A009628
Expansion of e.g.f.: sinh(x)/(1+x).
Original entry on oeis.org
0, 1, -2, 7, -28, 141, -846, 5923, -47384, 426457, -4264570, 46910271, -562923252, 7318002277, -102452031878, 1536780478171, -24588487650736, 418004290062513, -7524077221125234, 142957467201379447, -2859149344027588940, 60042136224579367741
Offset: 0
-
G(x):= sinh(x)/(1+x): f[0]:=G(x): for n from 1 to 21 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..20); # Zerinvary Lajos, Apr 03 2009
-
a[n_] := (-1)^n (Exp[-1] Gamma[1 + n, -1] - Exp[1] Gamma[1 + n, 1])/2;
Table[a[n], {n, 0, 20}] (* Peter Luschny, Dec 18 2017 *)
With[{nn=30},CoefficientList[Series[Sinh[x]/(1+x),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 19 2023 *)
-
a(n) = n!*polcoeff((sinh(x)/(1+x) + x * O(x^n)), n) \\ Charles R Greathouse IV, Sep 09 2016
-
x='x+O('x^99); concat([0], Vec(serlaplace(sinh(x)/(1+x)))) \\ Altug Alkan, Dec 18 2017
-
def A009628(n)
a = 0
(0..n).map{|i| a = -i * a + i % 2}
end # Seiichi Manyama, Sep 09 2016
A051397
a(n) = (2*n-2)*(2*n-1)*a(n-1)+1.
Original entry on oeis.org
0, 1, 7, 141, 5923, 426457, 46910271, 7318002277, 1536780478171, 418004290062513, 142957467201379447, 60042136224579367741, 30381320929637160076947, 18228792557782296046168201, 12796612375563171824410077103, 10390849248957295521420982607637
Offset: 0
- Harvey P. Dale, Table of n, a(n) for n = 0..225
- Romeo Mestrovic, Variations of Kurepa's left factorial hypothesis, arXiv preprint arXiv:1312.7037 [math.NT], 2013.
- Romeo Mestrovic, The Kurepa-Vandermonde matrices arising from Kurepa's left factorial hypothesis, Filomat 29:10 (2015), 2207-2215; DOI 10.2298/FIL1510207M.
- Aleksandar Petojevic, On Kurepa's Hypothesis for the Left Factorial, FILOMAT (Nis), 12:1 (1998), p. 29-37.
-
nxt[{n_,a_}]:={n+1,(2(n+1)-2)(2(n+1)-1)a+1}; Transpose[NestList[nxt,{0,0},20]][[2]] (* Harvey P. Dale, Jun 13 2016 *)
A330044
Expansion of e.g.f. exp(x) / (1 - x^3).
Original entry on oeis.org
1, 1, 1, 7, 25, 61, 841, 5251, 20497, 423865, 3780721, 20292031, 559501801, 6487717237, 44317795705, 1527439916731, 21798729916321, 180816606476401, 7478345832314977, 126737815733490295, 1236785588298582841, 59677199741873516461, 1171057417377450325801
Offset: 0
-
[n le 3 select 1 else 1 + 6*Binomial(n-1,3)*Self(n-3): n in [1..41]]; // G. C. Greubel, Dec 05 2021
-
nmax = 22; CoefficientList[Series[Exp[x]/(1 - x^3), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[n!/(n - 3 k)!, {k, 0, Floor[n/3]}], {n, 0, 22}]
-
[sum(factorial(3*k)*binomial(n, 3*k) for k in (0..n//3)) for n in (0..40)] # G. C. Greubel, Dec 05 2021
A330045
Expansion of e.g.f. exp(x) / (1 - x^4).
Original entry on oeis.org
1, 1, 1, 1, 25, 121, 361, 841, 42001, 365905, 1819441, 6660721, 498971881, 6278929801, 43710250585, 218205219961, 21795091762081, 358652470233121, 3210080802962401, 20298322381652065, 2534333270094778681, 51516840824285500441, 563561785768079119561
Offset: 0
-
nmax = 22; CoefficientList[Series[Exp[x]/(1 - x^4), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[n!/(n - 4 k)!, {k, 0, Floor[n/4]}], {n, 0, 22}]
A002747
Logarithmic numbers.
Original entry on oeis.org
1, -2, 9, -28, 185, -846, 7777, -47384, 559953, -4264570, 61594841, -562923252, 9608795209, -102452031878, 2017846993905, -24588487650736, 548854382342177, -7524077221125234, 187708198761024553, -2859149344027588940, 78837443479630312281, -1320926996940746090302
Offset: 1
- J. M. Gandhi, On logarithmic numbers, Math. Student, 31 (1963), 73-83.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
a:= proc(n) a(n):= n*`if`(n<2, n, (n-1)*a(n-2)-(-1)^n) end:
seq(a(n), n=1..25); # Alois P. Heinz, Jul 10 2013
-
egf = x/Exp[x]/(1-x^2); a[n_] := SeriesCoefficient[egf, {x, 0, n}]*n!; Table[a[n], {n, 1, 22}] (* Jean-François Alcover, Jan 17 2014, after Vladeta Jovovic *)
a[n_] := (Exp[-1] Gamma[1 + n, -1] - (-1)^n Exp[1] Gamma[1 + n, 1])/2;
Table[a[n], {n, 1, 22}] (* Peter Luschny, Dec 18 2017 *)
-
a(n) = (-1)^(n+1)*sum(k=0, n, binomial(n, k)*k!*(1-(-1)^k)/2); \\ Michel Marcus, Jan 13 2022
A337749
a(n) = n! * Sum_{k=0..floor(n/2)} (-1)^k / (n-2*k)!.
Original entry on oeis.org
1, 1, -1, -5, 13, 101, -389, -4241, 21785, 305353, -1960649, -33588829, 258805669, 5239857325, -47102631757, -1100370038249, 11304631621681, 299300650403729, -3459217276234385, -102360822438075317, 1314502564969066301, 42991545423991633141, -607300185015708631061
Offset: 0
-
Table[n! Sum[(-1)^k/(n - 2 k)!, {k, 0, Floor[n/2]}], {n, 0, 22}]
nmax = 22; CoefficientList[Series[Exp[x]/(1 + x^2), {x, 0, nmax}], x] Range[0, nmax]!
(* alternative code *)
f[x_]:=I*(ExpIntegralE[-x,I]*E^I-ExpIntegralE[-x,-I]*E^(-I))/2
FunctionExpand[Array[f,20,0]] (* Velin Yanev, Oct 13 2021 *)
-
a(n) = n!*sum(k=0, n\2, (-1)^k / (n-2*k)!); \\ Michel Marcus, Sep 18 2020
A291484
Expansion of e.g.f. arctanh(x)*exp(x).
Original entry on oeis.org
0, 1, 2, 5, 12, 49, 190, 1301, 7224, 69441, 495898, 6095429, 53005700, 792143793, 8110146070, 142633278997, 1679413757168, 33964965659649, 451969255722162, 10331348137881349, 153288815339260796, 3907452790559751857, 63949589015139119598, 1798373345567005989781, 32179694275204166066728
Offset: 0
E.g.f.: A(x) = x/1! + 2*x^2/2! + 5*x^3/3! + 12*x^4/4! + 49*x^5/5! + ...
-
a:=series(arctanh(x)*exp(x),x=0,25): seq(n!*coeff(a,x,n),n=0..24); # Paolo P. Lava, Mar 27 2019
-
nmax = 24; Range[0, nmax]! CoefficientList[Series[ArcTanh[x] Exp[x], {x, 0, nmax}], x]
nmax = 24; Range[0, nmax]! CoefficientList[Series[Log[(1 + x)/(1 - x)] Exp[x]/2, {x, 0, nmax}], x]
nmax = 24; Range[0, nmax]! CoefficientList[Series[Sum[x^(2 k + 1)/(2 k + 1), {k, 0, Infinity}] Exp[x], {x, 0, nmax}], x]
Table[Sum[Binomial[n+1,2k+1](n-2k)/(n+1) (2 k)!, {k,0,n/2}],{n,0,12}] (* Emanuele Munarini, Dec 16 2017 *)
-
makelist(sum(binomial(n+1,2*k+1)*(n-2*k)/(n+1)*(2*k)!,k,0,floor(n/2)),n,0,12); /* Emanuele Munarini, Dec 16 2017 */
-
first(n) = x='x+O('x^n); Vec(serlaplace(atanh(x)*exp(x)), -n) \\ Iain Fox, Dec 16 2017
Original entry on oeis.org
1, 2, 5, 16, 89, 686, 5917, 54860, 588401, 7370074, 103522421, 1573237832, 25869057865, 462768222086, 8965777751309, 186025937645956, 4106375449878497, 96241703493486770, 2390797380938894821, 62730027061416412544
Offset: 0
-
W := proc(n, m) local v, s, h; v := 0;
for s from 0 to m do
if 0 = (m - s) mod 4 then
h := (m - s)/4;
v := v + binomial(n - s - 3*h, h)/s!;
end if; end do; n!*v; end proc;
seq(add(W(n1, m1), m1 = 0 .. n1), n1 = 0 .. 35);
-
Table[Apply[Plus, CoefficientList[Expand[t^n*n!*SeriesCoefficient[Series[Exp[t*x]/( 1 - x/t - t^4*x^4), {x, 0, 50}], n]], t]], {n, 0, 40}]; (* Program due to Roger L. Bagula from A158777 *)
A114633
a(n) = (n+1)*(n+2)/2 * Sum_{k=0..floor(n/2)} n!/(n-2*k)!.
Original entry on oeis.org
1, 3, 18, 70, 555, 2961, 31108, 213228, 2799765, 23455135, 369569046, 3659001138, 67261566463, 768390239085, 16142775951240, 209002145031256, 4939689441079593, 71478733600689723, 1877081987610245530, 30021068112289683870, 867211878275933435091, 15190660464818580038473
Offset: 0
-
a:= n-> (n+1)*(n+2)/2*sum(n!/(n-2*k)!,k=0..floor(n/2)): seq(a(n), n=0..20);
-
Rest[Rest[With[{nn=25}, CoefficientList[Series[Exp[x]/(1 - x^2)(x^2/2), {x, 0, nn}], x] Range[0, nn]!]]] (* Vincenzo Librandi, Sep 03 2017 *)
A195326
Numerators of fractions leading to e - 1/e (A174548).
Original entry on oeis.org
0, 2, 2, 7, 7, 47, 47, 5923, 5923, 426457, 426457, 15636757, 15636757, 7318002277, 7318002277, 1536780478171, 1536780478171, 603180793741, 603180793741, 142957467201379447, 142957467201379447
Offset: 0
a(0) = 1 - 1;
a(1) = 2 - 0;
a(2) = 5/2 - 1/2.
-
taylExp1 := proc(n)
add(1/j!,j=0..n) ;
end proc:
A000255 := proc(n)
if n <=1 then
1;
else
n*procname(n-1)+(n-1)*procname(n-2) ;
end if;
end proc:
A001048 := proc(n)
n!+(n-1)! ;
end proc:
A195326 := proc(n)
if n = 0 then
0;
elif n =1 then
2;
else
taylExp1(n) -A000255(n-2)/A001048(n-1);
end if;
numer(%);
end proc:
seq(A195326(n),n=0..20) ; # R. J. Mathar, Oct 14 2011
Material meant to be placed in other sequences removed by
R. J. Mathar, Oct 14 2011
Showing 1-10 of 13 results.
Comments