0, 1, 2, 7, 28, 141, 846, 5923, 47384, 426457, 4264570, 46910271, 562923252, 7318002277, 102452031878, 1536780478171, 24588487650736, 418004290062513, 7524077221125234, 142957467201379447, 2859149344027588940, 60042136224579367741
Offset: 0
A006231
a(n) = Sum_{k=2..n} n(n-1)...(n-k+1)/k.
Original entry on oeis.org
0, 1, 5, 20, 84, 409, 2365, 16064, 125664, 1112073, 10976173, 119481284, 1421542628, 18348340113, 255323504917, 3809950976992, 60683990530208, 1027542662934897, 18430998766219317, 349096664728623316, 6962409983976703316, 145841989688186383337
Offset: 1
a(3) = 5 because the cycles in S_3 are (12), (13), (23), (123), (132).
a(4) = 20 because there are 24 permutations of {1,2,3,4} but we don't count (12)(34), (13)(24), (14)(23) or the identity permutation. - _Geoffrey Critzer_, Nov 03 2012
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 1..450 (first 100 terms from T. D. Noe)
- Eric Babson, Moon Duchin, Annina Iseli, Pietro Poggi-Corradini, Dylan Thurston, Jamie Tucker-Foltz, Models of Random Spanning Trees, arXiv:2407.20226 [math.CO], 2023.
- R. K. Guy, Letter to N. J. A. Sloane, 1977
- Donald B. Johnson, Finding all the elementary circuits of a directed graph, SIAM J. Comput. 4 (1975), 77-84. MR0398155 (53 #2010).
- Jamie Tucker-Foltz, Code to compute dimension of P_n on GitHub.
-
a006231 n = numerator $
sum $ tail $ zipWith (%) (scanl1 (*) [n,(n-1)..1]) [1..n]
-- Reinhard Zumkeller, Dec 27 2011
-
A006231 := proc(n)
n*( hypergeom([1,1,1-n],[2],-1)-1) ;
simplify(%) ;
end proc: # R. J. Mathar, Aug 06 2013
-
a[n_] = n*(HypergeometricPFQ[{1,1,1-n}, {2}, -1] - 1); Table[a[n], {n, 1, 20}] (* Jean-François Alcover, Mar 29 2011 *)
Table[Sum[Times@@Range[n-k+1,n]/k,{k,2,n}],{n,20}] (* Harvey P. Dale, Sep 23 2011 *)
-
a(n) = n--; sum(ip=1, n, sum(j=1, n-ip+1, prod(k=j, j+ip-1, k))); \\ Michel Marcus, May 07 2014 after comment by J. M. Bergot
More terms from Larry Reeves (larryr(AT)acm.org), Mar 27 2001
A009179
E.g.f. cosh(x)/(1+x).
Original entry on oeis.org
1, -1, 3, -9, 37, -185, 1111, -7777, 62217, -559953, 5599531, -61594841, 739138093, -9608795209, 134523132927, -2017846993905, 32285551902481, -548854382342177, 9879378882159187, -187708198761024553, 3754163975220491061
Offset: 0
-
restart: G(x):= cosh(x)/(1+x): f[0]:=G(x): for n from 1 to 21 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..20); # Zerinvary Lajos, Apr 03 2009
-
a[n_] := (-1)^n (Exp[1] Gamma[1 + n, 1] + Exp[-1] Gamma[1 + n, -1])/2;
Table[a[n], {n, 0, 20}] (* Peter Luschny, Dec 18 2017 *)
-
x='x+O('x^99); Vec(serlaplace(cosh(x)/(1+x))) \\ Altug Alkan, Dec 18 2017
A010845
a(n) = 3*n*a(n-1) + 1, a(0) = 1.
Original entry on oeis.org
1, 4, 25, 226, 2713, 40696, 732529, 15383110, 369194641, 9968255308, 299047659241, 9868572754954, 355268619178345, 13855476147955456, 581929998214129153, 26186849919635811886, 1256968796142518970529
Offset: 0
1 + 4*x + 25*x^2 + 226*x^3 + 2713*x^4 + 40696*x^5 + 732529*x^6 + ...
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 262.
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 262.
- Roland Bacher, Counting Packings of Generic Subsets in Finite Groups, Electr. J. Combinatorics, 19 (2012), #P7. - From _N. J. A. Sloane_, Feb 06 2013
- M. Z. Spivey and L. L. Steil, The k-Binomial Transforms and the Hankel Transform, J. Integ. Seqs. Vol. 9 (2006), #06.1.1.
-
Table[ Gamma[ n, 1/3 ]*Exp[ 1/3 ]*3^(n-1), {n, 1, 24} ]
a[ n_] := If[ n<0, 0, Floor[ n! E^(1/3) 3^n ]] (* Michael Somos, Sep 04 2013 *)
Range[0, 20]! CoefficientList[Series[Exp[x]/(1 - 3 x), {x, 0, 20}], x] (* Vincenzo Librandi, Feb 17 2014 *)
-
{a(n) = if( n<0, 0, n! * sum(k=0, n, 3^(n-k) / k!))} /* Michael Somos, Sep 04 2013 */
A019460
Add 1, multiply by 1, add 2, multiply by 2, etc., start with 2.
Original entry on oeis.org
2, 3, 3, 5, 10, 13, 39, 43, 172, 177, 885, 891, 5346, 5353, 37471, 37479, 299832, 299841, 2698569, 2698579, 26985790, 26985801, 296843811, 296843823, 3562125876, 3562125889, 46307636557, 46307636571, 648306911994, 648306912009, 9724603680135, 9724603680151, 155593658882416
Offset: 0
- New York Times, Oct 13, 1996.
-
a[n_] := If[ OddQ@n, a[n - 1] + (n + 1)/2, a[n - 1]*n/2]; a[0] = 2; Table[ a@n, {n, 0, 28}] (* Robert G. Wilson v, Jul 21 2009 *)
-
A019460(n)=2*(A000522(n\2)+(n\2)!)-if(bittest(n,0),1,n\2+2)
/* For producing the terms in increasing order, the following 'hack' can be used M. F. Hasler, Jan 12 2011 */
lastn=0; an1=1; A000522(n)={ an1=if(n, n==lastn && return(an1); n==lastn+1||error(); an1*lastn=n)+1 }
-
l=[2]
for n in range(1, 101):
l.append(l[n - 1] + ((n + 1)//2) if n%2 else l[n - 1]*(n//2))
print(l) # Indranil Ghosh, Jul 05 2017
Formula double-checked and PARI code added by
M. F. Hasler, Nov 12 2010
A056545
a(n) = 4*n*a(n-1) + 1 with a(0)=1.
Original entry on oeis.org
1, 5, 41, 493, 7889, 157781, 3786745, 106028861, 3392923553, 122145247909, 4885809916361, 214975636319885, 10318830543354481, 536579188254433013, 30048434542248248729, 1802906072534894923741, 115385988642233275119425
Offset: 0
a(2) = 4*2*a(1) + 1 = 8*5 + 1 = 41.
-
Round@Table[Exp[1/4] 4^n Gamma[n + 1, 1/4], {n, 0, 20}] (* Round is equivalent to FullSimplify here, but is much faster; Vladimir Reshetnikov, Oct 14 2016 *)
nxt[{n_,a_}]:={n+1,4a(n+1)+1}; NestList[nxt,{0,1},20][[All,2]] (* Harvey P. Dale, Mar 19 2019 *)
A009628
Expansion of e.g.f.: sinh(x)/(1+x).
Original entry on oeis.org
0, 1, -2, 7, -28, 141, -846, 5923, -47384, 426457, -4264570, 46910271, -562923252, 7318002277, -102452031878, 1536780478171, -24588487650736, 418004290062513, -7524077221125234, 142957467201379447, -2859149344027588940, 60042136224579367741
Offset: 0
-
G(x):= sinh(x)/(1+x): f[0]:=G(x): for n from 1 to 21 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..20); # Zerinvary Lajos, Apr 03 2009
-
a[n_] := (-1)^n (Exp[-1] Gamma[1 + n, -1] - Exp[1] Gamma[1 + n, 1])/2;
Table[a[n], {n, 0, 20}] (* Peter Luschny, Dec 18 2017 *)
With[{nn=30},CoefficientList[Series[Sinh[x]/(1+x),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 19 2023 *)
-
a(n) = n!*polcoeff((sinh(x)/(1+x) + x * O(x^n)), n) \\ Charles R Greathouse IV, Sep 09 2016
-
x='x+O('x^99); concat([0], Vec(serlaplace(sinh(x)/(1+x)))) \\ Altug Alkan, Dec 18 2017
-
def A009628(n)
a = 0
(0..n).map{|i| a = -i * a + i % 2}
end # Seiichi Manyama, Sep 09 2016
A090210
Triangle of certain generalized Bell numbers.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 5, 7, 1, 1, 15, 87, 34, 1, 1, 52, 1657, 2971, 209, 1, 1, 203, 43833, 513559, 163121, 1546, 1, 1, 877, 1515903, 149670844, 326922081, 12962661, 13327, 1, 1, 4140, 65766991, 66653198353, 1346634725665, 363303011071, 1395857215, 130922, 1, 1
Offset: 1
Triangle begins:
1;
1, 1;
2, 1, 1;
5, 7, 1, 1;
15, 87, 34, 1, 1;
52, 1657, 2971, 209, 1, 1;
203, 43833, 513559, 163121, 1546, 1, 1;
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
- M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.
-
A090210_AsSquareArray := proc(n,k) local r,s,i;
if k=0 then 1 else r := [seq(n+1,i=1..k-1)]; s := [seq(1,i=1..k-1)];
exp(-x)*n!^(k-1)*hypergeom(r,s,x); round(evalf(subs(x=1,%),99)) fi end:
seq(lprint(seq(A090210_AsSquareArray(n,k),k=0..6)),n=0..6);
# Peter Luschny, Mar 30 2011
-
t[n_, k_] := t[n, k] = Sum[(n+j)!^(k-1)/(j!^k*E), {j, 0, Infinity}]; t[_, 0] = 1;
Flatten[ Table[ t[n-k+1, k], {n, 0, 8}, {k, n, 0, -1}]][[1 ;; 43]] (* Jean-François Alcover, Jun 17 2011 *)
A096307
E.g.f.: exp(x)/(1-x)^6.
Original entry on oeis.org
1, 7, 55, 481, 4645, 49171, 566827, 7073725, 95064361, 1369375615, 21054430591, 344231563897, 5964569413645, 109196040092491, 2106381399472435, 42705264827626261, 907920105215691217, 20198878182718877815
Offset: 0
-
Table[HypergeometricPFQ[{6, -n}, {}, -1], {n, 0, 20}] (* Benedict W. J. Irwin, May 27 2016 *)
With[{nn = 250}, CoefficientList[Series[Exp[x]/(1 - x)^6, {x, 0, nn}], x] Range[0, nn]!] (* G. C. Greubel, May 27 2016 *)
Comments