...] of period 5. (End)

Extensions

Definition clarified by Harvey P. Dale, Aug 11 2017

A095000 E.g.f.: exp(x)/(1-x)^4.

Original entry on oeis.org

1, 5, 29, 193, 1457, 12341, 116125, 1203329, 13627073, 167525317, 2222710781, 31665408545, 482196718129, 7817359305653, 134443910166077, 2444991262876321, 46883166605035265, 945426638499719429, 20002372214708227933, 443036881445294292737, 10252840082607606694961
Offset: 0

Views

Author

Philippe Deléham, Jun 19 2004

Keywords

Comments

Sum_{k=0..n} A094816(n,k)*x^k give A000522(n), A001339(n), A082030(n) for x = 1, 2, 3 respectively.
From Peter Bala, Jul 10 2008: (Start)
Recurrence relation: a(0) = 1, a(1) = 5, a(n) = (n+4)*a(n-1) - (n-1)*a(n-2) for n >= 2. Let p_3(n) = n^3+2*n-1 = n^(3)-3*n^(2)+3*n^(1)-1, where n^(k) denotes the rising factorial n*(n+1)*...*(n+k-1). The polynomial p_3(n) is an example of a Poisson-Charlier polynomial c_k(x;a) at k = 3, x = -n and a = -1.
The sequence b(n) := n!*p_3(n+1) = A001565(n) satisfies the same recurrence as a(n) but with the initial conditions b(0) = 2, b(1) = 11. This leads to the finite continued fraction expansion a(n)/b(n) = 1/(2+1/(5-1/(6-2/(7-...-(n-1)/(n+4))))).
Lim_{n -> infinity} a(n)/b(n) = e/6 = 1/(2+1/(5-1/(6-2/(7-...-n/((n+5)-...))))).
a(n) = -b(n) * Sum_{k = 0..n} 1/(k!*p_3(k)*p_3(k+1)) - since the rhs satisfies the above recurrence with the same initial conditions. Hence e = -6 * Sum_{k>=0} 1/(k!*p_3(k)*p_3(k+1)).
For sequences satisfying the more general recurrence a(n) = (n+1+r)*a(n-1) - (n-1)*a(n-2), which yield series acceleration formulas for e/r! that involve the Poisson-Charlier polynomials c_r(-n;-1), refer to A000522 (r = 0), A001339 (r=1), A082030 (r=2) and A095177 (r=4).
{a(n)} is a difference divisibility sequence, that is, the difference a(n) - a(m) is divisible by n - m for all n and m (provided n is not equal to m). See A000522 for further properties of difference divisibility sequences. (End)

Crossrefs

Programs

  • Maple
    a := n -> hypergeom([4, -n], [], -1); seq(round(evalf(a(n), 100)), n=0..18); # Peter Luschny, Sep 20 2014
  • Mathematica
    Table[n!*SeriesCoefficient[E^(x)/(1-x)^4,{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
  • PARI
    x='x+O('x^66); Vec(serlaplace(exp(x)/(1-x)^4)) \\ Joerg Arndt, May 11 2013

Formula

a(n) = Sum_{k=0..n} A094816(n, k)*4^k.
a(n) = Sum_{k=0..n} binomial(n, k)*(k+3)!/6.
a(n) ~ n!*n^3*e/6. - Vaclav Kotesovec, Oct 14 2012
a(n) = hypergeom([4, -n], [], -1). - Peter Luschny, Sep 20 2014
First-order recurrence: P(n-1)*a(n) = n*P(n)*a(n-1) - 1 with a(0) = 1, where P(n) = n^3 + 3*n^2 + 5*n + 2 = A001565(n). - Peter Bala, Jul 26 2021
D-finite with recurrence a(n) +(-n-4)*a(n-1) +(n-1)*a(n-2)=0. - R. J. Mathar, Aug 01 2022
a(n) = A001341(n)/6. - Alois P. Heinz, Jan 17 2025

A109747 E.g.f.: exp(-exp(-x)+1+x).

Original entry on oeis.org

1, 2, 3, 3, 2, 3, 5, -4, 5, 55, -212, 201, 2381, -15350, 35183, 145359, -1821438, 8117231, -521487, -278996548, 2261959961, -7554900397, -34727188796, 690775844605, -4901767330647, 10921820177234, 179314430713387, -2668801066419061, 18150518618843778
Offset: 0

Views

Author

Keywords

Comments

Equals double binomial transform of A014182. - Gary W. Adamson, Dec 31 2008

Examples

			G.f. = 1 + 2*x + 3*x^2 + 3*x^3 + 2*x^4 + 3*x^5 + 5*x^6 - 4*x^7 + 5*x^8 + 55*x^9 + ...
		

Crossrefs

Cf. A080094.
Cf. A014182. - Gary W. Adamson, Dec 31 2008

Programs

  • Maple
    G:=exp(-exp(-x)+1+x): Gser:=series(G,x=0,32): seq(n!*coeff(Gser,x,n),n=0..28); # Emeric Deutsch, Apr 10 2006
  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[-Exp[-x]+1+x],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Jun 22 2018 *)

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k)*Stirling2(n, k)*A000522(k).
G.f. = (1 - x^2 * Sum_{k>0} k * x^k / ((1 + x) * (1 + 2*x) + ... (1 + k*x))) / (1 - x)^2. - Michael Somos, Nov 07 2014
G.f.: 1/(1-x*Q(0)), where Q(k)= 1 + x/(1 - x - x*(k+1)/(x - 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 19 2013
G.f.: 1/W(0), where W(k) = 1 - x - x/(1 + x*(k+1)/W(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 07 2014
a(n) = exp(1) * (-1)^n * Sum_{k>=0} (-1)^k * (k - 1)^n / k!. - Ilya Gutkovskiy, Dec 20 2019

Extensions

More terms from Emeric Deutsch, Apr 10 2006

A095177 E.g.f.: exp(x)/(1-x)^5.

Original entry on oeis.org

1, 6, 41, 316, 2721, 25946, 271801, 3105936, 38474561, 513796366, 7360674441, 112632827396, 1833790646881, 31656637715106, 577636838177561, 11109543835539736, 224635867973671041, 4764236394052127126
Offset: 0

Views

Author

Philippe Deléham, Jun 20 2004

Keywords

Comments

Sum_{k = 0..n} A094816(n,k)*x^k give A000522(n), A001339(n), A082030(n), A095000(n) for x = 1, 2, 3, 4 respectively.
From Peter Bala, Jul 10 2008: (Start)
a(n) is a difference divisibility sequence, that is, the difference a(n) - a(m) is divisible by n - m for all n and m (provided n is not equal to m). See A000522 for further properties of difference divisibility sequences.
Recurrence relation: a(0) = 1, a(1) = 6, a(n) = (n+5)*a(n-1) - (n-1)*a(n-2) for n >= 2. Let p_4(n) = n^4+2*n^3+5*n^2+1 = n^(4)-4*n^(3)+6*n^(2)-4*n^(1)+1, where n^(k) denotes the rising factorial n*(n+1)*...*(n+k-1). The polynomial p_4(n) is an example of a Poisson-Charlier polynomial c_k(x;a) at k = 4, x = -n and a = -1.
The sequence b(n) := n!*p_4(n+1) = A001688(n) satisfies the same recurrence as a(n) but with the initial conditions b(0) = 9, b(1) = 53. This leads to the finite continued fraction expansion expansion a(n)/b(n) = 1/(9-1/(6-1/(7-2/(8-...-(n-1)/(n+5))))).
Lim n -> infinity a(n)/b(n) = e/24 = 1/(9-1/(6-1/(7-2/(8-...-n/((n+6)-...))))).
a(n) = b(n) * sum {k = 0..n} 1/(k!*p_4(k)*p_4(k+1)) - since the rhs satisfies the above recurrence with the same initial conditions. Hence e = 24 * sum {k = 0..inf} 1/(k!*p_4(k)p_4(k+1)).
For sequences satisfying the more general recurrence a(n) = (n+1+r)*a(n-1) - (n-1)*a(n-2), which yield series acceleration formulas for e/r! that involve the Poisson-Charlier polynomials c_r(-n;-1), refer to A000522 (r = 0), A001339 (r=1), A082030 (r=2), A095000 (r=3). (End)

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Exp[x]/(1-x)^5, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 21 2013 *)
    Table[HypergeometricPFQ[{5, -n}, {}, -1], {n, 0, 20}] (* Benedict W. J. Irwin, May 27 2016 *)
  • PARI
    a(n) = sum(k=0,n, binomial(n, k)*(k+4)!/4! ); \\ Joerg Arndt, Apr 22 2013

Formula

a(n) = Sum_{k = 0..n} A094816(n, k)*5^k.
a(n) = Sum_{k=0..n} binomial(n, k)*(k+4)!/4!.
G.f.: 1/Q(0), where Q(k) = 1 - x - x*(k+5)/(1 - x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 22 2013
a(n) ~ n! *exp(1)*n^4/24. - Vaclav Kotesovec, Jun 21 2013
a(n) = 2F0(5,-n;;-1). - Benedict W. J. Irwin, May 27 2016
First-order recurrence: P(n-1)*a(n) = n*P(n)*a(n-1) + 1 with a(0) = 1, where P(n) = n^4 + 6*n^3 + 17*n^2 + 20*n + 9 = A094793(n). - Peter Bala, Jul 26 2021
Previous Showing 51-60 of 288 results. Next