cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A000522 Total number of ordered k-tuples (k=0..n) of distinct elements from an n-element set: a(n) = Sum_{k=0..n} n!/k!.

Original entry on oeis.org

1, 2, 5, 16, 65, 326, 1957, 13700, 109601, 986410, 9864101, 108505112, 1302061345, 16926797486, 236975164805, 3554627472076, 56874039553217, 966858672404690, 17403456103284421, 330665665962404000, 6613313319248080001, 138879579704209680022, 3055350753492612960485, 70273067330330098091156
Offset: 0

Views

Author

Keywords

Comments

Total number of permutations of all subsets of an n-set.
Also the number of one-to-one sequences that can be formed from n distinct objects.
Old name "Total number of permutations of a set with n elements", or the same with the word "arrangements", both sound too much like A000142.
Related to number of operations of addition and multiplication to evaluate a determinant of order n by cofactor expansion - see A026243.
a(n) is also the number of paths (without loops) in the complete graph on n+2 vertices starting at one vertex v1 and ending at another v2. Example: when n=2 there are 5 paths in the complete graph with 4 vertices starting at the vertex 1 and ending at the vertex 2: (12),(132),(142),(1342),(1432) so a(2) = 5. - Avi Peretz (njk(AT)netvision.net.il), Feb 23 2001; comment corrected by Jonathan Coxhead, Mar 21 2003
Also row sums of Table A008279, which can be generated by taking the derivatives of x^k. For example, for y = 1*x^3, y' = 3x^2, y" = 6x, y'''= 6 so a(4) = 1 + 3 + 6 + 6 = 16. - Alford Arnold, Dec 15 1999
a(n) is the permanent of the n X n matrix with 2s on the diagonal and 1s elsewhere. - Yuval Dekel, Nov 01 2003
(A000166 + this_sequence)/2 = A009179, (A000166 - this_sequence)/2 = A009628.
Stirling transform of A006252(n-1) = [1,1,1,2,4,14,38,...] is a(n-1) = [1,2,5,16,65,...]. - Michael Somos, Mar 04 2004
Number of {12,12*,21*}- and {12,12*,2*1}-avoiding signed permutations in the hyperoctahedral group.
a(n) = b such that Integral_{x=0..1} x^n*exp(-x) dx = a-b*exp(-1). - Sébastien Dumortier, Mar 05 2005
a(n) is the number of permutations on [n+1] whose left-to-right record lows all occur at the start. Example: a(2) counts all permutations on [3] except 231 (the last entry is a record low but its predecessor is not). - David Callan, Jul 20 2005
a(n) is the number of permutations on [n+1] that avoid the (scattered) pattern 1-2-3|. The vertical bar means the "3" must occur at the end of the permutation. For example, 21354 is not counted by a(4): 234 is an offending subpermutation. - David Callan, Nov 02 2005
Number of deco polyominoes of height n+1 having no reentrant corners along the lower contour (i.e., no vertical step that is followed by a horizontal step). In other words, a(n)=A121579(n+1,0). A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column. Example: a(1)=2 because the only deco polyominoes of height 2 are the vertical and horizontal dominoes, having no reentrant corners along their lower contours. - Emeric Deutsch, Aug 16 2006
Unreduced numerators of partial sums of the Taylor series for e. - Jonathan Sondow, Aug 18 2006
a(n) is the number of permutations on [n+1] (written in one-line notation) for which the subsequence beginning at 1 is increasing. Example: a(2)=5 counts 123, 213, 231, 312, 321. - David Callan, Oct 06 2006
a(n) is the number of permutations (written in one-line notation) on the set [n + k], k >= 1, for which the subsequence beginning at 1,2,...,k is increasing. Example: n = 2, k = 2. a(2) = 5 counts 1234, 3124, 3412, 4123, 4312. - Peter Bala, Jul 29 2014
a(n) and (1,-2,3,-4,5,-6,7,...) form a reciprocal pair under the list partition transform and associated operations described in A133314. - Tom Copeland, Nov 01 2007
Consider the subsets of the set {1,2,3,...,n} formed by the first n integers. E.g., for n = 3 we have {}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}. Let the variable sbst denote a subset. For each subset sbst we determine its number of parts, that is nprts(sbst). The sum over all possible subsets is written as Sum_{sbst=subsets}. Then a(n) = Sum_{sbst=subsets} nprts(sbst)!. E.g., for n = 3 we have 1!+1!+1!+1!+2!+2!+2!+3!=16. - Thomas Wieder, Jun 17 2006
Equals row sums of triangle A158359(unsigned). - Gary W. Adamson, Mar 17 2009
Equals eigensequence of triangle A158821. - Gary W. Adamson, Mar 30 2009
For positive n, equals 1/BarnesG(n+1) times the determinant of the n X n matrix whose (i,j)-coefficient is the (i+j)th Bell number. - John M. Campbell, Oct 03 2011
a(n) is the number of n X n binary matrices with i) at most one 1 in each row and column and ii) the subset of rows that contain a 1 must also be the columns that contain a 1. Cf. A002720 where restriction ii is removed. - Geoffrey Critzer, Dec 20 2011
Number of restricted growth strings (RGS) [d(1),d(2),...,d(n)] such that d(k) <= k and d(k) <= 1 + (number of nonzero digits in prefix). The positions of nonzero digits determine the subset, and their values (decreased by 1) are the (left) inversion table (a rising factorial number) for the permutation, see example. - Joerg Arndt, Dec 09 2012
Number of a restricted growth strings (RGS) [d(0), d(1), d(2), ..., d(n)] where d(k) >= 0 and d(k) <= 1 + chg([d(0), d(1), d(2), ..., d(k-1)]) and chg(.) gives the number of changes of its argument. Replacing the function chg(.) by a function asc(.) that counts the ascents in the prefix gives A022493 (ascent sequences). - Joerg Arndt, May 10 2013
The sequence t(n) = number of i <= n such that floor(e*i!) is a square is mentioned in the abstract of Luca & Shparlinski. The values are t(n) = 0 for 0 <= n <= 2 and t(n) = 1 for at least 3 <= n <= 300. - R. J. Mathar, Jan 16 2014
a(n) = p(n,1) = q(n,1), where p and q are polynomials defined at A248664 and A248669. - Clark Kimberling, Oct 11 2014
a(n) is the number of ways at most n people can queue up at a (slow) ticket counter when one or more of the people may choose not to queue up. Note that there are C(n,k) sets of k people who quene up and k! ways to queue up. Since k can run from 0 to n, a(n) = Sum_{k=0..n} n!/(n-k)! = Sum_{k=0..n} n!/k!. For example, if n=3 and the people are A(dam), B(eth), and C(arl), a(3)=16 since there are 16 possible lineups: ABC, ACB, BAC, BCA, CAB, CBA, AB, BA, AC, CA, BC, CB, A, B, C, and empty queue. - Dennis P. Walsh, Oct 02 2015
As the row sums of A008279, Motzkin uses the abbreviated notation $n_<^\Sigma$ for a(n).
The piecewise polynomial function f defined by f(x) = a(n)*x^n/n! on each interval [ 1-1/a(n), 1-1/a(n+1) ) is continuous on [0,1) and lim_{x->1} f(x) = e. - Luc Rousseau, Oct 15 2019
a(n) is composite for 3 <= n <= 2015, but a(2016) is prime (or at least a strong pseudoprime): see Johansson link. - Robert Israel, Jul 27 2020 [a(2016) is prime, ECPP certificate generated with CM 0.4.3 and checked by factordb. - Jason H Parker, Jun 15 2025]
In general, sequences of the form a(0)=a, a(n) = n*a(n-1) + k, n>0, will have a closed form of n!*a + floor(n!*(e-1))*k. - Gary Detlefs, Oct 26 2020
From Peter Bala, Apr 03 2022: (Start)
a(2*n) is odd and a(2*n+1) is even. More generally, a(n+k) == a(n) (mod k) for all n and k. It follows that for each positive integer k, the sequence obtained by reducing a(n) modulo k is periodic, with the exact period dividing k. Various divisibility properties of the sequence follow from this; for example, a(5*n+2) == a(5*n+4) == 0 (mod 5), a(25*n+7) == a(25*n+19) == 0 (mod 25) and a(13*n+4) == a(13*n+10)== a(13*n+12) == 0 (mod 13). (End)
Number of possible ranking options on a typical ranked choice voting ballot with n candidates (allowing undervotes). - P. Christopher Staecker, May 05 2024
From Thomas Scheuerle, Dec 28 2024: (Start)
Number of decorated permutations of size n.
Number of Le-diagrams with bounding box semiperimeter n, for n > 0.
By counting over all k = 1..n and n > 0, the number of positroid cells for the totally nonnegative real Grassmannian Gr(k, n), equivalently the number of Grassmann necklaces of type (k, n). (End)

Examples

			G.f. = 1 + 2*x + 5*x^2 + 16*x^3 + 65*x^4 + 326*x^5 + 1957*x^6 + 13700*x^7 + ...
With two objects we can form 5 sequences: (), (a), (b), (a,b), (b,a), so a(2) = 5.
From _Joerg Arndt_, Dec 09 2012: (Start)
The 16 arrangements of the 3-set and their RGS (dots denote zeros) are
  [ #]       RGS        perm. of subset
  [ 1]    [ . . . ]      [  ]
  [ 2]    [ . . 1 ]      [ 3 ]
  [ 3]    [ . 1 . ]      [ 2 ]
  [ 4]    [ . 1 1 ]      [ 2 3 ]
  [ 5]    [ . 1 2 ]      [ 3 2 ]
  [ 6]    [ 1 . . ]      [ 1 ]
  [ 7]    [ 1 . 1 ]      [ 1 3 ]
  [ 8]    [ 1 . 2 ]      [ 3 1 ]
  [ 9]    [ 1 1 . ]      [ 1 2 ]
  [10]    [ 1 1 1 ]      [ 1 2 3 ]
  [11]    [ 1 1 2 ]      [ 1 3 2 ]
  [12]    [ 1 1 3 ]      [ 2 3 1 ]
  [13]    [ 1 2 . ]      [ 2 1 ]
  [14]    [ 1 2 1 ]      [ 2 1 3 ]
  [15]    [ 1 2 2 ]      [ 3 1 2 ]
  [16]    [ 1 2 3 ]      [ 3 2 1 ]
(End)
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 75, Problem 9.
  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 65, p. 23, Ellipses, Paris 2008.
  • J. M. Gandhi, On logarithmic numbers, Math. Student, 31 (1963), 73-83.
  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section E11.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 16.
  • D. Singh, The numbers L(m,n) and their relations with prepared Bernoulli and Eulerian numbers, Math. Student, 20 (1952), 66-70.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Average of n-th row of triangle in A068424 [Corrected by N. J. A. Sloane, Feb 29 2024].
Row sums of A008279 and A094816.
First differences give A001339. Second differences give A001340.
Partial sums are in A001338, A002104.
A row of the array in A144502.
See also A370973, Nearest integer to e*n!.

Programs

  • Haskell
    import Data.List (subsequences, permutations)
    a000522 = length . choices . enumFromTo 1 where
    choices = concat . map permutations . subsequences
    -- Reinhard Zumkeller, Feb 21 2012, Oct 25 2010
    
  • Magma
    [1] cat [n eq 1 select (n+1) else n*Self(n-1)+1: n in [1..25]]; // Vincenzo Librandi, Feb 15 2015
    
  • Maple
    a(n):= exp(1)*int(x^n*exp(-x)*Heaviside(x-1), x=0..infinity); # Karol A. Penson, Oct 01 2001
    A000522 := n->add(n!/k!,k=0..n);
    G(x):=exp(x)/(1-x): f[0]:=G(x): for n from 1 to 26 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..20);
    # Zerinvary Lajos, Apr 03 2009
    G:=exp(z)/(1-z): Gser:=series(G,z=0,21):
    for n from 0 to 20 do a(n):=n!*coeff(Gser,z,n): end do
    # Paul Weisenhorn, May 30 2010
    k := 1; series(hypergeom([1,k],[],x/(1-x))/(1-x), x=0, 20); # Mark van Hoeij, Nov 07 2011
    # one more Maple program:
    a:= proc(n) option remember;
          `if`(n<0, 0, 1+n*a(n-1))
        end:
    seq(a(n), n=0..23);  # Alois P. Heinz, Sep 13 2019
    seq(simplify(KummerU(-n, -n, 1)), n = 0..23); # Peter Luschny, May 10 2022
  • Mathematica
    Table[FunctionExpand[Gamma[n + 1, 1]*E], {n, 0, 24}]
    nn = 20; Accumulate[Table[1/k!, {k, 0, nn}]] Range[0, nn]! (* Jan Mangaldan, Apr 21 2013 *)
    FoldList[#1*#2 + #2 &, 0, Range@ 23] + 1 (* or *)
    f[n_] := Floor[E*n!]; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Feb 13 2015 *)
    RecurrenceTable[{a[n + 1] == (n + 1) a[n] + 1, a[0] == 1}, a, {n, 0, 12}] (* Emanuele Munarini, Apr 27 2017 *)
    nxt[{n_,a_}]:={n+1,a(n+1)+1}; NestList[nxt,{0,1},30][[All,2]] (* Harvey P. Dale, Jan 29 2023 *)
  • Maxima
    a(n) := if n=0 then 1 else n*a(n-1)+1; makelist(a(n),n,0,12); /* Emanuele Munarini, Apr 27 2017 */
  • PARI
    {a(n) = local(A); if( n<0, 0, A = vector(n+1); A[1]=1; for(k=1, n, A[k+1] = k*A[k] + 1); A[n+1])}; /* Michael Somos, Jul 01 2004 */
    
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( exp( x +x * O(x^n)) / (1 - x), n))}; /* Michael Somos, Mar 06 2004 */
    
  • PARI
    a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1-x)^2+x^2*deriv(A)/(1-x)); polcoeff(A, n) \\ Paul D. Hanna, Sep 03 2008
    
  • PARI
    {a(n)=local(X=x+x*O(x^n));polcoeff(sum(m=0,n,(m+2)^m*x^m/(1+(m+1)*X)^(m+1)),n)} /* Paul D. Hanna */
    
  • PARI
    a(n)=sum(k=0,n,binomial(n,k)*k!); \\ Joerg Arndt, Dec 14 2014
    
  • Sage
    # program adapted from Alois P. Heinz's Maple code in A022493
    @CachedFunction
    def b(n, i, t):
        if n <= 1:
            return 1
        return sum(b(n - 1, j, t + (j == i)) for j in range(t + 2))
    def a(n):
        return b(n, 0, 0)
    v000522 = [a(n) for n in range(33)]
    print(v000522)
    # Joerg Arndt, May 11 2013
    

Formula

a(n) = n*a(n-1) + 1, a(0) = 1.
a(n) = A007526(n-1) + 1.
a(n) = A061354(n)*A093101(n).
a(n) = n! * Sum_{k=0..n} 1/k! = n! * (e - Sum_{k>=n+1} 1/k!). - Michael Somos, Mar 26 1999
a(0) = 1; for n > 0, a(n) = floor(e*n!).
E.g.f.: exp(x)/(1-x).
a(n) = 1 + Sum_{n>=k>=j>=0} (k-j+1)*k!/j! = a(n-1) + A001339(n-1) = A007526(n) + 1. Binomial transformation of n!, i.e., A000142. - Henry Bottomley, Jun 04 2001
a(n) = floor(2/(n+1))*A009578(n+1)-1. - Emeric Deutsch, Oct 24 2001
Integral representation as n-th moment of a nonnegative function on a positive half-axis: a(n) = e*Integral_{x>=0} x^n*e^(-x)*Heaviside(x-1) dx. - Karol A. Penson, Oct 01 2001
Formula, in Mathematica notation: Special values of Laguerre polynomials, a(n)=(-1)^n*n!*LaguerreL[n, -1-n, 1], n=1, 2, ... . This relation cannot be checked by Maple, as it appears that Maple does not incorporate Laguerre polynomials with second index equal to negative integers. It does check with Mathematica. - Karol A. Penson and Pawel Blasiak ( blasiak(AT)lptl.jussieu.fr), Feb 13 2004
G.f.: Sum_{k>=0} k!*x^k/(1-x)^(k+1). a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*k^(n-k)*(k+1)^k. - Vladeta Jovovic, Aug 18 2002
a(n) = Sum_{k=0..n} A008290(n, k)*2^k. - Philippe Deléham, Dec 12 2003
a(n) = Sum_{k=0..n} A046716(n, k). - Philippe Deléham, Jun 12 2004
a(n) = e*Gamma(n+1,1) where Gamma(z,t) = Integral_{x>=t} e^(-x)*x^(z-1) dx is incomplete gamma function. - Michael Somos, Jul 01 2004
a(n) = Sum_{k=0..n} P(n, k). - Ross La Haye, Aug 28 2005
Given g.f. A(x), then g.f. A059115 = A(x/(1-x)). - Michael Somos, Aug 03 2006
a(n) = 1 + n + n*(n-1) + n*(n-1)*(n-2) + ... + n!. - Jonathan Sondow, Aug 18 2006
a(n) = Sum_{k=0..n} binomial(n,k) * k!; interpretation: for all k-subsets (sum), choose a subset (binomial(n,k)), and permutation of subset (k!). - Joerg Arndt, Dec 09 2012
a(n) = Integral_{x>=0} (x+1)^n*e^(-x) dx. - Gerald McGarvey, Oct 19 2006
a(n) = Sum_{k=0..n} A094816(n, k), n>=0 (row sums of Poisson-Charlier coefficient matrix). - N. J. A. Sloane, Nov 10 2007
From Tom Copeland, Nov 01 2007, Dec 10 2007: (Start)
Act on 1/(1-x) with 1/(1-xDx) = Sum_{j>=0} (xDx)^j = Sum_{j>=0} x^j*D^j*x^j = Sum_{j>=0} j!*x^j*L(j,-:xD:,0) where Lag(n,x,0) are the Laguerre polynomials of order 0, D the derivative w.r.t. x and (:xD:)^j = x^j*D^j. Truncating the operator series at the j = n term gives an o.g.f. for a(0) through a(n) consistent with Jovovic's.
These results and those of Penson and Blasiak, Arnold, Bottomley and Deleham are related by the operator A094587 (the reverse of A008279), which is the umbral equivalent of n!*Lag[n,(.)!*Lag[.,x,-1],0] = (1-D)^(-1) x^n = (-1)^n * n! Lag(n,x,-1-n) = Sum_{j=0..n} binomial(n,j)*j!*x^(n-j) = Sum_{j=0..n} (n!/j!)*x^j. Umbral substitution of b(.) for x and then letting b(n)=1 for all n connects the results. See A132013 (the inverse of A094587) for a connection between these operations and 1/(1-xDx).
(End)
From Peter Bala, Jul 15 2008: (Start)
a(n) = n!*e - 1/(n + 1/(n+1 + 2/(n+2 + 3/(n+3 + ...)))).
Asymptotic result (Ramanujan): n!*e - a(n) ~ 1/n - 1/n^3 + 1/n^4 + 2/n^5 - 9/n^6 + ..., where the sequence [1,0,-1,1,2,-9,...] = [(-1)^k*A000587(k)], for k>=1.
a(n) is a difference divisibility sequence, that is, the difference a(n) - a(m) is divisible by n - m for all n and m (provided n is not equal to m). For fixed k, define the derived sequence a_k(n) = (a(n+k)-a(k))/n, n = 1,2,3,... . Then a_k(n) is also a difference divisibility sequence.
For example, the derived sequence a_0(n) is just a(n-1). The set of integer sequences satisfying the difference divisibility property forms a ring with term-wise operations of addition and multiplication.
Recurrence relations: a(0) = 1, a(n) = (n-1)*(a(n-1) + a(n-2)) + 2, for n >= 1. a(0) = 1, a(1) = 2, D-finite with recurrence: a(n) = (n+1)*a(n-1) - (n-1)*a(n-2) for n >= 2. The sequence b(n) := n! satisfies the latter recurrence with the initial conditions b(0) = 1, b(1) = 1. This leads to the finite continued fraction expansion a(n)/n! = 1/(1-1/(2-1/(3-2/(4-...-(n-1)/(n+1))))), n >= 2.
Limit_{n->oo} a(n)/n! = e = 1/(1-1/(2-1/(3-2/(4-...-n/((n+2)-...))))). This is the particular case m = 0 of the general result m!/e - d_m = (-1)^(m+1) *(1/(m+2 -1/(m+3 -2/(m+4 -3/(m+5 -...))))), where d_m denotes the m-th derangement number A000166(m).
For sequences satisfying the more general recurrence a(n) = (n+1+r)*a(n-1) - (n-1)*a(n-2), which yield series acceleration formulas for e/r! that involve the Poisson-Charlier polynomials c_r(-n;-1), refer to A001339 (r=1), A082030 (r=2), A095000 (r=3) and A095177 (r=4).
For the corresponding results for the constants log(2), zeta(2) and zeta(3) refer to A142992, A108625 and A143007 respectively.
(End)
G.f. satisfies: A(x) = 1/(1-x)^2 + x^2*A'(x)/(1-x). - Paul D. Hanna, Sep 03 2008
From Paul Barry, Nov 27 2009: (Start)
G.f.: 1/(1-2*x-x^2/(1-4*x-4*x^2/(1-6*x-9*x^2/(1-8*x-16*x^2/(1-10*x-25*x^2/(1-... (continued fraction);
G.f.: 1/(1-x-x/(1-x/(1-x-2*x/(1-2*x/(1-x-3*x/(1-3*x/(1-x-4*x/(1-4*x/(1-x-5*x/(1-5*x/(1-... (continued fraction).
(End)
O.g.f.: Sum_{n>=0} (n+2)^n*x^n/(1 + (n+1)*x)^(n+1). - Paul D. Hanna, Sep 19 2011
G.f. hypergeom([1,k],[],x/(1-x))/(1-x), for k=1,2,...,9 is the generating function for A000522, A001339, A082030, A095000, A095177, A096307, A096341, A095722, and A095740. - Mark van Hoeij, Nov 07 2011
G.f.: 1/U(0) where U(k) = 1 - x - x*(k+1)/(1 - x*(k+1)/U(k+1)); (continued fraction). - Sergei N. Gladkovskii, Oct 14 2012
E.g.f.: 1/U(0) where U(k) = 1 - x/(1 - 1/(1 + (k+1)/U(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 16 2012
G.f.: 1/(1-x)/Q(0), where Q(k) = 1 - x/(1-x)*(k+1)/(1 - x/(1-x)*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, May 19 2013
G.f.: 2/(1-x)/G(0), where G(k) = 1 + 1/(1 - x*(2*k+2)/(x*(2*k+3) - 1 + x*(2*k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 31 2013
G.f.: (B(x)+ 1)/(2-2*x) = Q(0)/(2-2*x), where B(x) be g.f. A006183, Q(k) = 1 + 1/(1 - x*(k+1)/(x*(k+1) + (1-x)/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 08 2013
G.f.: 1/Q(0), where Q(k) = 1 - 2*x*(k+1) - x^2*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 30 2013
E.g.f.: e^x/(1-x) = (1 - 12*x/(Q(0) + 6*x - 3*x^2))/(1-x), where Q(k) = 2*(4*k+1)*(32*k^2 + 16*k + x^2 - 6) - x^4*(4*k-1)*(4*k+7)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 18 2013
G.f.: conjecture: T(0)/(1-2*x), where T(k) = 1 - x^2*(k+1)^2/(x^2*(k+1)^2 - (1 - 2*x*(k+1))*(1 - 2*x*(k+2))/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 18 2013
0 = a(n)*(+a(n+1) - 3*a(n+2) + a(n+3)) + a(n+1)*(+a(n+1) - a(n+3)) + a(n+2)*(+a(n+2)) for all n>=0. - Michael Somos, Jul 04 2014
From Peter Bala, Jul 29 2014: (Start)
a(n) = F(n), where the function F(x) := Integral_{0..infinity} e^(-u)*(1 + u)^x du smoothly interpolates this sequence to all real values of x. Note that F(-1) = G and for n = 2,3,... we have F(-n) = (-1)^n/(n-1)! *( A058006(n-2) - G ), where G = 0.5963473623... denotes Gompertz's constant - see A073003.
a(n) = n!*e - e*( Sum_{k >= 0} (-1)^k/((n + k + 1)*k!) ).
(End)
a(n) = hypergeometric_U(1, n+2, 1). - Peter Luschny, Nov 26 2014
a(n) ~ exp(1-n)*n^(n-1/2)*sqrt(2*Pi). - Vladimir Reshetnikov, Oct 27 2015
a(n) = A038155(n+2)/A000217(n+1). - Anton Zakharov, Sep 08 2016
a(n) = round(exp(1)*n!), n > 1 - Simon Plouffe, Jul 28 2020
a(n) = KummerU(-n, -n, 1). - Peter Luschny, May 10 2022
a(n) = (e/(2*Pi))*Integral_{x=-oo..oo} (n+1+i*x)!/(1+i*x) dx. - David Ulgenes, Apr 18 2023
Sum_{i=0..n} (-1)^(n-i) * binomial(n, i) * a(i) = n!. - Werner Schulte, Apr 03 2024

Extensions

Additional comments from Michael Somos

A001339 a(n) = Sum_{k=0..n} (k+1)! binomial(n,k).

Original entry on oeis.org

1, 3, 11, 49, 261, 1631, 11743, 95901, 876809, 8877691, 98641011, 1193556233, 15624736141, 220048367319, 3317652307271, 53319412081141, 909984632851473, 16436597430879731, 313262209859119579, 6282647653285676001, 132266266384961600021, 2916471173788403280463
Offset: 0

Views

Author

Keywords

Comments

Number of arrangements of {1, 2, ..., n, n + 1} containing the element 1. - Emeric Deutsch, Oct 11 2001
From Thomas Wieder, Oct 21 2004: (Start)
"Also the number of hierarchies with unlabeled elements and labeled levels where the levels are permuted.
"Let l_x denote level x, e.g. l_2 is level 2. Let * denote an element. Then l_1*l_2***l_3** denotes a hierarchy of n = 6 unlabeled elements with one element on level 1, three elements on level 2 and 2 elements on level 3.
"E.g. for n=3 one has a(3) = 11 possible hierarchies: l_1***, l_1**l_2*, l_1*l_2**, l_2**l_1*, l_2*l_1**, l_1*l_2*l_3*, l_3*l_1*l_2*, l_2*l_3*l_1*, l_1*l_3*l_2*, l_2*l_1*l_3*, l_3*l_2*l_1*. See A064618 for the number of hierarchies with labeled elements and labeled levels." (End)
Polynomials in A010027 evaluated at 2.
Also the permanent of any n X n cofactor of an n+1 X n+1 version of J+I other than an n X n version of J + I (that is, a (1, 2) matrix with n - 1 2s, at most one per row and column). - D. G. Rogers, Aug 27 2006
a(n) = number of partitions of [n+1] into lists of sets that are both non-nesting and non-crossing. Non-nesting means that no set is contained in the span (interval from min to max) of another. For example, a(1) counts 12, 1-2, 2-1 and a(2) counts 123, 1-23, 23-1, 3-12, 12-3, 1-2-3, 1-3-2, 2-1-3, 2-3-1, 3-1-2, 3-2-1. - David Callan, Sep 20 2007
Row sums of triangle A137594. - Gary W. Adamson, Jan 28 2008
From Peter Bala, Jul 10 2008: (Start)
a(n) is a difference divisibility sequence, that is, the difference a(n) - a(m) is divisible by n - m for all n and m (provided n is not equal to m). See A000522 for further properties of difference divisibility sequences.
a(n) equals the sum of the lengths of the paths between a pair of distinct vertices of the complete graph K_(n + 2) on n + 2 vertices [Hassani]. For example, for the complete graph K_4 with vertex set {A,B,C,D} the 5 paths between A and B are AB of length 1, ACB and ADB, both of length 2 and ACDB and ADCB, both of length 3. The sum of the lengths is 1 + 2 + 2 + 3 + 3 = 11 = a(2).
The number of paths between 2 distinct vertices of K_n is equal to A000522(n - 2); the number of simple cycles through a vertex of K_n equals A038154(n - 1).
Recurrence relation: a(0) = 1, a(1) = 3, a(n) = (n+2)*a(n - 1) - (n - 1)*a(n - 2) for n >= 2. The sequence b(n) := n*n! = A001563(n) satisfies the same recurrence with the initial conditions b(0) = 0, b(1) = 1. This leads to the finite continued fraction expansion a(n)/b(n) = 3 - 1/(4 - 2/(5 - 3/(6 - ... - (n - 1)/(n + 2)))), n >= 1.
Limit_{n->oo} a(n)/b(n) = e = 3 - 1/(4 - 2/(5 - 3/(6 - ... - n/((n + 3) - ...)))).
For n >= 1, a(n) = b(n)*(3 - Sum_{k=2..n} 1/(k!*(k - 1)*k)) (see the formula by Deutsch) since the rhs satisfies the above recurrence with the same initial conditions. Hence e = 3 - Sum_{k>=2} 1/(k!*(k - 1)*k).
For sequences satisfying the more general recurrence a(n) = (n + 1 + r)*a(n-1) - (n-1)*a(n-2), which yield series acceleration formulas for e/r! that involve the Poisson-Charlier polynomials c_r(-n; -1), refer to A000522 (r=0), A082030 (r=2), A095000 (r=3) and A095177 (r=4). (End)
Binomial transform of n! Offset 1. a(3) = 11. - Al Hakanson (hawkuu(AT)gmail.com), May 18 2009
Equals eigensequence of a triangle with (1, 2, 3, ...) as the right border and the rest 1's; equivalent to a(n) = [n terms of the sequence (1, 1, 1, ...) followed by (n + 1)] dot [(n + 1) terms of the sequence (1, 1, 3, 11, 245, ...)]. Example: 261 = a(4) = (1, 1, 1, 1, 5) dot (1, 1, 3, 11, 49) = 1 + 1 + 3 + 11 + 245 = 261. - Gary W. Adamson, Jul 24 2010
Number of nonnegative integers which use each digit at most once in base n+1. - Franklin T. Adams-Watters, Oct 02 2011
a(n) is the number of permutations of {1,2,...,n+2} in which there is an increasing contiguous subsequence (ascending run) beginning with 1 and ending with n+2. The number of such permutations with exactly k, 0<=k<=n, elements between the 1 and (n+2) is given by A132159(n,k) whose row sums equal this sequence. See example. - Geoffrey Critzer, Feb 15 2013

Examples

			G.f. = 1 + 3*x + 11*x^2 + 49*x^3 + 261*x^4 + 1631*x^5 + 11743*x^6 + 95901*x^7 + ...
a(2) = 11: {1, 12, 21, 13, 31, 123, 132, 213, 231, 312, 321}.
a(2) = 11 because we have 11 permutations of {1,2,3,4} (written in one line notation) that have an increasing subsequence beginning with 1 and ending with 4: 1,2,3,4; 1,2,4,3; 1,3,4,2; 1,4,2,3; 1,4,3,2; 2,1,3,4; 2,1,4,3; 2,3,1,4; 3,1,2,4; 3,1,4,2; 3,2,1,4. - _Geoffrey Critzer_, Feb 15 2013
		

References

  • A. Hordijk, Markov Decision Chains, pp. 97-103 in Images of SMC Research, 1996, Stichting Mathematisch Centrum, Amsterdam, Netherlands, 1996. See p. 103.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • W. A. Whitworth, DCC Exercises in Choice and Chance, Stechert, NY, 1945, p. 56, ex. 232.

Crossrefs

a(n) = A000522(n+1) - A000522(n).
First differences of A000522, A007526, A026243, A073591.
Equals (1/2)*A006183(n-2).
Equals A036918(n+1) + 1.
Leftmost column of A276588.
Cf. also A136104.

Programs

  • GAP
    A001339:=List([0..20],n-> Sum([0..n], k-> Factorial(k+1)*Binomial(n,k))); # Muniru A Asiru, Feb 17 2018
    
  • Magma
    [Factorial(n)*(&+[(n-k+1)/Factorial(k): k in [0..n]]): n in [0..20]]; // G. C. Greubel, Jul 15 2019
    
  • Maple
    a:=proc(n) options operator, arrow: factorial(n)*n*(3-(sum(1/(j*(j-1)*factorial(j)), j=2..n))) end proc: 1, seq(a(n),n=1..20); # Emeric Deutsch, Apr 12 2008
    a := n -> hypergeom([2, -n], [], -1); seq(simplify(a(n)), n=0..18); # Peter Luschny, Sep 20 2014
  • Mathematica
    a[n_] := n!*Sum[(k+1)/(n-k)!, {k, 0, n}]; a /@ Range[0, 20] (* Jean-François Alcover, Jul 13 2011 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Exp[x] / (1 - x)^2, {x, 0, n}]] (* Michael Somos, Oct 20 2011 *)
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( exp(x + x * O(x^n)) / (1 - x)^2, n))} /* Michael Somos, Mar 04 2004 */
    
  • PARI
    vector(20, n, n--; n!*sum(k=0,n,(n-k+1)/k!)) \\ G. C. Greubel, Jul 15 2019
    
  • Sage
    [factorial(n)*sum((n-k+1)/factorial(k) for k in (0..n)) for n in (0..20)] # G. C. Greubel, Jul 15 2019

Formula

E.g.f.: exp(x)/(1-x)^2.
a(n) = round(evalf(exp(1)*(n-1)*(n-1)!)) (n>1).
a(n) = floor(n*n!*e) + 1. - Melvin J. Knight (knightmj(AT)juno.com), May 30 2001
a(n) = {e*n*n!} for n > 0, where {x} denotes the nearest integer part. Proposed by Simon Plouffe, March 1993.
The n-th row of array A089900 is the n-th binomial transform of this sequence. The (n+1)-th term of the n-th binomial transform is (n+1)^(n+1), for n >= 0. E.g., the 5th term of the 4th binomial transform is 5^5: [1, 7, 51, 389, 3125, ...]. - Paul D. Hanna, Nov 14 2003
G.f.: Sum_{k>=0} k! * (x / (1 - x))^k. - Michael Somos, Mar 04 2004
a(n) = Sum_{k = 0..n} A046716(n, k)*2^(n-k). - Philippe Deléham, Jun 12 2004
(n-1)*a(n) = n^2*a(n-1)-1. - Vladeta Jovovic, Sep 04 2004
a(n) = Sum_{k=0..n} P(n, k)*(k+1). - Ross La Haye, Aug 28 2005
a(n) = n!*n*(3 - Sum_{j=2..n} 1/(j*(j-1)*j!)) for n>=1. - Emeric Deutsch, Apr 12 2008
a(n) = (a(n-1)^2 + 2 * a(n-2)^2 + a(n-2) * a(n-3) - 4 * a(n-1) * a(n-3)) / (a(n-2) - a(n-3)) if n>1. - Michael Somos, Oct 20 2011
E.g.f.:1/Q(0); Q(k) = 1 - 2*x/(1+x/(2-x-2/(1-x*(k+1)/Q(k+1)))); (continued fraction). - Sergei N. Gladkovskii, Nov 18 2011
G.f.: 1/Q(0), where Q(k) = 1 - x - x*(k+2)/(1 - x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 22 2013
G.f.: Q(0)/x - 1/x, where Q(k) = 1 + (2*k + 1)*x/( 1 - x - 2*x*(1-x)*(k+1)/(2*x*(k+1) + (1-x)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 09 2013
G.f.: (2/x)/G(0) - 1/x, where G(k) = 1 + 1/(1 - x*(2*k+2)/(x*(2*k+3) - 1 + x*(2*k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 31 2013
G.f.: Q(0)/(2*x) - 1/x, where Q(k) = 1 + 1/(1 - x*(k+1)/(x*(k+1) + (1-x)/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 08 2013
G.f.: W(0)/x - 1/x, where W(k) = 1 - x*(k+1)/( x*(k+2) - 1/(1 - x*(k+1)/( x*(k+1) - 1/W(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Aug 25 2013
a(n) = hypergeometric([2, -n], [], -1). - Peter Luschny, Sep 20 2014
Upper and bottom right terms of the infinite 2 X 2 matrix product_{N=1,2,3,...} [(1,1); (1,N)]. - Gary W. Adamson, Jul 28 2016
a(n) = R(n,n+1,n) where R(x,y,z) is defined to be R(x+1,y,z+1) = R(y,x,x) + R(z,y,z), R(0,y,z+1) = R(z,y,z), R(x+1,y,0) = R(y,x,x), and R(0,y,0) = y. - David M. Cerna, Feb 16 2018
a(n) = (n + 1)!*hypergeom([-n], [-n-1], 1). - Peter Luschny, Nov 02 2018
a(n) = Integral_{x=0..1} (-LambertW(-1,-x/e))^n dx. - Gleb Koloskov, Jul 25 2021
a(n) = KummerU(-n, -n-1, 1). - Peter Luschny, May 10 2022

Extensions

Typo in description in 1995 Encyclopedia of Integer Sequences corrected Mar 15 1997
Link updated by Susanne Wienand, Nov 19 2011

A094816 Triangle read by rows: T(n,k) are the coefficients of Charlier polynomials: A046716 transposed, for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 8, 6, 1, 1, 24, 29, 10, 1, 1, 89, 145, 75, 15, 1, 1, 415, 814, 545, 160, 21, 1, 1, 2372, 5243, 4179, 1575, 301, 28, 1, 1, 16072, 38618, 34860, 15659, 3836, 518, 36, 1, 1, 125673, 321690, 318926, 163191, 47775, 8274, 834, 45, 1, 1, 1112083, 2995011
Offset: 0

Views

Author

Philippe Deléham, Jun 12 2004

Keywords

Comments

The a-sequence for this Sheffer matrix is A027641(n)/A027642(n) (Bernoulli numbers) and the z-sequence is A130189(n)/ A130190(n). See the W. Lang link.
Take the lower triangular matrix in A049020 and invert it, then read by rows! - N. J. A. Sloane, Feb 07 2009
Exponential Riordan array [exp(x), log(1/(1-x))]. Equal to A007318*A132393. - Paul Barry, Apr 23 2009
A signed version of the triangle appears in [Gessel]. - Peter Bala, Aug 31 2012
T(n,k) is the number of permutations over all subsets of {1,2,...,n} (Cf. A000522) that have exactly k cycles. T(3,2) = 6: We permute the elements of the subsets {1,2}, {1,3}, {2,3}. Each has one permutation with 2 cycles. We permute the elements of {1,2,3} and there are three permutations that have 2 cycles. 3*1 + 1*3 = 6. - Geoffrey Critzer, Feb 24 2013
From Wolfdieter Lang, Jul 28 2017: (Start)
In Chihara's book the row polynomials (with rising powers) are the Charlier polynomials (-1)^n*C^(a)_n(-x), with a = -1, n >= 0. See p. 170, eq. (1.4).
In Ismail's book the present Charlier polynomials are denoted by C_n(-x;a=1) on p. 177, eq. (6.1.25). (End)
The triangle T(n,k) is a representative of the parametric family of triangles T(m,n,k), whose columns are the coefficients of the standard expansion of the function f(x) = (-log(1-x))^(k)*exp(-m*x)/k! for the case m=-1. See A381082. - Igor Victorovich Statsenko, Feb 14 2025

Examples

			From _Paul Barry_, Apr 23 2009: (Start)
Triangle begins
  1;
  1,     1;
  1,     3,     1;
  1,     8,     6,     1;
  1,    24,    29,    10,     1;
  1,    89,   145,    75,    15,    1;
  1,   415,   814,   545,   160,   21,   1;
  1,  2372,  5243,  4179,  1575,  301,  28,  1;
  1, 16072, 38618, 34860, 15659, 3836, 518, 36, 1;
Production matrix is
  1, 1;
  0, 2, 1;
  0, 1, 3,  1;
  0, 1, 3,  4,  1;
  0, 1, 4,  6,  5,  1;
  0, 1, 5, 10, 10,  6,  1;
  0, 1, 6, 15, 20, 15,  7,  1;
  0, 1, 7, 21, 35, 35, 21,  8, 1;
  0, 1, 8, 28, 56, 70, 56, 28, 9, 1; (End)
		

References

  • T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, London, Paris, 1978, Ch. VI, 1., pp. 170-172.
  • Classical and Quantum Orthogonal Polynomials in One Variable, Cambridge University Press, 2005, EMA, Vol. 98, p. 177.

Crossrefs

Columns k=0..4 give A000012, A002104, A381021, A381022, A381023.
Diagonals: A000012, A000217.
Row sums A000522, alternating row sums A024000.
KummerU(-n,1-n-x,z): this sequence (z=1), |A137346| (z=2), A327997 (z=3).

Programs

  • Maple
    A094816 := (n,k) -> (-1)^(n-k)*add(binomial(-j-1,-n-1)*Stirling1(j,k), j=0..n):
    seq(seq(A094816(n, k), k=0..n), n=0..9); # Peter Luschny, Apr 10 2016
  • Mathematica
    nn=10;f[list_]:=Select[list,#>0&];Map[f,Range[0,nn]!CoefficientList[Series[ Exp[x]/(1-x)^y,{x,0,nn}],{x,y}]]//Grid  (* Geoffrey Critzer, Feb 24 2013 *)
    Flatten[Table[(-1)^(n-k) Sum[Binomial[-j-1,-n-1] StirlingS1[j,k],{j,0,n}], {n,0,9},{k,0,n}]] (* Peter Luschny, Apr 10 2016 *)
    p[n_] := HypergeometricU[-n, 1 - n - x, 1];
    Table[CoefficientList[p[n], x], {n,0,9}] // Flatten (* Peter Luschny, Oct 27 2019 *)
  • PARI
    {T(n, k)= local(A); if( k<0 || k>n, 0, A = x * O(x^n); polcoeff( n! * polcoeff( exp(x + A) / (1 - x + A)^y, n), k))} /* Michael Somos, Nov 19 2006 */
    
  • Sage
    def a_row(n):
        s = sum(binomial(n,k)*rising_factorial(x,k) for k in (0..n))
        return expand(s).list()
    [a_row(n) for n in (0..9)] # Peter Luschny, Jun 28 2019

Formula

E.g.f.: exp(t)/(1-t)^x = Sum_{n>=0} C(x,n)*t^n/n!.
Sum_{k = 0..n} T(n, k)*x^k = C(x, n), Charlier polynomials; C(x, n)= A024000(n), A000012(n), A000522(n), A001339(n), A082030(n), A095000(n), A095177(n), A096307(n), A096341(n), A095722(n), A095740(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Feb 27 2013
T(n+1, k) = (n+1)*T(n, k) + T(n, k-1) - n*T(n-1, k) with T(0, 0) = 1, T(0, k) = 0 if k>0, T(n, k) = 0 if k<0.
PS*A008275*PS as infinite lower triangular matrices, where PS is a triangle with PS(n, k) = (-1)^k*A007318(n, k). PS = 1/PS. - Gerald McGarvey, Aug 20 2009
T(n,k) = (-1)^(n-k)*Sum_{j=0..n} C(-j-1, -n-1)*S1(j, k) where S1 are the signed Stirling numbers of the first kind. - Peter Luschny, Apr 10 2016
Absolute values T(n,k) of triangle (-1)^(n+k) T(n,k) where row n gives coefficients of x^k, 0 <= k <= n, in expansion of Sum_{k=0..n} binomial(n,k) (-1)^(n-k) x^{(k)}, where x^{(k)} := Product_{i=0..k-1} (x-i), k >= 1, and x^{(0)} := 1, the falling factorial powers. - Daniel Forgues, Oct 13 2019
From Peter Bala, Oct 23 2019: (Start)
The n-th row polynomial is
R(n, x) = Sum_{k = 0..n} (-1)^k*binomial(n, k)*k! * binomial(-x, k).
These polynomials occur in series acceleration formulas for the constant
1/e = n! * Sum_{k >= 0} (-1)^k/(k!*R(n,k)*R(n,k+1)), n >= 0. (cf. A068985, A094816 and A137346). (End)
R(n, x) = KummerU[-n, 1 - n - x, 1]. - Peter Luschny, Oct 27 2019
Sum_{j=0..m} (-1)^(m-j) * Bell(n+j) * T(m,j) = m! * Sum_{k=0..n} binomial(k,m) * Stirling2(n,k). - Vaclav Kotesovec, Aug 06 2021
From Natalia L. Skirrow, Jun 11 2025: (Start)
G.f.: 2F0(1,y;x/(1-x)) / (1-x).
Polynomial for the n-th row is R(n,y) = 2F0(-n,y;-1).
Falling g.f. for n-th row: Sum_{k=0..n} a(n,k)*(y)_k = [x^0] 2F0(1,-n;-1/x) * (1+log(1/(1-x)))^y = [x^n] e^x * Gamma(n+1,x) * (1+log(1/(1-x)))^y, where (y)_k = y!/(y-k)! denotes the falling factorial. (End)

A086764 Triangle T(n, k), read by row, related to Euler's difference table A068106 (divide column k of A068106 by k!).

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 3, 2, 1, 9, 11, 7, 3, 1, 44, 53, 32, 13, 4, 1, 265, 309, 181, 71, 21, 5, 1, 1854, 2119, 1214, 465, 134, 31, 6, 1, 14833, 16687, 9403, 3539, 1001, 227, 43, 7, 1, 133496, 148329, 82508, 30637, 8544, 1909, 356, 57, 8, 1
Offset: 0

Views

Author

Philippe Deléham, Aug 02 2003

Keywords

Comments

The k-th column sequence, k >= 0, without leading zeros, enumerates the ways to distribute n beads, n >= 1, labeled differently from 1 to n, over a set of (unordered) necklaces, excluding necklaces with exactly one bead, and k+1 indistinguishable, ordered, fixed cords, each allowed to have any number of beads. Beadless necklaces as well as beadless cords each contribute a factor 1, hence for n=0 one has 1. See A000255 for the description of a fixed cord with beads. This comment derives from a family of recurrences found by Malin Sjodahl for a combinatorial problem for certain quark and gluon diagrams (Feb 27 2010). - Wolfdieter Lang, Jun 02 2010

Examples

			Formatted as a square array:
      1      3     7    13   21   31  43 57 ... A002061;
      2     11    32    71  134  227 356    ... A094792;
      9     53   181   465 1001 1909        ... A094793;
     44    309  1214  3539 8544             ... A094794;
    265   2119  9403 30637                  ... A023043;
   1854  16687 82508                        ... A023044;
  14833 148329                              ... A023045;
Formatted as a triangular array (mirror of A076731):
       1;
       0      1;
       1      1     1;
       2      3     2     1;
       9     11     7     3    1;
      44     53    32    13    4    1;
     265    309   181    71   21    5    1;
    1854   2119  1214   465  134   31    6   1;
   14833  16687  9403  3539 1001  227   43   7   1;
  133496 148329 82508 30637 8544 1909  356  57   8   1;
		

Crossrefs

Programs

  • Magma
    A086764:= func< n,k | (&+[(-1)^j*Binomial(n-k,j)*Factorial(n-j): j in [0..n]])/Factorial(k) >;
    [A086764(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 05 2023
    
  • Mathematica
    T[n_,k_]:=(1/k!)*Sum[(-1)^j*Binomial[n-k,j]*(n-j)!,{j,0,n}];Flatten[Table[T[n,k],{n,0,11},{k,0,n}]] (* Indranil Ghosh, Feb 20 2017 *)
    T[n_, k_] := (n!/k!) HypergeometricPFQ[{k-n},{-n},-1];
    Table[T[n,k], {n,0,9}, {k,0,n}] // Flatten (* Peter Luschny, Oct 05 2017 *)
  • SageMath
    def A086764(n,k): return sum((-1)^j*binomial(n-k,j)*factorial(n-j) for j in range(n+1))//factorial(k)
    flatten([[A086764(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 05 2023

Formula

T(n, n) = 1; T(n+1, n) = n.
T(n+2, n) = A002061(n+1) = n^2 + n + 1; T(n+3, n) = n^3 + 3*n^2 + 5*n + 2.
T(n, k) = (k + 1)*T(n, k + 1) - T(n-1, k); T(n, n) = 1; T(n, k) = 0, if k > n.
T(n, k) = (n-1)*T(n-1, k) + (n-k-1)*T(n-2, k).
k!*T(n, k) = A068106(n, k). [corrected by Georg Fischer, Aug 13 2022]
Sum_{k>=0} T(n, k) = A003470(n+1).
T(n, k) = (1/k!) * Sum_{j>=0} (-1)^j*binomial(n-k, j)*(n-j)!. - Philippe Deléham, Jun 13 2005
From Peter Bala, Aug 14 2008: (Start)
The following remarks all relate to the array read as a square array: e.g.f for column k: exp(-y)/(1-y)^(k+1); e.g.f. for array: exp(-y)/(1-x-y) = (1 + x + x^2 + x^3 + ...) + (x + 2*x^2 + 3*x^3 + 4*x^4 + ...)*y + (1 + 3*x + 7*x^2 + 13*x^3 + ...)*y^2/2! + ... .
This table is closely connected to the constant e. The row, column and diagonal entries of this table occur in series formulas for e.
Row n for n >= 2: e = n!*(1/T(n,0) + (-1)^n*[1/(1!*T(n,0)*T(n,1)) + 1/(2!*T(n,1)*T(n,2)) + 1/(3!*T(n,2)*T(n,3)) + ...]). For example, row 3 gives e = 6*(1/2 - 1/(1!*2*11) - 1/(2!*11*32) - 1/(3!*32*71) - ...). See A095000.
Column 0: e = 2 + Sum_{n>=2} (-1)^n*n!/(T(n,0)*T(n+1,0)) = 2 + 2!/(1*2) - 3 !/(2*9) + 4!/(9*44) - ... .
Column k, k >= 1: e = (1 + 1/1! + 1/2! + ... + 1/k!) + 1/k!*Sum_{n >= 0} (-1)^n*n!/(T(n,k)*T(n+1,k)). For example, column 3 gives e = 8/3 + 1/6*(1/(1*3) - 1/(3*13) + 2/(13*71) - 6/(71*465) + ...).
Main diagonal: e = 1 + 2*(1/(1*1) - 1/(1*7) + 1/(7*71) - 1/(71*1001) + ...).
First subdiagonal: e = 8/3 + 5/(3*32) - 7/(32*465) + 9/(465*8544) - ... .
Second subdiagonal: e = 2*(1 + 2^2/(1*11) - 3^2/(11*181) + 4^2/(181*3539) - ...). See A143413.
Third subdiagonal: e = 3 - (2*3*5)/(2*53) + (3*4*7)/(53*1214) - (4*5*9)/(1214*30637) + ... .
For the corresponding results for the constants 1/e, sqrt(e) and 1/sqrt(e) see A143409, A143410 and A143411 respectively. For other arrays similarly related to constants see A008288 (for log(2)), A108625 (for zeta(2)) and A143007 (for zeta(3)). (End)
G.f. for column k is hypergeom([1,k+1],[],x/(x+1))/(x+1). - Mark van Hoeij, Nov 07 2011
T(n, k) = (n!/k!)*hypergeom([k-n], [-n], -1). - Peter Luschny, Oct 05 2017

Extensions

More terms from David Wasserman, Mar 28 2005
Additional comments from Zerinvary Lajos, Mar 30 2006
Edited by N. J. A. Sloane, Sep 24 2011

A082030 Expansion of e.g.f. exp(x)/(1-x)^3.

Original entry on oeis.org

1, 4, 19, 106, 685, 5056, 42079, 390454, 4000441, 44881660, 547457611, 7215589954, 102211815589, 1548801969976, 25000879886935, 428332610385166, 7763306399014129, 148412806214119924, 2984692721713278211
Offset: 0

Views

Author

Paul Barry, Apr 02 2003

Keywords

Comments

Binomial transform of A001710 (when preceded by 0).
From Peter Bala, Jul 10 2008: (Start)
a(n) is a difference divisibility sequence, that is, the difference a(n) - a(m) is divisible by n - m for all n and m (provided n is not equal to m). See A000522 for further properties of difference divisibility sequences.
Recurrence relation: a(0) = 1, a(1) = 4, a(n) = (n+3)*a(n-1) - (n-1)*a(n-2) for n >= 2. The sequence b(n) := n!*(n^2+n+1) = A001564(n) satisfies the same recurrence with the initial conditions b(0) = 1, b(1) = 3. This leads to the finite continued fraction expansion a(n)/b(n) = 1/(1-1/(4-1/(5-2/(6-...-(n-1)/(n+3))))).
Lim_{n -> infinity} a(n)/b(n) = e/2 = 1/(1-1/(4-1/(5-2/(6-...-n/((n+4)-...))))).
a(n) = n!*(n^2+n+1)*Sum_{k = 0..n} 1/(k!*(k^4+k^2+1)) since the rhs satisfies the above recurrence with the same initial conditions. Hence e = 2*Sum_{k >= 0} 1/(k!*(k^4+k^2+1)).
For sequences satisfying the more general recurrence a(n) = (n+1+r)*a(n-1) - (n-1)*a(n-2), which yield series acceleration formulas for e/r! that involve the Poisson-Charlier polynomials c_r(-n;-1), refer to A000522 (r = 0), A001339 (r=1), A095000 (r=3) and A095177 (r=4). (End)

Crossrefs

Programs

  • Maple
    a := n -> hypergeom([3, -n], [], -1); seq(simplify(a(n)), n=0..18); # Peter Luschny, Sep 20 2014
    seq(simplify(KummerU(-n, -n - 2, 1)), n = 0..20); # Peter Luschny, May 10 2022
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, (n (n^2 + n + 1) a[n-1] + 1)/(n^2 - n + 1)];
    a /@ Range[0, 18] (* Jean-François Alcover, Oct 16 2019 *)
    With[{nn=20},CoefficientList[Series[Exp[x]/(1-x)^3,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 07 2022 *)
  • PARI
    {a(n)=n!*polcoeff(exp(x+x*O(x^n))/(1-x)^3,n)} /* Paul D. Hanna, Sep 30 2011 */
    
  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)*(k+2)!/2)} /* Paul D. Hanna, Sep 30 2011 */
    
  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)*(k+1)^(k+1)*(-k)^(n-k))} /* Paul D. Hanna, Sep 30 2011 */
    
  • PARI
    {a(n)=polcoeff(sum(m=0,n,(m+1)^(m+1)*x^m/(1+m*x)^(m+1)+x*O(x^n)),n)} /* Paul D. Hanna, Sep 30 2011 */

Formula

E.g.f.: exp(x)/(1-x)^3.
a(n) = A001340(n)/2.
a(n) = Sum_{k=0..n} A046716(n, k)*3^(n-k). - Philippe Deléham, Jun 12 2004
a(n) = Sum_{k=0..n} binomial(n, k)*(k+2)!/2. - Philippe Deléham, Jun 19 2004
a(n) = Sum_{k=0..n} binomial(n,k)*(k+1)^(k+1)*(-k)^(n-k). - Paul D. Hanna, Sep 30 2011
O.g.f.: Sum_{n>=0} (n+1)^(n+1)*x^n/(1+n*x)^(n+1) = Sum_{n>=0} a(n)*x^n. - Paul D. Hanna, Sep 30 2011
Conjecture: a(n) + (-n-3)*a(n-1) + (n-1)*a(n-2) = 0. - R. J. Mathar, Dec 03 2012
G.f.: (1-x)/(2*x*Q(0)) - 1/2/x, where Q(k) = 1 - x - x*(k+2)/(1 - x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 22 2013
a(n) = hypergeometric([3, -n], [], -1). - Peter Luschny, Sep 20 2014
First-order recurrence: P(n-1)*a(n) = n*P(n)*a(n-1) + 1 with a(0) = 1, where P(n) = n^2 + n + 1 = A001564(n). - Peter Bala, Jul 26 2021
a(n) = KummerU(-n, -n - 2, 1). - Peter Luschny, May 10 2022

A095177 E.g.f.: exp(x)/(1-x)^5.

Original entry on oeis.org

1, 6, 41, 316, 2721, 25946, 271801, 3105936, 38474561, 513796366, 7360674441, 112632827396, 1833790646881, 31656637715106, 577636838177561, 11109543835539736, 224635867973671041, 4764236394052127126
Offset: 0

Views

Author

Philippe Deléham, Jun 20 2004

Keywords

Comments

Sum_{k = 0..n} A094816(n,k)*x^k give A000522(n), A001339(n), A082030(n), A095000(n) for x = 1, 2, 3, 4 respectively.
From Peter Bala, Jul 10 2008: (Start)
a(n) is a difference divisibility sequence, that is, the difference a(n) - a(m) is divisible by n - m for all n and m (provided n is not equal to m). See A000522 for further properties of difference divisibility sequences.
Recurrence relation: a(0) = 1, a(1) = 6, a(n) = (n+5)*a(n-1) - (n-1)*a(n-2) for n >= 2. Let p_4(n) = n^4+2*n^3+5*n^2+1 = n^(4)-4*n^(3)+6*n^(2)-4*n^(1)+1, where n^(k) denotes the rising factorial n*(n+1)*...*(n+k-1). The polynomial p_4(n) is an example of a Poisson-Charlier polynomial c_k(x;a) at k = 4, x = -n and a = -1.
The sequence b(n) := n!*p_4(n+1) = A001688(n) satisfies the same recurrence as a(n) but with the initial conditions b(0) = 9, b(1) = 53. This leads to the finite continued fraction expansion expansion a(n)/b(n) = 1/(9-1/(6-1/(7-2/(8-...-(n-1)/(n+5))))).
Lim n -> infinity a(n)/b(n) = e/24 = 1/(9-1/(6-1/(7-2/(8-...-n/((n+6)-...))))).
a(n) = b(n) * sum {k = 0..n} 1/(k!*p_4(k)*p_4(k+1)) - since the rhs satisfies the above recurrence with the same initial conditions. Hence e = 24 * sum {k = 0..inf} 1/(k!*p_4(k)p_4(k+1)).
For sequences satisfying the more general recurrence a(n) = (n+1+r)*a(n-1) - (n-1)*a(n-2), which yield series acceleration formulas for e/r! that involve the Poisson-Charlier polynomials c_r(-n;-1), refer to A000522 (r = 0), A001339 (r=1), A082030 (r=2), A095000 (r=3). (End)

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Exp[x]/(1-x)^5, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 21 2013 *)
    Table[HypergeometricPFQ[{5, -n}, {}, -1], {n, 0, 20}] (* Benedict W. J. Irwin, May 27 2016 *)
  • PARI
    a(n) = sum(k=0,n, binomial(n, k)*(k+4)!/4! ); \\ Joerg Arndt, Apr 22 2013

Formula

a(n) = Sum_{k = 0..n} A094816(n, k)*5^k.
a(n) = Sum_{k=0..n} binomial(n, k)*(k+4)!/4!.
G.f.: 1/Q(0), where Q(k) = 1 - x - x*(k+5)/(1 - x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 22 2013
a(n) ~ n! *exp(1)*n^4/24. - Vaclav Kotesovec, Jun 21 2013
a(n) = 2F0(5,-n;;-1). - Benedict W. J. Irwin, May 27 2016
First-order recurrence: P(n-1)*a(n) = n*P(n)*a(n-1) + 1 with a(0) = 1, where P(n) = n^4 + 6*n^3 + 17*n^2 + 20*n + 9 = A094793(n). - Peter Bala, Jul 26 2021

A096307 E.g.f.: exp(x)/(1-x)^6.

Original entry on oeis.org

1, 7, 55, 481, 4645, 49171, 566827, 7073725, 95064361, 1369375615, 21054430591, 344231563897, 5964569413645, 109196040092491, 2106381399472435, 42705264827626261, 907920105215691217, 20198878182718877815
Offset: 0

Views

Author

Philippe Deléham, Jun 26 2004

Keywords

Comments

Sum_{k = 0..n} A094816(n,k)*x^k give A000522(n), A001339(n), A082030(n), A095000(n), A095177(n) for x = 1, 2, 3, 4, 5 respectively.

Crossrefs

Programs

  • Mathematica
    Table[HypergeometricPFQ[{6, -n}, {}, -1], {n, 0, 20}] (* Benedict W. J. Irwin, May 27 2016 *)
    With[{nn = 250}, CoefficientList[Series[Exp[x]/(1 - x)^6, {x, 0, nn}], x] Range[0, nn]!] (* G. C. Greubel, May 27 2016 *)

Formula

a(n) = Sum_{k = 0..n} A094916(n, k)*6^k.
a(n) = Sum_{k = 0..n} binomial(n, k)*(k+5)!/5!.
a(n) = 2F0(6,-n;;-1). - Benedict W. J. Irwin, May 27 2016
From Peter Bala, Jul 25 2021: (Start)
a(n) = (n+6)*a(n-1) - (n-1)*a(n-2) with a(0) = 1 and a(1) = 7. Cf. A001689.
First-order recurrence: P(n-1)*a(n) = n*P(n)*a(n-1) - 1 with a(0) = 1, where P(n) = n^5 + 10*n^4 + 45*n^3 + 100*n^2 + 109*n + 44 = A094794(n).
(End)

A143409 Square array read by antidiagonals: form the Euler-Seidel matrix for the sequence {k!} and then divide column k by k!.

Original entry on oeis.org

1, 2, 1, 5, 3, 1, 16, 11, 4, 1, 65, 49, 19, 5, 1, 326, 261, 106, 29, 6, 1, 1957, 1631, 685, 193, 41, 7, 1, 13700, 11743, 5056, 1457, 316, 55, 8, 1, 109601, 95901, 42079, 12341, 2721, 481, 71, 9, 1, 986410, 876809, 390454, 116125, 25946, 4645, 694, 89, 10, 1
Offset: 0

Views

Author

Peter Bala, Aug 14 2008

Keywords

Comments

The Euler-Seidel matrix for the sequence {k!} is array A076571 read as a square, whose k-th column entries have a common factor of k!. Removing these common factors gives the current table.
This table is closely connected to the constant 1/e. The row, column and diagonal entries of this table occur in series acceleration formulas for 1/e.
For a similar table based on the differences of the sequence {k!} and related to the constant e, see A086764. For other arrays similarly related to constants see A143410 (for sqrt(e)), A143411 (for 1/sqrt(e)), A008288 (for log(2)), A108625 (for zeta(2)) and A143007 (for zeta(3)).

Examples

			The Euler-Seidel matrix for the sequence {k!} begins
==============================================
n\k|.....0.....1.....2.....3.....4.....5.....6
==============================================
0..|.....1.....1.....2.....6....24...120...720
1..|.....2.....3.....8....30...144...840
2..|.....5....11....38...174...984
3..|....16....49...212..1158
4..|....65...261..1370
5..|...326..1631
6..|..1957
...
Dividing the k-th column by k! gives
==============================================
n\k|.....0.....1.....2.....3.....4.....5.....6
==============================================
0..|.....1.....1.....1.....1.....1.....1.....1
1..|.....2.....3.....4.....5.....6.....7
2..|.....5....11....19....29....41
3..|....16....49...106...193
4..|....65...261...685
5..|...326..1631
6..|..1957
...
Examples of series formula for 1/e:
Row 2: 1/e = 2*(1/5 - 1/(1!*5*11) + 1/(2!*11*19) - 1/(3!*19*29) + ...).
Column 4: 24/e = 9 - (0!/(1*6) + 1!/(6*41) + 2!/(41*316) + ...).
...
Displayed as a triangle:
0 |     1
1 |     2,     1
2 |     5,     3,    1
3 |    16,    11,    4,    1
4 |    65,    49,   19,    5,   1
5 |   326,   261,  106,   29,   6,  1
6 |  1957,  1631,  685,  193,  41,  7, 1
7 | 13700, 11743, 5056, 1457, 316, 55, 8, 1
		

Crossrefs

Cf. A008288, A076571, A086764, A108625, A143007, A143410, A143411, A143413, A001517 (main diagonal), A028387 (row 2), A000522 (column 0), A001339 (column 1), A082030 (column 2), A095000 (column 3), A095177 (column 4).

Programs

  • Maple
    T := (n, k) -> 1/k!*add(binomial(n,j)*(k+j)!, j = 0..n):
    for n from 0 to 9 do seq(T(n, k), k = 0..9) end do;
    # Alternate:
    T:= proc(n,k) option remember;
      if n = 0 then return 1 fi;
      (n+k)*procname(n-1,k) + procname(n-1,k-1);
    end proc:
    seq(seq(T(s-n,n),n=0..s),s=0..10); # Robert Israel, Jul 07 2017
    # Or:
    A143409 := (n,k) -> hypergeom([k+1, k-n], [], -1):
    seq(seq(simplify(A143409(n,k)),k=0..n),n=0..9); # Peter Luschny, Oct 05 2017
  • Mathematica
    T[n_, k_] := HypergeometricPFQ[{k+1,k-n}, {}, -1];
    Table[T[n,k], {n,0,9}, {k,0,n}] // Flatten (* Peter Luschny, Oct 05 2017 *)

Formula

T(n,k) = (1/k!)*Sum_{j = 0..n} binomial(n,j)*(k+j)!.
T(n,k) = ((n+k)!/k!)*Num_Pade(n,k), where Num_Pade(n,k) denotes the numerator of the Padé approximation for the function exp(x) of degree (n,k) evaluated at x = 1.
Recurrence relations:
T(n,k) = T(n-1,k) + (k+1)*T(n-1,k+1);
T(n,k) = (n+k)*T(n-1,k) + T(n-1,k-1).
E.g.f. for column k: exp(y)/(1-y)^(k+1).
E.g.f. for array: exp(y)/(1-x-y) = (1 + x + x^2 + ...) + (2 + 3*x + 4*x^2 + ...)*y + (5 + 11*x + 19*x^2 + ...)*y^2/2! + ... .
Row n lists the values of the Poisson-Charlier polynomial x^(n) + C(n,1)*x^(n-1) + C(n,2)*x^(n-2) + ... + C(n,n) for x = 1,2,3,..., where x^(m) denotes the rising factorial x*(x+1)*...*(x+m-1).
Main diagonal is A001517.
Series formulas for 1/e:
Row n: 1/e = n!*[1/T(n,0) - 1/(1!*T(n,0)*T(n,1)) + 1/(2!*T(n,1)*T(n,2)) - 1/(3!*T(n,2)*T(n,3)) + ...].
Column k: k!/e = A000166(k) + (-1)^(k+1)*[0!/(T(0,k)*T(1,k)) + 1!/(T(1,k)*T(2,k)) + 2!/(T(2,k)*T(3,k)) + ...].
Main diagonal: 1/e = 1 - 2*Sum_{n>=0} (-1)^n/(T(n,n)*T(n+1,n+1)) = 1 - 2*[1/(1*3) - 1/(3*19) + 1/(19*193) - ...].
Second subdiagonal: 1/e = 2*(1^2/(1*5) - 2^2/(5*49) + 3^2/(49*685) - ...).
Compare with A143413.
From Peter Luschny, Oct 05 2017: (Start)
T(n, k) = hypergeom([k+1, k-n], [], -1).
When seen as a triangular array then the row sums are A273596 and the alternating row sums are A003470. (End)

A269953 Triangle read by rows: T(n, k) = Sum_{j=0..n} binomial(-j-1, -n-1)*S1(j, k) where S1 are the Stirling cycle numbers A132393.

Original entry on oeis.org

1, -1, 1, 1, -1, 1, -1, 2, 0, 1, 1, 0, 5, 2, 1, -1, 9, 15, 15, 5, 1, 1, 35, 94, 85, 40, 9, 1, -1, 230, 595, 609, 315, 91, 14, 1, 1, 1624, 4458, 4844, 2779, 924, 182, 20, 1, -1, 13209, 37590, 43238, 26817, 9975, 2310, 330, 27, 1
Offset: 0

Views

Author

Peter Luschny, Apr 12 2016

Keywords

Comments

Replacing the Stirling cycle numbers in the definition by the Stirling set numbers leads to A105794.
From Wolfdieter Lang, Jun 19 2017: (Start)
The triangle t(n, k) = (-1)^(n-k)*T(n, k) is the matrix product of P = A007318 (Pascal) and s1 = A048994 (signed Stirling1). This is Sheffer (exp(t), log(1+t)).
The present triangle T is therefore the Sheffer triangle (exp(-t), -log(1-t)). Note that P is Sheffer (exp(t), t) (of the Appell type). (End)
The triangle T(n,k) is a representative of the parametric family of triangles T(m,n,k), whose columns are the coefficients of the standard expansion of the function f(x) = (-log(1-x))^(k)*exp(-m*x)/k! for the case m=1. See A381082. - Igor Victorovich Statsenko, Feb 14 2025

Examples

			Triangle starts:
   1;
  -1,  1;
   1, -1,  1;
  -1,  2,  0,  1;
   1,  0,  5,  2,  1;
  -1,  9, 15, 15,  5,  1;
   1, 35, 94, 85, 40,  9,  1.
		

Crossrefs

Columns k=0..4 give A033999, A002741, A381064, A381065, A381066.
Cf. A000166 (row sums), A080956 (diag n,n-1).
KummerU(-n,1-n-x,z): this sequence (z=-1), A094816 (z=1), |A137346| (z=2), A327997 (z=3).

Programs

  • Maple
    A269953 := (n,k) -> add(binomial(-j-1,-n-1)*abs(Stirling1(j,k)), j=0..n):
    seq(print(seq(A269953(n, k), k=0..n)), n=0..9);
    # Alternative:
    egf := exp(-t)*(1-t)^(-x): ser := series(egf, t, 12): p := n -> coeff(ser, t, n):
    seq(n!*seq(coeff(p(n), x, k), k=0..n), n=0..9); # Peter Luschny, Oct 28 2019
  • Mathematica
    Flatten[Table[Sum[Binomial[-j-1,-n-1] Abs[StirlingS1[j,k]], {j,0,n}], {n,0,9},{k,0,n}]]
    (* Or: *)
    p [n_] := HypergeometricU[-n, 1 - n - x, -1];
    Table[CoefficientList[p[n], x], {n, 0, 9}] (* Peter Luschny, Oct 28 2019 *)

Formula

From Wolfdieter Lang, Jun 19 2017: (Start)
E.g.f. of row polynomials R(n, x) = Sum_{k=0..n} T(n,k)*x^k: exp(-t)/(1 - t)^x.
E.g.f. of column k sequence: exp(-x)*(-log(1-x))^k/k!, k >= 0. (End)
From Peter Bala, Oct 26 2019: (Start)
Let R(n, x) = (-1)^n*Sum_{k >= 0} binomial(n,k)*k!* binomial(-x,k) the n-th row polynomial of this triangle.
R(n, x) = c_n(-x;-1), where c_n(x;a) denotes the n-th Poisson Charlier polynomial.
The series representation e = Sum_{k >= 0} 1/k! is the case n = 0 of the more general result e = n!*Sum_{k >= 0} 1/(k!*R(n,k)*R(n,k+1)), n = 0,2,3,4,.... (End)
R(n, x) = KummerU(-n, 1-n-x, -1). - Peter Luschny, Oct 28 2019

A096341 E.g.f.: exp(x)/(1-x)^7.

Original entry on oeis.org

1, 8, 71, 694, 7421, 86276, 1084483, 14665106, 212385209, 3280842496, 53862855551, 936722974958, 17205245113141, 332864226563324, 6766480571358971, 144202473398010826, 3215159679583864433
Offset: 0

Views

Author

Philippe Deléham, Jun 28 2004

Keywords

Comments

Sum_{k=0..n} A094816(n,k)*x^k give A000522(n), A001339(n), A082030(n), A095000(n), A095177(n), A096307(n) for x = 1, 2, 3, 4, 5, 6 respectively.

Crossrefs

Cf. E.g.f. exp(x)/(1-x)^k: A000522 (k = 1), A001339 (k = 2), A082030 (k = 3), A095000 (k = 4), A095177 (k = 5), A096307 (k = 6).

Programs

  • Mathematica
    Table[HypergeometricPFQ[{7, -n}, {}, -1], {n, 0, 20}] (* Benedict W. J. Irwin, May 27 2016 *)
    With[{nn = 250}, CoefficientList[Series[Exp[x]/(1 - x)^7, {x, 0, nn}], x] Range[0, nn]!] (* G. C. Greubel, May 27 2016 *)

Formula

a(n) = Sum_{k = 0..n} A094816(n, k)*7^k.
a(n) = Sum_{k = 0..n} binomial(n, k)*(k+6)!/6!.
a(n) = 2F0(7,-n;;-1). - Benedict W. J. Irwin, May 27 2016
From Peter Bala, Jul 26 2021: (Start)
a(n) = (n+7)*a(n-1) - (n-1)*a(n-2) with a(0) = 1 and a(1) = 8.
First-order recurrence: P(n-1)*a(n) = n*P(n)*a(n-1) + 1 with a(0) = 1, where P(n) = n^6 + 15*n^5 + 100*n^4 + 355*n^3 + 694*n^2 + 689*n + 265 = A094795(n).
(End)
Showing 1-10 of 13 results. Next