cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A000522 Total number of ordered k-tuples (k=0..n) of distinct elements from an n-element set: a(n) = Sum_{k=0..n} n!/k!.

Original entry on oeis.org

1, 2, 5, 16, 65, 326, 1957, 13700, 109601, 986410, 9864101, 108505112, 1302061345, 16926797486, 236975164805, 3554627472076, 56874039553217, 966858672404690, 17403456103284421, 330665665962404000, 6613313319248080001, 138879579704209680022, 3055350753492612960485, 70273067330330098091156
Offset: 0

Views

Author

Keywords

Comments

Total number of permutations of all subsets of an n-set.
Also the number of one-to-one sequences that can be formed from n distinct objects.
Old name "Total number of permutations of a set with n elements", or the same with the word "arrangements", both sound too much like A000142.
Related to number of operations of addition and multiplication to evaluate a determinant of order n by cofactor expansion - see A026243.
a(n) is also the number of paths (without loops) in the complete graph on n+2 vertices starting at one vertex v1 and ending at another v2. Example: when n=2 there are 5 paths in the complete graph with 4 vertices starting at the vertex 1 and ending at the vertex 2: (12),(132),(142),(1342),(1432) so a(2) = 5. - Avi Peretz (njk(AT)netvision.net.il), Feb 23 2001; comment corrected by Jonathan Coxhead, Mar 21 2003
Also row sums of Table A008279, which can be generated by taking the derivatives of x^k. For example, for y = 1*x^3, y' = 3x^2, y" = 6x, y'''= 6 so a(4) = 1 + 3 + 6 + 6 = 16. - Alford Arnold, Dec 15 1999
a(n) is the permanent of the n X n matrix with 2s on the diagonal and 1s elsewhere. - Yuval Dekel, Nov 01 2003
(A000166 + this_sequence)/2 = A009179, (A000166 - this_sequence)/2 = A009628.
Stirling transform of A006252(n-1) = [1,1,1,2,4,14,38,...] is a(n-1) = [1,2,5,16,65,...]. - Michael Somos, Mar 04 2004
Number of {12,12*,21*}- and {12,12*,2*1}-avoiding signed permutations in the hyperoctahedral group.
a(n) = b such that Integral_{x=0..1} x^n*exp(-x) dx = a-b*exp(-1). - Sébastien Dumortier, Mar 05 2005
a(n) is the number of permutations on [n+1] whose left-to-right record lows all occur at the start. Example: a(2) counts all permutations on [3] except 231 (the last entry is a record low but its predecessor is not). - David Callan, Jul 20 2005
a(n) is the number of permutations on [n+1] that avoid the (scattered) pattern 1-2-3|. The vertical bar means the "3" must occur at the end of the permutation. For example, 21354 is not counted by a(4): 234 is an offending subpermutation. - David Callan, Nov 02 2005
Number of deco polyominoes of height n+1 having no reentrant corners along the lower contour (i.e., no vertical step that is followed by a horizontal step). In other words, a(n)=A121579(n+1,0). A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column. Example: a(1)=2 because the only deco polyominoes of height 2 are the vertical and horizontal dominoes, having no reentrant corners along their lower contours. - Emeric Deutsch, Aug 16 2006
Unreduced numerators of partial sums of the Taylor series for e. - Jonathan Sondow, Aug 18 2006
a(n) is the number of permutations on [n+1] (written in one-line notation) for which the subsequence beginning at 1 is increasing. Example: a(2)=5 counts 123, 213, 231, 312, 321. - David Callan, Oct 06 2006
a(n) is the number of permutations (written in one-line notation) on the set [n + k], k >= 1, for which the subsequence beginning at 1,2,...,k is increasing. Example: n = 2, k = 2. a(2) = 5 counts 1234, 3124, 3412, 4123, 4312. - Peter Bala, Jul 29 2014
a(n) and (1,-2,3,-4,5,-6,7,...) form a reciprocal pair under the list partition transform and associated operations described in A133314. - Tom Copeland, Nov 01 2007
Consider the subsets of the set {1,2,3,...,n} formed by the first n integers. E.g., for n = 3 we have {}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}. Let the variable sbst denote a subset. For each subset sbst we determine its number of parts, that is nprts(sbst). The sum over all possible subsets is written as Sum_{sbst=subsets}. Then a(n) = Sum_{sbst=subsets} nprts(sbst)!. E.g., for n = 3 we have 1!+1!+1!+1!+2!+2!+2!+3!=16. - Thomas Wieder, Jun 17 2006
Equals row sums of triangle A158359(unsigned). - Gary W. Adamson, Mar 17 2009
Equals eigensequence of triangle A158821. - Gary W. Adamson, Mar 30 2009
For positive n, equals 1/BarnesG(n+1) times the determinant of the n X n matrix whose (i,j)-coefficient is the (i+j)th Bell number. - John M. Campbell, Oct 03 2011
a(n) is the number of n X n binary matrices with i) at most one 1 in each row and column and ii) the subset of rows that contain a 1 must also be the columns that contain a 1. Cf. A002720 where restriction ii is removed. - Geoffrey Critzer, Dec 20 2011
Number of restricted growth strings (RGS) [d(1),d(2),...,d(n)] such that d(k) <= k and d(k) <= 1 + (number of nonzero digits in prefix). The positions of nonzero digits determine the subset, and their values (decreased by 1) are the (left) inversion table (a rising factorial number) for the permutation, see example. - Joerg Arndt, Dec 09 2012
Number of a restricted growth strings (RGS) [d(0), d(1), d(2), ..., d(n)] where d(k) >= 0 and d(k) <= 1 + chg([d(0), d(1), d(2), ..., d(k-1)]) and chg(.) gives the number of changes of its argument. Replacing the function chg(.) by a function asc(.) that counts the ascents in the prefix gives A022493 (ascent sequences). - Joerg Arndt, May 10 2013
The sequence t(n) = number of i <= n such that floor(e*i!) is a square is mentioned in the abstract of Luca & Shparlinski. The values are t(n) = 0 for 0 <= n <= 2 and t(n) = 1 for at least 3 <= n <= 300. - R. J. Mathar, Jan 16 2014
a(n) = p(n,1) = q(n,1), where p and q are polynomials defined at A248664 and A248669. - Clark Kimberling, Oct 11 2014
a(n) is the number of ways at most n people can queue up at a (slow) ticket counter when one or more of the people may choose not to queue up. Note that there are C(n,k) sets of k people who quene up and k! ways to queue up. Since k can run from 0 to n, a(n) = Sum_{k=0..n} n!/(n-k)! = Sum_{k=0..n} n!/k!. For example, if n=3 and the people are A(dam), B(eth), and C(arl), a(3)=16 since there are 16 possible lineups: ABC, ACB, BAC, BCA, CAB, CBA, AB, BA, AC, CA, BC, CB, A, B, C, and empty queue. - Dennis P. Walsh, Oct 02 2015
As the row sums of A008279, Motzkin uses the abbreviated notation $n_<^\Sigma$ for a(n).
The piecewise polynomial function f defined by f(x) = a(n)*x^n/n! on each interval [ 1-1/a(n), 1-1/a(n+1) ) is continuous on [0,1) and lim_{x->1} f(x) = e. - Luc Rousseau, Oct 15 2019
a(n) is composite for 3 <= n <= 2015, but a(2016) is prime (or at least a strong pseudoprime): see Johansson link. - Robert Israel, Jul 27 2020 [a(2016) is prime, ECPP certificate generated with CM 0.4.3 and checked by factordb. - Jason H Parker, Jun 15 2025]
In general, sequences of the form a(0)=a, a(n) = n*a(n-1) + k, n>0, will have a closed form of n!*a + floor(n!*(e-1))*k. - Gary Detlefs, Oct 26 2020
From Peter Bala, Apr 03 2022: (Start)
a(2*n) is odd and a(2*n+1) is even. More generally, a(n+k) == a(n) (mod k) for all n and k. It follows that for each positive integer k, the sequence obtained by reducing a(n) modulo k is periodic, with the exact period dividing k. Various divisibility properties of the sequence follow from this; for example, a(5*n+2) == a(5*n+4) == 0 (mod 5), a(25*n+7) == a(25*n+19) == 0 (mod 25) and a(13*n+4) == a(13*n+10)== a(13*n+12) == 0 (mod 13). (End)
Number of possible ranking options on a typical ranked choice voting ballot with n candidates (allowing undervotes). - P. Christopher Staecker, May 05 2024
From Thomas Scheuerle, Dec 28 2024: (Start)
Number of decorated permutations of size n.
Number of Le-diagrams with bounding box semiperimeter n, for n > 0.
By counting over all k = 1..n and n > 0, the number of positroid cells for the totally nonnegative real Grassmannian Gr(k, n), equivalently the number of Grassmann necklaces of type (k, n). (End)

Examples

			G.f. = 1 + 2*x + 5*x^2 + 16*x^3 + 65*x^4 + 326*x^5 + 1957*x^6 + 13700*x^7 + ...
With two objects we can form 5 sequences: (), (a), (b), (a,b), (b,a), so a(2) = 5.
From _Joerg Arndt_, Dec 09 2012: (Start)
The 16 arrangements of the 3-set and their RGS (dots denote zeros) are
  [ #]       RGS        perm. of subset
  [ 1]    [ . . . ]      [  ]
  [ 2]    [ . . 1 ]      [ 3 ]
  [ 3]    [ . 1 . ]      [ 2 ]
  [ 4]    [ . 1 1 ]      [ 2 3 ]
  [ 5]    [ . 1 2 ]      [ 3 2 ]
  [ 6]    [ 1 . . ]      [ 1 ]
  [ 7]    [ 1 . 1 ]      [ 1 3 ]
  [ 8]    [ 1 . 2 ]      [ 3 1 ]
  [ 9]    [ 1 1 . ]      [ 1 2 ]
  [10]    [ 1 1 1 ]      [ 1 2 3 ]
  [11]    [ 1 1 2 ]      [ 1 3 2 ]
  [12]    [ 1 1 3 ]      [ 2 3 1 ]
  [13]    [ 1 2 . ]      [ 2 1 ]
  [14]    [ 1 2 1 ]      [ 2 1 3 ]
  [15]    [ 1 2 2 ]      [ 3 1 2 ]
  [16]    [ 1 2 3 ]      [ 3 2 1 ]
(End)
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 75, Problem 9.
  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 65, p. 23, Ellipses, Paris 2008.
  • J. M. Gandhi, On logarithmic numbers, Math. Student, 31 (1963), 73-83.
  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section E11.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 16.
  • D. Singh, The numbers L(m,n) and their relations with prepared Bernoulli and Eulerian numbers, Math. Student, 20 (1952), 66-70.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Average of n-th row of triangle in A068424 [Corrected by N. J. A. Sloane, Feb 29 2024].
Row sums of A008279 and A094816.
First differences give A001339. Second differences give A001340.
Partial sums are in A001338, A002104.
A row of the array in A144502.
See also A370973, Nearest integer to e*n!.

Programs

  • Haskell
    import Data.List (subsequences, permutations)
    a000522 = length . choices . enumFromTo 1 where
    choices = concat . map permutations . subsequences
    -- Reinhard Zumkeller, Feb 21 2012, Oct 25 2010
    
  • Magma
    [1] cat [n eq 1 select (n+1) else n*Self(n-1)+1: n in [1..25]]; // Vincenzo Librandi, Feb 15 2015
    
  • Maple
    a(n):= exp(1)*int(x^n*exp(-x)*Heaviside(x-1), x=0..infinity); # Karol A. Penson, Oct 01 2001
    A000522 := n->add(n!/k!,k=0..n);
    G(x):=exp(x)/(1-x): f[0]:=G(x): for n from 1 to 26 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..20);
    # Zerinvary Lajos, Apr 03 2009
    G:=exp(z)/(1-z): Gser:=series(G,z=0,21):
    for n from 0 to 20 do a(n):=n!*coeff(Gser,z,n): end do
    # Paul Weisenhorn, May 30 2010
    k := 1; series(hypergeom([1,k],[],x/(1-x))/(1-x), x=0, 20); # Mark van Hoeij, Nov 07 2011
    # one more Maple program:
    a:= proc(n) option remember;
          `if`(n<0, 0, 1+n*a(n-1))
        end:
    seq(a(n), n=0..23);  # Alois P. Heinz, Sep 13 2019
    seq(simplify(KummerU(-n, -n, 1)), n = 0..23); # Peter Luschny, May 10 2022
  • Mathematica
    Table[FunctionExpand[Gamma[n + 1, 1]*E], {n, 0, 24}]
    nn = 20; Accumulate[Table[1/k!, {k, 0, nn}]] Range[0, nn]! (* Jan Mangaldan, Apr 21 2013 *)
    FoldList[#1*#2 + #2 &, 0, Range@ 23] + 1 (* or *)
    f[n_] := Floor[E*n!]; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Feb 13 2015 *)
    RecurrenceTable[{a[n + 1] == (n + 1) a[n] + 1, a[0] == 1}, a, {n, 0, 12}] (* Emanuele Munarini, Apr 27 2017 *)
    nxt[{n_,a_}]:={n+1,a(n+1)+1}; NestList[nxt,{0,1},30][[All,2]] (* Harvey P. Dale, Jan 29 2023 *)
  • Maxima
    a(n) := if n=0 then 1 else n*a(n-1)+1; makelist(a(n),n,0,12); /* Emanuele Munarini, Apr 27 2017 */
  • PARI
    {a(n) = local(A); if( n<0, 0, A = vector(n+1); A[1]=1; for(k=1, n, A[k+1] = k*A[k] + 1); A[n+1])}; /* Michael Somos, Jul 01 2004 */
    
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( exp( x +x * O(x^n)) / (1 - x), n))}; /* Michael Somos, Mar 06 2004 */
    
  • PARI
    a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1-x)^2+x^2*deriv(A)/(1-x)); polcoeff(A, n) \\ Paul D. Hanna, Sep 03 2008
    
  • PARI
    {a(n)=local(X=x+x*O(x^n));polcoeff(sum(m=0,n,(m+2)^m*x^m/(1+(m+1)*X)^(m+1)),n)} /* Paul D. Hanna */
    
  • PARI
    a(n)=sum(k=0,n,binomial(n,k)*k!); \\ Joerg Arndt, Dec 14 2014
    
  • Sage
    # program adapted from Alois P. Heinz's Maple code in A022493
    @CachedFunction
    def b(n, i, t):
        if n <= 1:
            return 1
        return sum(b(n - 1, j, t + (j == i)) for j in range(t + 2))
    def a(n):
        return b(n, 0, 0)
    v000522 = [a(n) for n in range(33)]
    print(v000522)
    # Joerg Arndt, May 11 2013
    

Formula

a(n) = n*a(n-1) + 1, a(0) = 1.
a(n) = A007526(n-1) + 1.
a(n) = A061354(n)*A093101(n).
a(n) = n! * Sum_{k=0..n} 1/k! = n! * (e - Sum_{k>=n+1} 1/k!). - Michael Somos, Mar 26 1999
a(0) = 1; for n > 0, a(n) = floor(e*n!).
E.g.f.: exp(x)/(1-x).
a(n) = 1 + Sum_{n>=k>=j>=0} (k-j+1)*k!/j! = a(n-1) + A001339(n-1) = A007526(n) + 1. Binomial transformation of n!, i.e., A000142. - Henry Bottomley, Jun 04 2001
a(n) = floor(2/(n+1))*A009578(n+1)-1. - Emeric Deutsch, Oct 24 2001
Integral representation as n-th moment of a nonnegative function on a positive half-axis: a(n) = e*Integral_{x>=0} x^n*e^(-x)*Heaviside(x-1) dx. - Karol A. Penson, Oct 01 2001
Formula, in Mathematica notation: Special values of Laguerre polynomials, a(n)=(-1)^n*n!*LaguerreL[n, -1-n, 1], n=1, 2, ... . This relation cannot be checked by Maple, as it appears that Maple does not incorporate Laguerre polynomials with second index equal to negative integers. It does check with Mathematica. - Karol A. Penson and Pawel Blasiak ( blasiak(AT)lptl.jussieu.fr), Feb 13 2004
G.f.: Sum_{k>=0} k!*x^k/(1-x)^(k+1). a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*k^(n-k)*(k+1)^k. - Vladeta Jovovic, Aug 18 2002
a(n) = Sum_{k=0..n} A008290(n, k)*2^k. - Philippe Deléham, Dec 12 2003
a(n) = Sum_{k=0..n} A046716(n, k). - Philippe Deléham, Jun 12 2004
a(n) = e*Gamma(n+1,1) where Gamma(z,t) = Integral_{x>=t} e^(-x)*x^(z-1) dx is incomplete gamma function. - Michael Somos, Jul 01 2004
a(n) = Sum_{k=0..n} P(n, k). - Ross La Haye, Aug 28 2005
Given g.f. A(x), then g.f. A059115 = A(x/(1-x)). - Michael Somos, Aug 03 2006
a(n) = 1 + n + n*(n-1) + n*(n-1)*(n-2) + ... + n!. - Jonathan Sondow, Aug 18 2006
a(n) = Sum_{k=0..n} binomial(n,k) * k!; interpretation: for all k-subsets (sum), choose a subset (binomial(n,k)), and permutation of subset (k!). - Joerg Arndt, Dec 09 2012
a(n) = Integral_{x>=0} (x+1)^n*e^(-x) dx. - Gerald McGarvey, Oct 19 2006
a(n) = Sum_{k=0..n} A094816(n, k), n>=0 (row sums of Poisson-Charlier coefficient matrix). - N. J. A. Sloane, Nov 10 2007
From Tom Copeland, Nov 01 2007, Dec 10 2007: (Start)
Act on 1/(1-x) with 1/(1-xDx) = Sum_{j>=0} (xDx)^j = Sum_{j>=0} x^j*D^j*x^j = Sum_{j>=0} j!*x^j*L(j,-:xD:,0) where Lag(n,x,0) are the Laguerre polynomials of order 0, D the derivative w.r.t. x and (:xD:)^j = x^j*D^j. Truncating the operator series at the j = n term gives an o.g.f. for a(0) through a(n) consistent with Jovovic's.
These results and those of Penson and Blasiak, Arnold, Bottomley and Deleham are related by the operator A094587 (the reverse of A008279), which is the umbral equivalent of n!*Lag[n,(.)!*Lag[.,x,-1],0] = (1-D)^(-1) x^n = (-1)^n * n! Lag(n,x,-1-n) = Sum_{j=0..n} binomial(n,j)*j!*x^(n-j) = Sum_{j=0..n} (n!/j!)*x^j. Umbral substitution of b(.) for x and then letting b(n)=1 for all n connects the results. See A132013 (the inverse of A094587) for a connection between these operations and 1/(1-xDx).
(End)
From Peter Bala, Jul 15 2008: (Start)
a(n) = n!*e - 1/(n + 1/(n+1 + 2/(n+2 + 3/(n+3 + ...)))).
Asymptotic result (Ramanujan): n!*e - a(n) ~ 1/n - 1/n^3 + 1/n^4 + 2/n^5 - 9/n^6 + ..., where the sequence [1,0,-1,1,2,-9,...] = [(-1)^k*A000587(k)], for k>=1.
a(n) is a difference divisibility sequence, that is, the difference a(n) - a(m) is divisible by n - m for all n and m (provided n is not equal to m). For fixed k, define the derived sequence a_k(n) = (a(n+k)-a(k))/n, n = 1,2,3,... . Then a_k(n) is also a difference divisibility sequence.
For example, the derived sequence a_0(n) is just a(n-1). The set of integer sequences satisfying the difference divisibility property forms a ring with term-wise operations of addition and multiplication.
Recurrence relations: a(0) = 1, a(n) = (n-1)*(a(n-1) + a(n-2)) + 2, for n >= 1. a(0) = 1, a(1) = 2, D-finite with recurrence: a(n) = (n+1)*a(n-1) - (n-1)*a(n-2) for n >= 2. The sequence b(n) := n! satisfies the latter recurrence with the initial conditions b(0) = 1, b(1) = 1. This leads to the finite continued fraction expansion a(n)/n! = 1/(1-1/(2-1/(3-2/(4-...-(n-1)/(n+1))))), n >= 2.
Limit_{n->oo} a(n)/n! = e = 1/(1-1/(2-1/(3-2/(4-...-n/((n+2)-...))))). This is the particular case m = 0 of the general result m!/e - d_m = (-1)^(m+1) *(1/(m+2 -1/(m+3 -2/(m+4 -3/(m+5 -...))))), where d_m denotes the m-th derangement number A000166(m).
For sequences satisfying the more general recurrence a(n) = (n+1+r)*a(n-1) - (n-1)*a(n-2), which yield series acceleration formulas for e/r! that involve the Poisson-Charlier polynomials c_r(-n;-1), refer to A001339 (r=1), A082030 (r=2), A095000 (r=3) and A095177 (r=4).
For the corresponding results for the constants log(2), zeta(2) and zeta(3) refer to A142992, A108625 and A143007 respectively.
(End)
G.f. satisfies: A(x) = 1/(1-x)^2 + x^2*A'(x)/(1-x). - Paul D. Hanna, Sep 03 2008
From Paul Barry, Nov 27 2009: (Start)
G.f.: 1/(1-2*x-x^2/(1-4*x-4*x^2/(1-6*x-9*x^2/(1-8*x-16*x^2/(1-10*x-25*x^2/(1-... (continued fraction);
G.f.: 1/(1-x-x/(1-x/(1-x-2*x/(1-2*x/(1-x-3*x/(1-3*x/(1-x-4*x/(1-4*x/(1-x-5*x/(1-5*x/(1-... (continued fraction).
(End)
O.g.f.: Sum_{n>=0} (n+2)^n*x^n/(1 + (n+1)*x)^(n+1). - Paul D. Hanna, Sep 19 2011
G.f. hypergeom([1,k],[],x/(1-x))/(1-x), for k=1,2,...,9 is the generating function for A000522, A001339, A082030, A095000, A095177, A096307, A096341, A095722, and A095740. - Mark van Hoeij, Nov 07 2011
G.f.: 1/U(0) where U(k) = 1 - x - x*(k+1)/(1 - x*(k+1)/U(k+1)); (continued fraction). - Sergei N. Gladkovskii, Oct 14 2012
E.g.f.: 1/U(0) where U(k) = 1 - x/(1 - 1/(1 + (k+1)/U(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 16 2012
G.f.: 1/(1-x)/Q(0), where Q(k) = 1 - x/(1-x)*(k+1)/(1 - x/(1-x)*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, May 19 2013
G.f.: 2/(1-x)/G(0), where G(k) = 1 + 1/(1 - x*(2*k+2)/(x*(2*k+3) - 1 + x*(2*k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 31 2013
G.f.: (B(x)+ 1)/(2-2*x) = Q(0)/(2-2*x), where B(x) be g.f. A006183, Q(k) = 1 + 1/(1 - x*(k+1)/(x*(k+1) + (1-x)/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 08 2013
G.f.: 1/Q(0), where Q(k) = 1 - 2*x*(k+1) - x^2*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 30 2013
E.g.f.: e^x/(1-x) = (1 - 12*x/(Q(0) + 6*x - 3*x^2))/(1-x), where Q(k) = 2*(4*k+1)*(32*k^2 + 16*k + x^2 - 6) - x^4*(4*k-1)*(4*k+7)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 18 2013
G.f.: conjecture: T(0)/(1-2*x), where T(k) = 1 - x^2*(k+1)^2/(x^2*(k+1)^2 - (1 - 2*x*(k+1))*(1 - 2*x*(k+2))/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 18 2013
0 = a(n)*(+a(n+1) - 3*a(n+2) + a(n+3)) + a(n+1)*(+a(n+1) - a(n+3)) + a(n+2)*(+a(n+2)) for all n>=0. - Michael Somos, Jul 04 2014
From Peter Bala, Jul 29 2014: (Start)
a(n) = F(n), where the function F(x) := Integral_{0..infinity} e^(-u)*(1 + u)^x du smoothly interpolates this sequence to all real values of x. Note that F(-1) = G and for n = 2,3,... we have F(-n) = (-1)^n/(n-1)! *( A058006(n-2) - G ), where G = 0.5963473623... denotes Gompertz's constant - see A073003.
a(n) = n!*e - e*( Sum_{k >= 0} (-1)^k/((n + k + 1)*k!) ).
(End)
a(n) = hypergeometric_U(1, n+2, 1). - Peter Luschny, Nov 26 2014
a(n) ~ exp(1-n)*n^(n-1/2)*sqrt(2*Pi). - Vladimir Reshetnikov, Oct 27 2015
a(n) = A038155(n+2)/A000217(n+1). - Anton Zakharov, Sep 08 2016
a(n) = round(exp(1)*n!), n > 1 - Simon Plouffe, Jul 28 2020
a(n) = KummerU(-n, -n, 1). - Peter Luschny, May 10 2022
a(n) = (e/(2*Pi))*Integral_{x=-oo..oo} (n+1+i*x)!/(1+i*x) dx. - David Ulgenes, Apr 18 2023
Sum_{i=0..n} (-1)^(n-i) * binomial(n, i) * a(i) = n!. - Werner Schulte, Apr 03 2024

Extensions

Additional comments from Michael Somos

A001705 Generalized Stirling numbers: a(n) = n! * Sum_{k=0..n-1} (k+1)/(n-k).

Original entry on oeis.org

0, 1, 5, 26, 154, 1044, 8028, 69264, 663696, 6999840, 80627040, 1007441280, 13575738240, 196287356160, 3031488633600, 49811492505600, 867718162483200, 15974614352793600, 309920046408806400, 6320046028584960000, 135153868608460800000, 3024476051557847040000
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the sum of the positions of the right-to-left minima in all permutations of [n]. Example: a(3)=26 because the positions of the right-to-left minima in the permutations 123,132,213,231,312 and 321 are 123, 13, 23, 3, 23 and 3, respectively and 1 + 2 + 3 + 1 + 3 + 2 + 3 + 3 + 2 + 3 + 3 = 26. - Emeric Deutsch, Sep 22 2008
The asymptotic expansion of the higher order exponential integral E(x,m=2,n=2) ~ exp(-x)/x^2*(1 - 5/x + 26/x^2 - 154/x^3 + 1044/x^4 - 8028/x^5 + 69264/x^6 - ...) leads to the sequence given above. See A163931 and A028421 for more information. - Johannes W. Meijer, Oct 20 2009
a(n) is the total number of cycles (excluding fixed points) in all permutations of [n+1]. - Olivier Gérard, Oct 23 2012; Dec 31 2012
A length n sequence is formed by randomly selecting (one-by-one) n real numbers in (0,1). a(n)/(n+1)! is the expected value of the sum of the new maximums in such a sequence. For example for n=3: If we select (in this order): 0.591996, 0.646474, 0.163659 we would add 0.591996 + 0.646474 which would be a bit above the average of a(3)/4! = 26/24. - Geoffrey Critzer, Oct 17 2013

Examples

			(1-x)^-2 * (-log(1-x)) = x + 5/2*x^2 + 13/3*x^3 + 77/12*x^4 + ...
Examples: a(6) = 6!*(1/6 + 2/5 + 3/4 + 4/3 + 5/2 + 6/1) = 8028; a(20) = 20!*(1/20 + 2/19 + 3/18 + 4/17 + 5/16 + ... + 16/5 + 17/4 + 18/3 + 19/2 + 20/1) = 135153868608460800000. - _Alexander Adamchuk_, Oct 09 2004
From _Olivier Gérard_, Dec 31 2012: (Start)
The cycle decomposition of all permutations of 4 elements gives the following list: {{{1},{2},{3},{4}}, {{1},{2},{3,4}}, {{1},{2,3},{4}}, {{1},{2,4,3}}, {{1},{2,3,4}}, {{1},{2,4},{3}}, {{1,2},{3},{4}}, {{1,2},{3,4}}, {{1,3,2},{4}},{{1,4,3,2}}, {{1,3,4,2}}, {{1,4,2},{3}}, {{1,2,3},{4}}, {{1,2,4,3}},{{1,3},{2},{4}}, {{1,4,3},{2}}, {{1,3},{2,4}}, {{1,4,2,3}}, {{1,2,3,4}}, {{1,2,4},{3}}, {{1,3,4},{2}}, {{1,4},{2},{3}}, {{1,3,2,4}}, {{1,4},{2,3}}}.
Deleting the fixed points gives the following 26 items: {{3,4}, {2,3}, {2,4,3}, {2,3,4}, {2,4}, {1,2}, {1,2}, {3,4}, {1,3,2}, {1,4,3,2}, {1,3,4,2}, {1,4,2}, {1,2,3}, {1,2,4,3}, {1,3}, {1,4,3}, {1,3}, {2,4}, {1,4,2,3}, {1,2,3,4}, {1,2,4}, {1,3,4}, {1,4}, {1,3,2,4}, {1,4}, {2,3}}. (End)
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000254 (total number of cycles in permutations, including fixed points).
Cf. A002104 (number of different cycles in permutations, without fixed points).
Cf. A006231 (number of different cycles in permutations, including fixed points).
Related to n!*the k-th successive summation of the harmonic numbers:
(k=0) A000254, (k=1) A001705, (k=2) A001711, (k=3) A001716,
(k=4) A001721, (k=5) A051524, (k=6) A051545, (k=7) A051560,
(k=8) A051562, (k=9) A051564.

Programs

  • Maple
    a := n-> add((n+1)!/k, k=2..n+1): seq(a(n), n=0..21); # Zerinvary Lajos, Jan 22 2008; edited Johannes W. Meijer, Nov 28 2012
    a := n -> ((n+1)!*(h(n+1)-1)): h := n-> harmonic(n): seq(a(n), n=0..21); # Gary Detlefs, Dec 18 2009; corrected by Johannes W. Meijer, Nov 28 2012
  • Mathematica
    Table[n!*Sum[Sum[1/k,{k,1,m}], {m,1,n}], {n,0,20}] (* Alexander Adamchuk, Apr 14 2006 *)
    a[n_] := (n + 1)! (EulerGamma - 1 + PolyGamma[n + 2]);
    Table[a[n], {n, 0, 21}] (* Peter Luschny, Feb 19 2022 *)
  • Maxima
    a(n):=n!*sum(((-1)^(k+1)*binomial(n+1,k+1))/k,k,1,n); /* Vladimir Kruchinin, Oct 10 2016 */
    
  • PARI
    for(n=0,25, print1(n!*sum(k=0,n-1,(k+1)/(n-k)), ", ")) \\ G. C. Greubel, Jan 20 2017
    
  • Python
    from math import factorial
    def A001705(n):
        f = factorial(n)
        return sum(f*(k+1)//(n-k) for k in range(n)) # Chai Wah Wu, Jun 23 2022

Formula

Partial sum of first n harmonic numbers multiplied by n!.
a(n) = n!*Sum_{m=1..n} Sum_{k=1..m} 1/k = n!*Sum_{m=1..n} H(m), where H(m) = Sum_{k=1..m} 1/k = A001008(m)/A002805(m) is m-th Harmonic number.
E.g.f.: - log (1 - x) / (1 - x)^2.
a(n) = (n+1)! * H(n) - n*n!, H(n) = Sum_{k=1..n} (1/k).
a(n) = A112486(n, 1).
a(n) = a(n-1)*(n+1) + n! = A000254(n+1) - A000142(n+1) = A067176(n+1, 1). - Henry Bottomley, Jan 09 2002
a(n) = Sum_{k=0..n-1} ((-1)^(n-1+k) * (k+1) * 2^k * Stirling1(n, k+1)). - Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
With alternating signs: Ramanujan polynomials psi_2(n, x) evaluated at 0. - Ralf Stephan, Apr 16 2004
a(n) = Sum_{k=1..n} (k*StirlingCycle(n+1,k+1)). - David Callan, Sep 25 2006
a(n) = Sum_{k=n..n*(n+1)/2} k*A143947(n,k). - Emeric Deutsch, Sep 22 2008
For n >= 1, a(n) = Sum_{j=0..n-1} ((-1)^(n-j-1) * 2^j * (j+1) * Stirling1(n,j+1)). - Milan Janjic, Dec 14 2008
a(n) = (2*n+1)*a(n-1) - n^2*a(n-2). - Gary Detlefs, Nov 27 2009
a(n) = (n+1)!*(H(n+1) - 1) where H(n) is the n-th harmonic number. - Gary Detlefs, Dec 18 2009
a(n) = n!*Sum_{k=1..n} (-1)^(k+1)*binomial(n+1,k+1)/k. - Vladimir Kruchinin, Oct 10 2016
a(n) = (n+1)!*Sum_{k = 1..n} (-1)^(k+1)*binomial(n+1,k+1)*k/(k+1). - Peter Bala, Feb 15 2022
a(n) = Gamma(n + 2) * (Digamma(n + 2) + EulerGamma - 1). - Peter Luschny, Feb 19 2022
From Mélika Tebni, Jun 22 2022: (Start)
a(n) = -Sum_{k=0..n} k!*A066667(n, k+1).
a(n) = Sum_{k=0..n} k!*A132159(n, k+1). (End)
a(n) = n*(n + 1)!*hypergeom([1, 1, 1 - n], [2, 3], 1)/2. - Peter Luschny, Jun 22 2022

Extensions

More terms from Sascha Kurz, Mar 22 2002

A002104 Logarithmic numbers.

Original entry on oeis.org

0, 1, 3, 8, 24, 89, 415, 2372, 16072, 125673, 1112083, 10976184, 119481296, 1421542641, 18348340127, 255323504932, 3809950977008, 60683990530225, 1027542662934915, 18430998766219336, 349096664728623336, 6962409983976703337, 145841989688186383359, 3201192743180799343844
Offset: 0

Views

Author

Keywords

Comments

Prime p divides a(p+1). - Alexander Adamchuk, Jul 05 2006
Also number of lists of elements from {1,..,n} with (1st element) = (smallest element), where a list means an ordered subset (cf. A000262), see also Haskell program. - Reinhard Zumkeller, Oct 26 2010
a(n+1) = p_n(-1) where p_n(x) is the unique degree-n polynomial such that p_n(k) = A133942(k) for k = 0, 1, ..., n. - Michael Somos, Apr 30 2012
a(n) = A006231(n) + n. - Geoffrey Critzer, Oct 04 2012

Examples

			From _Reinhard Zumkeller_, Oct 26 2010: (Start)
a(3) = #{[1], [1,2], [1,2,3], [1,3], [1,3,2], [2], [2,3], [3]} = 8;
a(4) = #{[1], [1,2], [1,2,3], [1,2,3,4], [1,2,4], [1,2,4,3], [1,3], [1,3,2], [1,3,2,4], [1,3,4], [1,3,4,2], [1,4], [1,4,2], [1,4,2,3], [1,4,3], [1,4,3,2], [2], [2,3], [2,3,4], [2,4], [2,4,3], [3], [3,4], [4]} = 24. (End)
G.f. = x + 3*x^2 + 8*x^3 + 24*x^4 + 89*x^5 + 415*x^6 + 2372*x^7 + ...
		

References

  • J. M. Gandhi, On logarithmic numbers, Math. Student, 31 (1963), 73-83.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    import Data.List (subsequences, permutations)
    a002104 = length . filter (\xs -> head xs == minimum xs) .
                       tail . choices . enumFromTo 1
       where choices = concat . map permutations . subsequences
    -- Reinhard Zumkeller, Feb 21 2012, Oct 25 2010
    
  • Maple
    a := proc(n) option remember; ifelse(n < 2, n, n*a(n-1) - (n-1)*a(n-2) + 1) end:
    seq(a(n), n = 0..23); # Peter Luschny, Dec 05 2023
  • Mathematica
    Table[Sum[Sum[m!/k!,{k,0,m}],{m,0,n-1}],{n,1,30}] (* Alexander Adamchuk, Jul 05 2006 *)
    a[n_] = n*(HypergeometricPFQ[{1, 1, 1-n}, {2}, -1]); Table[a[n], {n, 1, 20}] (* Jean-François Alcover, Mar 29 2011 *)
  • PARI
    x='x+O('x^99); concat([0], Vec(serlaplace(-log(1-x)*exp(x)))) \\ Altug Alkan, Dec 17 2017
    
  • PARI
    {a(n) = sum(k=0, n-1, binomial(n, k) * (n-k-1)!)}; /* Michael Somos, May 08 2019 */

Formula

E.g.f.: -log(1 - x) * exp(x).
a(n) = Sum_{k=1..n} Sum_{i=0..n-k} (n-k)!/i!.
a(n) = Sum_{k=1..n} n(n-1)...(n-k+1)/k = A006231(n) + n - Avi Peretz (njk(AT)netvision.net.il), Mar 24 2001
a(n+1) - a(n) = A000522(n).
a(n) = sum{k=0..n-1, binomial(n, k)*(n-k-1)!}, row sums of A111492. - Paul Barry, Aug 26 2004
a(n) = Sum[Sum[m!/k!,{k,0,m}],{m,0,n-1}]. a(n) = Sum[A000522(m),{m,0,n-1}]. - Alexander Adamchuk, Jul 05 2006
For n > 1, the arithmetic mean of the first n terms is a(n-1) + 1. - Franklin T. Adams-Watters, May 20 2010
a(n) = n * 3F1((1,1,1-n); (2); -1). - Jean-François Alcover, Mar 29 2011
Conjecture: a(n) +(-n-1)*a(n-1) +2*(n-1)*a(n-2) +(-n+2)*a(n-3)=0. - R. J. Mathar, Dec 02 2012
From Emanuele Munarini, Dec 16 2017: (Start)
The generating series A(x) = -exp(x)*log(1-x) satisfies the differential equations:
(1-x)*A'(x) - (1-x)*A(x) = exp(x)
(1-x)*A''(x) - (3-2*x)*A'(x) + (2-x)*A(x) = 0.
From the first one, we have the recurrence reported below by R. R. Forberg. From the second one, we have the recurrence conjectured above. (End)
G.f.: conjecture: T(0)*x/(1-2*x)/(1-x), where T(k) = 1 - x^2*(k+1)^2/(x^2*(k+1)^2 - (1 - 2*x*(k+1))*(1 - 2*x*(k+2))/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 18 2013
a(n) ~ exp(1)*(n-1)!. - Vaclav Kotesovec, Mar 10 2014
a(n) = n*a(n-1) - (n-1)*a(n-2) + 1, a(0) = 0, a(1) = 1. - Richard R. Forberg, Dec 15 2014
a(n) = A007526(n) + A006231(n+1) - A030297(n). - Anton Zakharov, Sep 05 2016
0 = +a(n)*(+a(n+1) -4*a(n+2) +4*a(n+3) -a(n+4)) +a(n+1)*(+2*a(n+2) -5*a(n+3) +2*a(n+4)) +a(n+2)*(+2*a(n+2) -a(n+3) -a(n+4)) +a(n+3)*(+a(n+3)) for all n>=0. - Michael Somos, May 08 2019
From Peter Bala, Sep 12 2022: (Start)
For n, m >= 0, a(n) - a(n + m) == ( a(1) - a(m) ) (mod m). The sequence {mod(a(1) - a(m+1), m): m >= 1} begins [0, 1, 1, 0, 1, 5, 1, 0, 3, 7, 1, 4, 1, 9, 8, 0, 1, 15, 1, 4, ...].
Conjectures:
1) for n, m >= 0, k >= 2, a(n + m*2^k) - a(n) is divisible by 2^k.
2) for n >= 0, a(n + m*p^k) - a(n) + m*p^(k-1) is divisible by p^k for all positive integers m and k, and for all odd primes p. The particular case n = m = k = 1 is stated in the Comments section by Adamchuk. (End)
a(n) = Integral_{t=0..oo} ((t + 1)^n - 1)/(t*e^t) dt. - Velin Yanev, Apr 13 2024
a(n) = Gamma(n)*(e - ((-1)^n)*Gamma(1 - n, -1)) + hypergeom([1, 1], [2, n + 2], 1)/(n + 1) - polygamma(n) - 1/n + i*Pi for n > 0, where polygamma is the digamma function and the bivariate gamma function is the upper incomplete gamma function. - Velin Yanev, Apr 13 2024

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Mar 27 2001

A136394 Triangle read by rows: T(n,k) is the number of permutations of an n-set having k cycles of size > 1 (0<=k<=floor(n/2)).

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 1, 20, 3, 1, 84, 35, 1, 409, 295, 15, 1, 2365, 2359, 315, 1, 16064, 19670, 4480, 105, 1, 125664, 177078, 56672, 3465, 1, 1112073, 1738326, 703430, 74025, 945, 1, 10976173, 18607446, 8941790, 1346345, 45045, 1, 119481284, 216400569, 118685336
Offset: 0

Views

Author

Vladeta Jovovic, May 03 2008

Keywords

Examples

			Triangle (n,k) begins:
  1;
  1;
  1,    1;
  1,    5;
  1,   20,    3;
  1,   84,   35;
  1,  409,  295,  15;
  1, 2365, 2359, 315;
  ...
		

Crossrefs

Programs

  • Maple
    egf:= proc(k::nonnegint) option remember; x-> exp(x)* ((-x-ln(1-x))^k)/k! end; T:= (n,k)-> coeff(series(egf(k)(x), x=0, n+1), x, n) *n!; seq(seq(T(n,k), k=0..n/2), n=0..30); # Alois P. Heinz, Aug 14 2008
    # second Maple program:
    b:= proc(n) option remember; expand(`if`(n=0, 1, add(b(n-i)*
          `if`(i>1, x, 1)*binomial(n-1, i-1)*(i-1)!, i=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Sep 25 2016
    # third Maple program:
    T:= proc(n, k) option remember; `if`(k<0 or k>2*n, 0,
          `if`(n=0, 1, add(T(n-i, k-`if`(i>1, 1, 0))*
           mul(n-j, j=1..i-1), i=1..n)))
        end:
    seq(seq(T(n,k), k=0..n/2), n=0..15);  # Alois P. Heinz, Jul 16 2017
  • Mathematica
    max = 12; egf = Exp[x*(1-y)]/(1-x)^y; s = Series[egf, {x, 0, max}, {y, 0, max}] // Normal; t[n_, k_] := SeriesCoefficient[s, {x, 0, n}, {y, 0, k}]*n!; t[0, 0] = t[1, 0] = 1; Table[t[n, k], {n, 0, max}, {k, 0, n/2}] // Flatten (* Jean-François Alcover, Jan 28 2014 *)

Formula

E.g.f.: exp(x*(1-y))/(1-x)^y. Binomial transform of triangle A008306. exp(x)*((-x-log(1-x))^k)/k! is e.g.f. of k-th column.
From Alois P. Heinz, Jul 13 2017: (Start)
T(2n,n) = A001147(n).
T(2n+1,n) = A051577(n) = (2*n+3)!!/3 = A001147(n+2)/3. (End)
From Alois P. Heinz, Aug 17 2023: (Start)
Sum_{k=0..floor(n/2)} k * T(n,k) = A001705(n-1) for n>=1.
Sum_{k=0..floor(n/2)} (-1)^k * T(n,k) = A159964(n-1) for n>=1. (End)

A059760 a(n) is the number of edges (one-dimensional faces) in the convex polytope of real n X n doubly stochastic matrices.

Original entry on oeis.org

0, 0, 1, 15, 240, 5040, 147240, 5959800, 323850240, 22800476160, 2017745251200, 219066851203200, 28615863103027200, 4425987756321331200, 799788468703877452800, 166940001463941433728000, 39857401887591969128448000, 10792266259145851457961984000
Offset: 0

Views

Author

Noam Katz (noamkj(AT)hotmail.com), Feb 20 2001

Keywords

Comments

The vertices are the n! permutation matrices. If A(p1) and A(p2) are two permutation matrices corresponding to permutations p1 and p2 the closed interval between these two matrices forms an edge of the polytope iff the permutation p1*(p2^-1) is a cycle, i.e. its cycle decomposition in the symmetric group S_n contains exactly one nontrivial cycle.

Examples

			a(3) = 15 because there are 3! = 6 vertices and C(6,2) intervals and in this case all are edges so a(3) = C(6,2) = 15.
		

Crossrefs

Cf. A059615.
Note that b(n) = (Sum k=2...n C(n,k)*(k-1)!) gives sequence A006231.

Programs

  • Maple
    with(combinat): for n from 1 to 30 do printf(`%d,`,1/2* n! * sum(binomial(n,k)*(k-1)!, k=2..n)) od:
  • Mathematica
    a[n_] = If[n==0, 0, (n*n!/2)*(HypergeometricPFQ[{1, 1, 1-n}, {2}, -1]-1)]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 19 2017 *)

Formula

a(n) = 1/2* n! * Sum_{k=2...n} C(n,k)*(k-1)!.
a(n) ~ Pi * n^(2*n) / exp(2*n - 1). - Vaclav Kotesovec, Jun 09 2019

Extensions

More terms from James Sellers, Feb 21 2001

A111492 Triangle read by rows: a(n,k) = (k-1)! * C(n,k).

Original entry on oeis.org

1, 2, 1, 3, 3, 2, 4, 6, 8, 6, 5, 10, 20, 30, 24, 6, 15, 40, 90, 144, 120, 7, 21, 70, 210, 504, 840, 720, 8, 28, 112, 420, 1344, 3360, 5760, 5040, 9, 36, 168, 756, 3024, 10080, 25920, 45360, 40320, 10, 45, 240, 1260, 6048, 25200, 86400, 226800, 403200, 362880
Offset: 1

Views

Author

Ross La Haye, Nov 15 2005

Keywords

Comments

For k > 1, a(n,k) = the number of permutations of the symmetric group S_n that are pure k-cycles.
Reverse signed array is A238363. For a relation to (Cauchy-Euler) derivatives of the Vandermonde determinant, see Chervov link. - Tom Copeland, Apr 10 2014
Dividing the k-th column of T by (k-1)! for each column generates A135278 (the f-vectors, or face-vectors for the n-simplices). Then ignoring the first column gives A104712, so T acting on the column vector (-0,d,-d^2/2!,d^3/3!,...) gives the Euler classes for hypersurfaces of degree d in CP^n. Cf. A104712 and Dugger link therein. - Tom Copeland, Apr 11 2014
With initial i,j,n=1, given the n X n Vandermonde matrix V_n(x_1,...,x_n) with elements a(i=row,j=column)=(x_j)^(i-1), its determinant |V_n|, and the column vector of n ones C=(1,1,...,1), the n-th row of the lower triangular matrix T is given by the column vector determined by (1/|V_n|) * V_n(:x_1*d/dx_1:,...,:x_n*d/dx_n:)|V_n| * C, where :x_j*d/dx_j:^n = (x_j)^n*(d/dx_j)^n. - Tom Copeland, May 20 2014
For some other combinatorial interpretations of the first three columns of T, see A208535 and the link to necklace polynomials therein. Because of the simple relation of the array to the Pascal triangle, it can easily be related to many other arrays, e.g., T(p,k)/(p*(k-1)!) with p prime gives the prime rows of A185158 and A051168 when the non-integers are rounded to 0. - Tom Copeland, Oct 23 2014

Examples

			a(3,3) = 2 because (3-1)!C(3,3) = 2.
1;
2 1;
3 3 2;
4 6 8 6;
5 10 20 30 24;
6 15 40 90 144 120;
7 21 70 210 504 840 720;
8 28 112 420 1344 3360 5760 5040;
9 36 168 756 3024 10080 25920 45360 40320;
		

Programs

  • Magma
    /* As triangle: */ [[Factorial(k-1)*Binomial(n,k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Oct 21 2014
  • Mathematica
    Flatten[Table[(k - 1)!Binomial[n, k], {n, 10}, {k, n}]]

Formula

a(n, k) = (k-1)!C(n, k) = P(n, k)/k.
E.g.f. (by columns) = exp(x)((x^k)/k).
a(n, 1) = A000027(n);
a(n, 2) = A000217(n-1);
a(n, 3) = A007290(n);
a(n, 4) = A033487(n-3).
a(n, n) = A000142(n-1);
a(n, n-1) = A001048(n-1) for n > 1.
Sum[a(n, k), {k, 1, n}] = A002104(n);
Sum[a(n, k), {k, 2, n}] = A006231(n).
a(n,k) = sum(j=k..n-1, j!/(j-k)!) (cf. Chervov link). - Tom Copeland, Apr 10 2014
From Tom Copeland, Apr 28 2014: (Start)
E.g.f. by row: [(1+t)^n-1]/t.
E.g.f. of row e.g.f.s: {exp[(1+t)*x]-exp(x)}/t.
O.g.f. of row e.g.f.s: {1/[1-(1+t)*x] - 1/(1-x)}/t.
E.g.f. of row o.g.f.s: -exp(x) * log(1-t*x). (End)

A349979 Irregular triangle read by rows: T(n,k) is the number of n-permutations whose second-longest cycle has length exactly k; n>=0, 0<=k<=floor(n/2).

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 6, 15, 3, 24, 61, 35, 120, 290, 270, 40, 720, 1646, 1974, 700, 5040, 11025, 14707, 8288, 1260, 40320, 85345, 117459, 90272, 29484, 362880, 749194, 1023390, 974720, 446040, 72576, 3628800, 7347374, 9813210, 10666480, 6332040, 2128896
Offset: 0

Views

Author

Steven Finch, Dec 07 2021

Keywords

Comments

If the permutation has no second cycle, then its second-longest cycle is defined to have length 0.

Examples

			Triangle begins:
[0]     1;
[1]     1;
[2]     1,     1;
[3]     2,     4;
[4]     6,    15,      3;
[5]    24,    61,     35;
[6]   120,   290,    270,    40;
[7]   720,  1646,   1974,   700;
[8]  5040, 11025,  14707,  8288,  1260;
[9] 40320, 85345, 117459, 90272, 29484;
    ...
		

Crossrefs

Column 0 gives 1 together with A000142.
Column 1 gives 1 - (n-1)! + A006231(n).
Row sums give A000142.
T(2n,n) gives A110468(n-1) for n>=1.

Programs

  • Maple
    b:= proc(n, l) option remember; `if`(n=0, x^l[1], add((j-1)!*
          b(n-j, sort([l[], j])[2..3])*binomial(n-1, j-1), j=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n/2))(b(n, [0$2])):
    seq(T(n), n=0..12);  # Alois P. Heinz, Dec 07 2021
  • Mathematica
    b[n_, l_] := b[n, l] = If[n == 0, x^l[[1]], Sum[(j - 1)!*b[n - j, Sort[ Append[l, j]][[2 ;; 3]]]*Binomial[n - 1, j - 1], {j, 1, n}]];
    T[n_] := With[{p = b[n, {0, 0}]}, Table[Coefficient[p, x, i], {i, 0, n/2}]];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)

Formula

Sum_{k=0..floor(n/2)} k * T(n,k) = A332851(n). - Alois P. Heinz, Dec 07 2021

A211603 Triangular array read by rows: T(n,k) is the number of n-permutations that are pure cycles having exactly k fixed points; n>=2, 0<=k<=n-2.

Original entry on oeis.org

1, 2, 3, 6, 8, 6, 24, 30, 20, 10, 120, 144, 90, 40, 15, 720, 840, 504, 210, 70, 21, 5040, 5760, 3360, 1344, 420, 112, 28, 40320, 45360, 25920, 10080, 3024, 756, 168, 36, 362880, 403200, 226800, 86400, 25200, 6048, 1260, 240, 45, 3628800, 3991680, 2217600, 831600, 237600, 55440, 11088, 1980, 330, 55
Offset: 2

Views

Author

Geoffrey Critzer, Feb 10 2013

Keywords

Comments

Equivalently, T(n,k) is the number of n-permutations that are pure cycles of length n-k.
Row sums = A006231.
With a different row and column indexing, this triangle equals the infinitesimal generator of A008290. Equals the unsigned version of A238363, omitting its main diagonal. See also A092271. - Peter Bala, Feb 13 2017

Examples

			T(3,1) = 3 because we have (1)(2,3), (2)(1,3), (3)(1,2).
1;
2, 3;
6, 8, 6;
24, 30, 20, 10;
120, 144, 90, 40, 15;
720, 840, 504, 210, 70, 21;
5040, 5760, 3360, 1344, 420, 112, 28;
40320, 45360, 25920, 10080, 3024, 756, 168, 36;
362880, 403200, 226800, 86400, 25200, 6048, 1260, 240, 45;
		

Crossrefs

Cf. A006231 (row sums), A008290, A092271, A111492, A238363.

Programs

  • Maple
    T:= (n, k)-> binomial(n, k)*(n-k-1)!:
    seq(seq(T(n,k), k=0..n-2), n=2..12);  # Alois P. Heinz, Feb 10 2013
  • Mathematica
    nn=10;f[list_]:=Select[list,#>0&];Map[f,Range[0,nn]!CoefficientList[ Series[Exp[y x](Log[1/(1-x)]-x),{x,0,nn}],{x,y}]]//Grid

Formula

E.g.f.: exp(y*x)*(log(1/(1-x))-x).
T(n,k) = C(n,k)*(n-k-1)!. - Alois P. Heinz, Feb 10 2013
T(n,k) = A111492(n,n-k). - R. J. Mathar, Mar 07 2013

A121726 Sum sequence A000522 then subtract 0,1,2,3,4,5,...

Original entry on oeis.org

1, 2, 6, 21, 85, 410, 2366, 16065, 125665, 1112074, 10976174, 119481285, 1421542629, 18348340114, 255323504918, 3809950976993, 60683990530209, 1027542662934898, 18430998766219318, 349096664728623317, 6962409983976703317, 145841989688186383338, 3201192743180799343822
Offset: 1

Views

Author

Alford Arnold, Aug 17 2006

Keywords

Comments

Let aut(p) denote the size of the centralizer of the partition p (see A339016 for the definition). Then a(n) = Sum_{p in P} n!/aut(p), where P are the partitions of n with largest part k and length n + 1 - k. - Peter Luschny, Nov 19 2020

Examples

			A000522 begins     1 2 5 16 65 326 ...
with sums          1 3 8 24 89 415 ...
so sequence begins 1 2 6 21 85 410 ...
.
From _Peter Luschny_, Nov 19 2020: (Start):
The combinatorial interpretation is illustrated by this computation of a(5):
5! / aut([5])             = 120 / A339033(5, 1) = 120/5   = 24
5! / aut([4, 1])          = 120 / A339033(5, 2) = 120/4   = 30
5! / aut([3, 1, 1])       = 120 / A339033(5, 3) = 120/6   = 20
5! / aut([2, 1, 1, 1])    = 120 / A339033(5, 4) = 120/12  = 10
5! / aut([1, 1, 1, 1, 1]) = 120 / A339033(5, 5) = 120/120 =  1
--------------------------------------------------------------
                                                Sum: a(5) = 85
(End)
		

Crossrefs

Also the row sums of A092271.

Programs

  • Mathematica
    f[list_] :=Total[list]!/Apply[Times, list]/Apply[Times, Map[Length, Split[list]]!]; Table[Total[Map[f, Select[Partitions[n], Count[#, Except[1]] == 1 &]]] + 1, {n, 1, 20}] (* Geoffrey Critzer, Nov 07 2015 *)
  • PARI
    A000522(n)={ return( sum(k=0,n,n!/k!)) ; } A121726(n)={ return(sum(k=0,n-1,A000522(k))-n+1) ; } { for(n=1,25, print1(A121726(n),",") ; ) ; } \\ R. J. Mathar, Sep 02 2006
    
  • SageMath
    def A121726(n):
        def h(n, k):
            if n == k: return 1
            return factorial(n)//((n + 1 - k)*factorial(k - 1))
        return sum(h(n, k) for k in (1..n))
    print([A121726(n) for n in (1..23)])
    # Demonstrates the combinatorial view:
    def A121726(n):
        if n == 0: return 1
        f = factorial(n); S = 0
        for k in (0..n):
            for p in Partitions(n, max_part=k, inner=[k], length=n+1-k):
                S += (f // p.aut())
        return S
    print([A121726(n) for n in (1..23)]) # Peter Luschny, Nov 20 2020

Formula

a(n) = A006231(n) + 1 = A002104(n) - (n-1). - Franklin T. Adams-Watters, Aug 29 2006
E.g.f.: exp(x)*(log(1/(1-x)) - x + 1). - Geoffrey Critzer, Nov 07 2015

Extensions

More terms from Franklin T. Adams-Watters, Aug 29 2006
More terms from R. J. Mathar, Sep 02 2006

A339016 A classification of permutations based on their cycle length and the size of the centralizer of their cycle type. Triangle read by rows, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 0, 0, 6, 0, 0, 0, 3, 21, 0, 0, 0, 0, 35, 85, 0, 0, 0, 0, 55, 255, 410, 0, 0, 0, 0, 0, 1015, 1659, 2366, 0, 0, 0, 0, 0, 2485, 10528, 11242, 16065, 0, 0, 0, 0, 0, 2240, 58149, 92064, 84762, 125665, 0, 0, 0, 0, 0, 0, 228221, 760725, 805530, 722250, 1112074
Offset: 0

Views

Author

Peter Luschny, Nov 19 2020

Keywords

Comments

The size of the centralizer of a partition p is aut(p) = Product_{j = 1..k} m(j)!*j^m(j), where m(j) is the multiplicity of j as a part of p. (For instance p = [2, 2, 2] -> aut(p) = 3!*2^3.)
Let M be the matrix with M(k, r) = Sum_{p in P(n, k)} n! / aut(p) where P(n, k) are the partitions of n with largest part k and length(p) = r. Then T(n, k) = Sum_{j=0..k} M(j, k-j+1), which are the antidiagonal sums of the upper triangular part of the matrix M.
In the example section below it is explained how the matrix M leads to a two-dimensional classification of the permutations of [n] which project to the unsigned Stirling cycle numbers and the number of permutations with longest cycle length.

Examples

			Triangle starts:
0:  [1]
1:  [0, 1]
2:  [0, 0, 2]
3:  [0, 0, 0, 6]
4:  [0, 0, 0, 3,  21]
5:  [0, 0, 0, 0,  35,   85]
6:  [0, 0, 0, 0,  55,  255,     410]
7:  [0, 0, 0, 0,   0, 1015,    1659,  2366]
8:  [0, 0, 0, 0,   0, 2485,   10528, 11242, 16065]
9:  [0, 0, 0, 0,   0, 2240,   58149, 92064, 84762, 125665]
----------------------------------------------------------
Sum  1, 1, 2, 9, 111, 6080, 2331767, ...
.
Examples for the basic two-dimensional classification of permutations (dots indicate zeros):
.
* Case n = 6:
   |   1     2     3    4    5    6  | Sum
-------------------------------------|----
1  |   .     .     .    .    .   [1] |   1
2  |   .     .   [ 15] [45] [15]     |  75
3  |   .   [ 40] [120] [40]          | 200
4  |   .   [ 90] [ 90]               | 180
5  |   .   [144]                     | 144
6  | [120]                           | 120
-------------------------------------|----
Sum| 120,  274,   225,  85,  15,  1  | 720
.
Antidiagonals: [40 + 15, 90 + 120 + 45, 120 + 144 + 90 + 40 + 15 + 1]
Leads to row 6 (disregarding leading zeros): 55 + 255 + 410 = 720.
.
* Case n = 7:
   |  1      2     3     4     5    6    7  | Sum
--------------------------------------------|-----
1  |  .      .     .     .     .    .   [1] |    1
2  |  .      .     .   [105] [105] [21]     |  231
3  |  .      .   [490] [420] [ 70]          |  980
4  |  .    [420] [630] [210]                | 1260
5  |  .    [504] [504]                      | 1008
6  |  .    [840]                            |  840
7  | [720]                                  |  720
--------------------------------------------|-----
Sum| 720,  1764,  1624, 735,  175,  21,  1  | 5040
.
Antidiagonals: [420+490+105, 504+630+420+105, 720+840+504+210+70+21+1]
Leads to row 7 (disregarding leading zeros): 1015 + 1659 + 2366 = 5040
.
* Column sums of the matrix give the unsigned Stirling cycle numbers, A132393.
* Row sums of the matrix give the number of permutations of n elements whose longest cycle have length k, A126074.
* The main antidiagonal of the matrix gives the number of n-permutations that are pure cycles of length n - k, A092271.
* The entries of the matrix sum to n!. In particular the sum over all row sums, the sum over all column sums, and the sum over all antidiagonal sums is n!.
* The columns of the triangle are finite in the sense that their entries become ultimately zero. Column sums of the triangle are A339015.
		

Crossrefs

Cf. A000142 (row sums), A339015 (column sums), A132393, A126074, A092271, A121726, A339033, A006231, A002104.

Programs

  • SageMath
    # For illustration computes also A132393 and A126074 (remove the #).
    def A339016Row(n):
        f = factorial(n); M = matrix(n + 2)
        for k in (0..n):
            for p in Partitions(n, max_part=k, inner=[k]):
                M[k, len(p)] += (f // p.aut())
        # print("max cyc len", [sum(M[k, j] for j in (0..n+1)) for k in (0..n)])
        # print("Stirling 1 ", [sum(M[j, k] for j in (0..n+1)) for k in (0..n)])
        if n == 0: return [1]
        return [sum(M[j, k-j+1] for j in srange(k, 0, -1)) for k in (0..n)]
    for n in (0..9): print(A339016Row(n))

Formula

T(n, n) = A006231(n) + 1 = A002104(n) - (n-1) (after Franklin T. Adams-Watters in A121726).
Showing 1-10 of 11 results. Next