cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 288 results. Next

A142995 a(0) = 0, a(1) = 1, a(n+1) = (2*n^2 + 2*n + 3)*a(n) - n^4*a(n-1), n >= 1.

Original entry on oeis.org

0, 1, 7, 89, 1836, 56164, 2390832, 135213840, 9809203968, 888117094656, 98167241088000, 13010123816064000, 2036436482119680000, 371699564417796096000, 78251077775510986752000
Offset: 0

Views

Author

Peter Bala, Jul 18 2008

Keywords

Comments

This is the case m = 1 of the general recurrence a(0) = 0, a(1) = 1, a(n+1) = (2*n^2 + 2*n + m^2 + m + 1)*a(n) - n^4*a(n-1) (we suppress the dependence of a(n) on m), which arises when accelerating the convergence of the series Sum_{k>=1} 1/k^2 for the constant zeta(2). For other cases see A001819 (m=0), A142996 (m=2), A142997 (m=3) and A142998 (m=4).
The solution to the general recurrence may be expressed as a sum: a(n) = n!^2*p_m(n)*Sum_{k = 1..n} 1/(k^2*p_m(k-1)*p_m(k)), where p_m(x) := Sum_{k = 0..m} C(m,k)^2*C(x+k,m) = Sum_{k = 0..m} C(m,k)*C(m+k,k)*C(x,k) is the Ehrhart polynomial of the polytope formed from the convex hull of a root system of type A_m (equivalently, the polynomial that generates the crystal ball sequence for the A_m lattice [Bacher et al.]).
The first few are p_0(x) = 1, p_1(x) = 2*x + 1, p_2(x) = 3*x^2 + 3*x + 1 and p_3(x) = (10*x^3 + 15*x^2 + 11*x + 3)/3. The o.g.f. for the p_m(x) is ((1-t^2)^x/(1-t)^(2x+1))*Legendre_P(x,(1+t^2)/(1-t^2)) = 1 + (2*x+1)*t + (3*x^2+3*x+1)*t^2 + ... [Gogin & Hirvensalo, Theorem 1 with N = -1].
The polynomial p_m(x) is the unique polynomial solution of the difference equation (x+1)^2*f(x+1) + x^2*f(x-1) = (2*x^2 + 2*x + m^2 + m + 1)*f(x), normalized so that f(0) = 1. These polynomials have their zeros on the vertical line Re x = -1/2 in the complex plane; that is, the polynomials p_m(x-1), m = 1,2,3,..., satisfy a Riemann hypothesis (adapt the proof of the lemma on p. 4 of [BUMP et al.]).
The general recurrence in the first paragraph above has a second solution b(n) = n!^2*p_m(n) with initial conditions b(0) = 1, b(1) = m^2 + m + 1. Hence the behavior of a(n) for large n is given by lim n -> infinity a(n)/b(n) = Sum_{k>=1} 1/(k^2*p_m(k-1)*p_m(k)) = 1/((m^2 + m + 1) - 1^4/((m^2 + m + 5) - 2^4/((m^2 + m + 13) - ... - n^4/((2*n^2 + 2*n + m^2 + m + 1) - ...)))) = 2*Sum_{k>=1} (-1)^(k+1)/(m+k)^2. The final equality follows from a result of Ramanujan; see [Berndt, Chapter 12, Corollary to Entry 31] (replace x by 2x+1 in the corollary and apply Entry 14).
For related results see A142999. For corresponding results for the constants e, log(2) and zeta(3) see A000522, A142979 and A143003 respectively.

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag.

Crossrefs

Cf. A000522, A001819, A003215 (A_2 lattice), A005902 (A_3 lattice), A008384 (A_4 lattice), A008386 (A_5 lattice), A108625, A142979, A142996, A142997, A142998, A143003.

Programs

  • Maple
    p := n -> 2*n+1: a := n -> n!^2*p(n)*sum (1/(k^2*p(k-1)*p(k)), k = 1..n): seq(a(n), n = 0..20);
  • Mathematica
    a[n_] := -1/6*n!^2*(2*n*(Pi^2-12) + Pi^2 - 6*(2*n+1)*PolyGamma[1, n+1]) // Simplify; Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Mar 06 2013 *)

Formula

a(n) = n!^2*p(n)*Sum_{k = 1..n} 1/(k^2*p(k-1)*p(k)), where p(n) = 2*n+1. Recurrence: a(0) = 0, a(1) = 1, a(n+1) = (2*n^2 + 2*n + 3)*a(n) - n^4*a(n-1). The sequence b(n):= n!^2*p(n) satisfies the same recurrence with the initial conditions b(0) = 1, b(1) = 3. Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(3 - 1^4/(7 - 2^4/(15 - 3^4/(27 - ... - (n-1)^4/(2*n^2 - 2*n + 3))))), for n >= 2. Lim_{n -> infinity} a(n)/b(n) = 1/(3 - 1^4/(7 - 2^4/(15 - 3^4/(27 - ... - n^4/((2*n^2 + 2*n + 3) - ...))))) = Sum_{k>=1} 1/(k^2*(4*k^2 - 1)) = 2 - zeta(2).

A186763 Number of increasing odd cycles in all permutations of {1,2,...,n}.

Original entry on oeis.org

0, 1, 2, 7, 28, 141, 846, 5923, 47384, 426457, 4264570, 46910271, 562923252, 7318002277, 102452031878, 1536780478171, 24588487650736, 418004290062513, 7524077221125234, 142957467201379447, 2859149344027588940, 60042136224579367741
Offset: 0

Views

Author

Emeric Deutsch, Feb 27 2011

Keywords

Comments

A cycle (b(1), b(2), ...) is said to be increasing if, when written with its smallest element in the first position, it satisfies b(1)
A cycle is said to be odd if it has an odd number of entries.

Examples

			a(3)=7 because in (1)(2)(3), (1)(23), (12)(3), (13)(2), (123), and (132) we have a total of 3+1+1+1+1+0=7 increasing odd cycles.
		

Programs

  • Maple
    g := sinh(z)/(1-z): gser := series(g, z = 0, 27): seq(factorial(n)*coeff(gser, z, n), n = 0 .. 21);
    # Alternatively:
    A186763 := n -> (exp(1)*GAMMA(1+n,1) - exp(-1)*GAMMA(1+n,-1))/2:
    seq(simplify(A186763(n)), n=0..21); # Peter Luschny, Dec 18 2017
  • Mathematica
    a=0;Table[a=n*a+(1/2)(1-(-1)^n),{n,0,30}] (* Vladimir Joseph Stephan Orlovsky, Apr 02 2011 *)
    CoefficientList[Series[Sinh[x]/(1-x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 05 2013 *)

Formula

a(n) = Sum_{k>=0} k*A186761(n,k).
E.g.f.: (sinh z)/(1-z).
a(n) ~ n! * (exp(2)-1)*exp(-1)/2. - Vaclav Kotesovec, Oct 05 2013
a(n) = (exp(1)*Gamma(1+n,1) - exp(-1)*Gamma(1+n,-1))/2 = (A000522(n) - A000166(n))/2. - Peter Luschny, Dec 18 2017
a(n) = n! * Sum_{k=0..floor((n-1)/2)} 1 / (2*k+1)!. - Ilya Gutkovskiy, Jul 16 2021
D-finite with recurrence a(n) -n*a(n-1) -a(n-2) +(n-2)*a(n-3)=0. - R. J. Mathar, Jul 26 2022

A006231 a(n) = Sum_{k=2..n} n(n-1)...(n-k+1)/k.

Original entry on oeis.org

0, 1, 5, 20, 84, 409, 2365, 16064, 125664, 1112073, 10976173, 119481284, 1421542628, 18348340113, 255323504917, 3809950976992, 60683990530208, 1027542662934897, 18430998766219317, 349096664728623316, 6962409983976703316, 145841989688186383337
Offset: 1

Author

Keywords

Comments

a(n) is also the number of permutations in the symmetric group S_n that are pure cycles, see example. - Avi Peretz (njk(AT)netvision.net.il), Mar 24 2001
Also the number of elementary circuits in a complete directed graph with n nodes [D. B. Johnson, 1975]. - N. J. A. Sloane, Mar 24 2014
If one takes 1,2,3,4, ..., n and starts creating parenthetic products of k-tuples and adding, one gets a(n+1). For 1,2,3,4 one gets (1)+(2)+(3)+(4) = 10; (1*2)+(2*3)+(3*4) = 20; (1*2*3)+(2*3*4) = 30; (1*2*3*4) = 24; and 10+20+30+24 = 84 = a(5). - J. M. Bergot, Apr 24 2014
Let P_n be the set of probability distributions over orderings of n objects that can be obtained by drawing n real numbers from independent probability distributions and sorting. Then a(n) is conjectured to be the dimension of P_n, as a semi-algebraic subset of R^(n!). - Jamie Tucker-Foltz, Jul 29 2024

Examples

			a(3) = 5 because the cycles in S_3 are (12), (13), (23), (123), (132).
a(4) = 20 because there are 24 permutations of {1,2,3,4} but we don't count (12)(34), (13)(24), (14)(23) or the identity permutation. - _Geoffrey Critzer_, Nov 03 2012
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=1 of A136394.

Programs

  • Haskell
    a006231 n = numerator $
       sum $ tail $ zipWith (%) (scanl1 (*) [n,(n-1)..1]) [1..n]
    -- Reinhard Zumkeller, Dec 27 2011
    
  • Maple
    A006231 := proc(n)
        n*( hypergeom([1,1,1-n],[2],-1)-1) ;
        simplify(%) ;
    end proc: # R. J. Mathar, Aug 06 2013
  • Mathematica
    a[n_] = n*(HypergeometricPFQ[{1,1,1-n}, {2}, -1] - 1); Table[a[n], {n, 1, 20}] (* Jean-François Alcover,  Mar 29 2011 *)
    Table[Sum[Times@@Range[n-k+1,n]/k,{k,2,n}],{n,20}] (* Harvey P. Dale, Sep 23 2011 *)
  • PARI
    a(n) = n--; sum(ip=1, n, sum(j=1, n-ip+1, prod(k=j, j+ip-1, k))); \\ Michel Marcus, May 07 2014 after comment by J. M. Bergot

Formula

a(n+1) - a(n) = A000522(n) - 1.
a(n) = n*( 3F1(1,1,1-n; 2;-1) -1). - Jean-François Alcover, Mar 29 2011
E.g.f.: exp(x)*(log(1/(1-x))-x). - Geoffrey Critzer, Sep 12 2012
G.f.: (Q(0) - 1)/(1-x)^2, where Q(k)= 1 + (2*k + 1)*x/( 1 - x - 2*x*(1-x)*(k+1)/(2*x*(k+1) + (1-x)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 09 2013
Conjecture: a(n) + (-n-2)*a(n-1) + (3*n-2)*a(n-2) + 3*(-n+2)*a(n-3) + (n-3)*a(n-4) = 0. - R. J. Mathar, Aug 06 2013

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Mar 27 2001

A009179 E.g.f. cosh(x)/(1+x).

Original entry on oeis.org

1, -1, 3, -9, 37, -185, 1111, -7777, 62217, -559953, 5599531, -61594841, 739138093, -9608795209, 134523132927, -2017846993905, 32285551902481, -548854382342177, 9879378882159187, -187708198761024553, 3754163975220491061
Offset: 0

Author

Keywords

Comments

Unsigned sequence satisfies a(n)=n*a(n-1)+a(n-2)-(n-2)*a(n-3), a(0)=1,a(1)=1,a(2)=3 with e.g.f. cosh(z)/(1-z). - Mario Catalani (mario.catalani(AT)unito.it), Feb 07 2003
(-1)^n*(A000166(n) + A000522(n))/2 = this_sequence, (-1)^n*(A000166(n) - A000522(n))/2 = A009628(n).
The positive sequence has e.g.f. cosh(x)/(1-x), with a(n)=sum{k=0..floor(n/2), binomial(n,2k)(n-2k)!}. It is the mean of the binomial and inverse binomial transforms of n!. - Paul Barry, May 01 2005

Crossrefs

Programs

  • Maple
    restart: G(x):= cosh(x)/(1+x): f[0]:=G(x): for n from 1 to 21 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..20); # Zerinvary Lajos, Apr 03 2009
  • Mathematica
    a[n_] := (-1)^n (Exp[1] Gamma[1 + n, 1] + Exp[-1] Gamma[1 + n, -1])/2;
    Table[a[n], {n, 0, 20}] (* Peter Luschny, Dec 18 2017 *)
  • PARI
    x='x+O('x^99); Vec(serlaplace(cosh(x)/(1+x))) \\ Altug Alkan, Dec 18 2017

Formula

a(n) = (-1)^n*floor(n!*cosh(1)). - Vladeta Jovovic, Aug 10 2002
a(n) = (1+(-1)^n)/2-n*a(n-1). - Vladeta Jovovic, Apr 19 2003
a(n) = (-1)^n * n! * sum{k=0, [n/2], 1/(2k)!}.
E.g.f.: U(0)/(1+x) where U(k)= 1 + x^2/((4*k+1)*(4*k+2) - x^2*(4*k+1)*(4*k+2)/(x^2 + (4*k+3)*(4*k+4)/U(k+1))); (continued fraction). - Sergei N. Gladkovskii, Oct 22 2012
a(n) = (-1)^n*(exp(1)*Gamma(1+n,1) + exp(-1)*Gamma(1+n,-1))/2 - Peter Luschny, Dec 18 2017

Extensions

Extended with signs by Olivier Gérard, Mar 15 1997

A010845 a(n) = 3*n*a(n-1) + 1, a(0) = 1.

Original entry on oeis.org

1, 4, 25, 226, 2713, 40696, 732529, 15383110, 369194641, 9968255308, 299047659241, 9868572754954, 355268619178345, 13855476147955456, 581929998214129153, 26186849919635811886, 1256968796142518970529
Offset: 0

Author

Keywords

Comments

a(n)/(A000142*A000244) is an increasingly good approximation to cube root of e.
Related to Incomplete Gamma Function at 1/3. - Michael Somos, Mar 26 1999
For positive n, a(n) equals 3^n times the permanent of the n X n matrix with (4/3)'s along the main diagonal, and 1's everywhere else. - John M. Campbell, Jul 10 2011

Examples

			1 + 4*x + 25*x^2 + 226*x^3 + 2713*x^4 + 40696*x^5 + 732529*x^6 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 262.

Crossrefs

Cf. A000522, A010844, A056545, A056546, A056547 for analogs.

Programs

  • Mathematica
    Table[ Gamma[ n, 1/3 ]*Exp[ 1/3 ]*3^(n-1), {n, 1, 24} ]
    a[ n_] := If[ n<0, 0, Floor[ n! E^(1/3) 3^n ]] (* Michael Somos, Sep 04 2013 *)
    Range[0, 20]! CoefficientList[Series[Exp[x]/(1 - 3 x), {x, 0, 20}], x] (* Vincenzo Librandi, Feb 17 2014 *)
  • PARI
    {a(n) = if( n<0, 0, n! * sum(k=0, n, 3^(n-k) / k!))} /* Michael Somos, Sep 04 2013 */

Formula

E.g.f.: exp(x)/(1-3*x).
a(n) = floor( n!*e^(1/3)*3^n ) = n! * (Sum_{k=0..n} 3^(n-k) / k!) = n! * (e^(1/3) * 3^n - Sum_{k>n} 3^(n-k) / k!). - Michael Somos, Mar 26 1999
a(n) = Sum_{k=0..n} P(n, k)*3^k. - Ross La Haye, Aug 29 2005
Binomial transform of A032031. - Carl Najafi, Sep 11 2011
Conjecture: a(n) +(-3*n-1)*a(n-1) +3*(n-1)*a(n-2)=0. - R. J. Mathar, Feb 16 2014
a(n) = hypergeometric_U(1,n+2,1/3)/3. - Peter Luschny, Nov 26 2014
From Peter Bala, Mar 01 2017: (Start)
a(n) = Integral_{x >= 0} (3*x + 1)^n*exp(-x) dx.
The e.g.f. y = exp(x)/(1 - 3*x) satisfies the differential equation (1 - 3*x)*y' = (4 - 3*x)*y. Mathar's recurrence above follows easily from this.
The sequence b(n) := (3^n)*n! also satisfies Mathar's recurrence with b(0) = 1, b(1) = 3. This leads to the continued fraction representation a(n) = (3^n)*n!*( 1 + 1/(3 - 3/(7 - 6/(10 - ... - (3*n - 3)/(3*n + 1) )))) for n >= 2. Taking the limit as n -> oo gives the continued fraction representation exp(1/3) = 1 + 1/(3 - 3/(7 - 6/(10 - ... - (3*n - 3)/((3*n + 1) - ... )))). Cf. A010844. (End)

Extensions

Better description and formulas from Michael Somos
More terms from James Sellers, Jul 04 2000

A019460 Add 1, multiply by 1, add 2, multiply by 2, etc., start with 2.

Original entry on oeis.org

2, 3, 3, 5, 10, 13, 39, 43, 172, 177, 885, 891, 5346, 5353, 37471, 37479, 299832, 299841, 2698569, 2698579, 26985790, 26985801, 296843811, 296843823, 3562125876, 3562125889, 46307636557, 46307636571, 648306911994, 648306912009, 9724603680135, 9724603680151, 155593658882416
Offset: 0

Keywords

Comments

After a(7) = 43, the next prime in the sequence is a(649) with 676 digits. - M. F. Hasler, Jan 12 2011

References

  • New York Times, Oct 13, 1996.

Crossrefs

Cf. A019461 (same, but start with 0), A019463 (start with 1), A019462 (start with 3), A082448 (start with 4).
Cf. A082458, A019464, A019465, A019466 (similar, but first multiply, then add; starting with 0,1,2,3).

Programs

  • Mathematica
    a[n_] := If[ OddQ@n, a[n - 1] + (n + 1)/2, a[n - 1]*n/2]; a[0] = 2; Table[ a@n, {n, 0, 28}] (* Robert G. Wilson v, Jul 21 2009 *)
  • PARI
    A019460(n)=2*(A000522(n\2)+(n\2)!)-if(bittest(n,0),1,n\2+2)
    /* For producing the terms in increasing order, the following 'hack' can be used M. F. Hasler, Jan 12 2011 */
    lastn=0; an1=1; A000522(n)={ an1=if(n, n==lastn && return(an1); n==lastn+1||error(); an1*lastn=n)+1 }
    
  • Python
    l=[2]
    for n in range(1, 101):
        l.append(l[n - 1] + ((n + 1)//2) if n%2 else l[n - 1]*(n//2))
    print(l) # Indranil Ghosh, Jul 05 2017

Formula

a(2n) = 2*(A000522(n) + n!) - n - 2.
a(2n+1) = 2*(A000522(n) + n!) - 1.
Recursive: a(0) = 2, a(n) = (1 + floor((n-1)/2) - ceiling((n-1)/2))*(a(n-1) + (n+2)/2) + (ceiling((n-1)/2) - floor((n-1)/2))*(n/2)*a(n-1). - Wesley Ivan Hurt, Jan 12 2013

Extensions

One more term from Robert G. Wilson v, Jul 21 2009
Formula provided by Nathaniel Johnston, Nov 11 2010
Formula double-checked and PARI code added by M. F. Hasler, Nov 12 2010
Edited by M. F. Hasler, Feb 25 2018

A056545 a(n) = 4*n*a(n-1) + 1 with a(0)=1.

Original entry on oeis.org

1, 5, 41, 493, 7889, 157781, 3786745, 106028861, 3392923553, 122145247909, 4885809916361, 214975636319885, 10318830543354481, 536579188254433013, 30048434542248248729, 1802906072534894923741, 115385988642233275119425
Offset: 0

Author

Henry Bottomley, Jun 20 2000

Keywords

Comments

For positive n, a(n) equals 4^n times the permanent of the n X n matrix with (5/4)'s along the main diagonal and 1's everywhere else. - John M. Campbell, Jul 10 2011

Examples

			a(2) = 4*2*a(1) + 1 = 8*5 + 1 = 41.
		

Crossrefs

Cf. A000522, A010844, A010845, A056546, A056547, A001907 for analogs. A056545/(A000142*A000302) is an increasingly good approximation to 4th root of e.

Programs

  • Mathematica
    Round@Table[Exp[1/4] 4^n Gamma[n + 1, 1/4], {n, 0, 20}] (* Round is equivalent to FullSimplify here, but is much faster; Vladimir Reshetnikov, Oct 14 2016 *)
    nxt[{n_,a_}]:={n+1,4a(n+1)+1}; NestList[nxt,{0,1},20][[All,2]] (* Harvey P. Dale, Mar 19 2019 *)

Formula

a(n) = floor(e^(1/4)*4^n*n!).
From Philippe Deléham, Mar 14 2004: (Start)
a(n) = n!*Sum_{k=0..n} 4^(n-k)/k!.
E.g.f.: exp(x)/(1 - 4*x). (End)
a(n) = Sum_{k=0..n} P(n, k)*4^k. - Ross La Haye, Aug 29 2005
a(n) = hypergeometric_U(1, n+2 , 1/4)/4. - Peter Luschny, Nov 26 2014
a(n) = exp(1/4)*4^n*Gamma(n+1, 1/4). a(n) ~ sqrt(2*Pi)*4^n*n^(n+1/2)*exp(1/4-n). - Vladimir Reshetnikov, Oct 14 2016
From Peter Bala, Mar 01 2017: (Start)
a(n) = Integral_{x = 0..inf} (4*x + 1)^n*exp(-x) dx.
The e.g.f. y = exp(x)/(1 - 4*x) satisfies the differential equation (1 - 4*x)*y' = (5 - 4*x)*y.
a(n) = (4*n + 1)*a(n-1) - 4*(n - 1)*a(n-2).
The sequence b(n) := 4^n*n! also satisfies the same recurrence with b(0) = 1, b(1) = 4. This leads to the continued fraction representation a(n) = 4^n*n!*( 1 + 1/(4 - 4/(9 - 8/(13 - ... - (4*n - 4)/(4*n + 1) )))) for n >= 2. Taking the limit gives the continued fraction representation exp(1/4) = 1 + 1/(4 - 4/(9 - 8/(13 - ... - (4*n - 4)/((4*n + 1) - ... )))). Cf. A010844. (End)

Extensions

More terms from James Sellers, Jul 04 2000

A009628 Expansion of e.g.f.: sinh(x)/(1+x).

Original entry on oeis.org

0, 1, -2, 7, -28, 141, -846, 5923, -47384, 426457, -4264570, 46910271, -562923252, 7318002277, -102452031878, 1536780478171, -24588487650736, 418004290062513, -7524077221125234, 142957467201379447, -2859149344027588940, 60042136224579367741
Offset: 0

Author

Keywords

Comments

(-1)^n*(A000166 + A000522)/2 = A009179, (-1)^n*(A000166-A000522)/2 = this_sequence.

Programs

  • Maple
    G(x):= sinh(x)/(1+x): f[0]:=G(x): for n from 1 to 21 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..20); # Zerinvary Lajos, Apr 03 2009
  • Mathematica
    a[n_] := (-1)^n (Exp[-1] Gamma[1 + n, -1] - Exp[1] Gamma[1 + n, 1])/2;
    Table[a[n], {n, 0, 20}] (* Peter Luschny, Dec 18 2017 *)
    With[{nn=30},CoefficientList[Series[Sinh[x]/(1+x),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 19 2023 *)
  • PARI
    a(n) = n!*polcoeff((sinh(x)/(1+x) + x * O(x^n)), n) \\ Charles R Greathouse IV, Sep 09 2016
    
  • PARI
    x='x+O('x^99); concat([0], Vec(serlaplace(sinh(x)/(1+x)))) \\ Altug Alkan, Dec 18 2017
    
  • Ruby
    def A009628(n)
      a = 0
      (0..n).map{|i| a = -i * a + i % 2}
    end # Seiichi Manyama, Sep 09 2016

Formula

a(n) = (-1)^(n+1)*floor(n!*sinh(1)), n>=1. - Vladeta Jovovic, Aug 10 2002
Let u(1) = 1, u(n) = n*u(n-1) + n (mod 2); then for n>0, a(n) = (-1)^(n+1)*u(n). - Benoit Cloitre, Jan 12 2003
Unsigned sequence satisfies a(n) = n*a(n-1)+a(n-2)-(n-2)*a(n-3), with E.g.f. sinh(z)/(1-z). - Mario Catalani (mario.catalani(AT)unito.it), Feb 08 2003
a(n) = (-1)^(n+1) * n! * Sum_{k=1..floor((n+1)/2)} 1/(2*k-1)!.
a(n) = -n*a(n-1) + n (mod 2). - Seiichi Manyama, Sep 09 2016
a(n) = (-1)^n*(exp(-1)*Gamma(1+n,-1) - exp(1)*Gamma(1+n,1))/2. - Peter Luschny, Dec 18 2017

Extensions

Extended with signs by Olivier Gérard, Mar 15 1997
Definition clarified by Harvey P. Dale, Mar 19 2023

A090210 Triangle of certain generalized Bell numbers.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 5, 7, 1, 1, 15, 87, 34, 1, 1, 52, 1657, 2971, 209, 1, 1, 203, 43833, 513559, 163121, 1546, 1, 1, 877, 1515903, 149670844, 326922081, 12962661, 13327, 1, 1, 4140, 65766991, 66653198353, 1346634725665, 363303011071, 1395857215, 130922, 1, 1
Offset: 1

Author

Wolfdieter Lang, Dec 01 2003

Keywords

Comments

Let B_{n}(x) = sum_{j>=0}(exp(j!/(j-n)!*x-1)/j!) and
S(n,k) = k! [x^k] taylor(B_{n}(x)), where [x^k] denotes the
coefficient of x^k in the Taylor series for B_{n}(x).
Then S(n,k) (n>0, k>=0) is the square array representation of the triangle.
To illustrate the cross-references of T(n,k) when written as a square array.
0: A000012: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1: A000110: 1, 1, 2, 5, 15, 52, 203, 877, 4140, ...
2: A020556: 1, 1, 7, 87, 1657, 43833, 1515903, ...
3: A069223: 1, 1, 34, 2971, 513559, 149670844, ...
4: A071379: 1, 1, 209, 163121, 326922081, ...
5: A090209: 1, 1, 1546, 12962661, 363303011071,...
6: ... 1, 1, 13327, 1395857215, 637056434385865,...
Note that the sequence T(0,k) is not included in the data.
- Peter Luschny, Mar 27 2011

Examples

			Triangle begins:
1;
1, 1;
2, 1, 1;
5, 7, 1, 1;
15, 87, 34, 1, 1;
52, 1657, 2971, 209, 1, 1;
203, 43833, 513559, 163121, 1546, 1, 1;
		

References

  • P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
  • M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.

Programs

  • Maple
    A090210_AsSquareArray := proc(n,k) local r,s,i;
    if k=0 then 1 else r := [seq(n+1,i=1..k-1)]; s := [seq(1,i=1..k-1)];
    exp(-x)*n!^(k-1)*hypergeom(r,s,x); round(evalf(subs(x=1,%),99)) fi end:
    seq(lprint(seq(A090210_AsSquareArray(n,k),k=0..6)),n=0..6);
    # Peter Luschny, Mar 30 2011
  • Mathematica
    t[n_, k_] := t[n, k] = Sum[(n+j)!^(k-1)/(j!^k*E), {j, 0, Infinity}]; t[_, 0] = 1;
    Flatten[ Table[ t[n-k+1, k], {n, 0, 8}, {k, n, 0, -1}]][[1 ;; 43]] (* Jean-François Alcover, Jun 17 2011 *)

Formula

a(n, m) = Bell(m;n-(m-1)), n>= m-1 >=0, with Bell(m;k) := Sum_{p=m..m*k} S2(m;k, p), where S2(m;k, p) := (((-1)^p)/p!) * Sum_{r=m..p} ((-1)^r)*binomial(p, r)*fallfac(r, m)^k; with fallfac(n, m) := A008279(n, m) (falling factorials) and m<=p<=k*m, k>=1, m=1, 2, ..., else 0. From eqs.(6) with r=s->m and eq.(19) with S_{r, r}(n, k)-> S2(r;n, k) of the Blasiak et al. reference. [Corrected by Sean A. Irvine, Jun 03 2024]
a(n, m) = (Sum_{k>=m} fallfac(k, m)^(n-(m-1)))/exp(1), n>=m-1>=0, else 0. From eq.(26) with r->m of the Schork reference which is rewritten eq.(11) of the original Blasiak et al. reference.
E.g.f. m-th column (no leading zeros): (Sum_{k>=m} exp(fallfac(k, m)*x)/k!) + A000522(m)/m!)/exp(1). Rewritten from the top of p. 4656 of the Schork reference.

A096307 E.g.f.: exp(x)/(1-x)^6.

Original entry on oeis.org

1, 7, 55, 481, 4645, 49171, 566827, 7073725, 95064361, 1369375615, 21054430591, 344231563897, 5964569413645, 109196040092491, 2106381399472435, 42705264827626261, 907920105215691217, 20198878182718877815
Offset: 0

Author

Philippe Deléham, Jun 26 2004

Keywords

Comments

Sum_{k = 0..n} A094816(n,k)*x^k give A000522(n), A001339(n), A082030(n), A095000(n), A095177(n) for x = 1, 2, 3, 4, 5 respectively.

Programs

  • Mathematica
    Table[HypergeometricPFQ[{6, -n}, {}, -1], {n, 0, 20}] (* Benedict W. J. Irwin, May 27 2016 *)
    With[{nn = 250}, CoefficientList[Series[Exp[x]/(1 - x)^6, {x, 0, nn}], x] Range[0, nn]!] (* G. C. Greubel, May 27 2016 *)

Formula

a(n) = Sum_{k = 0..n} A094916(n, k)*6^k.
a(n) = Sum_{k = 0..n} binomial(n, k)*(k+5)!/5!.
a(n) = 2F0(6,-n;;-1). - Benedict W. J. Irwin, May 27 2016
From Peter Bala, Jul 25 2021: (Start)
a(n) = (n+6)*a(n-1) - (n-1)*a(n-2) with a(0) = 1 and a(1) = 7. Cf. A001689.
First-order recurrence: P(n-1)*a(n) = n*P(n)*a(n-1) - 1 with a(0) = 1, where P(n) = n^5 + 10*n^4 + 45*n^3 + 100*n^2 + 109*n + 44 = A094794(n).
(End)
Previous Showing 61-70 of 288 results. Next