cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 39 results. Next

A383922 a(n) = A002104(n) + A002104(n+1) - 1.

Original entry on oeis.org

0, 3, 10, 31, 112, 503, 2786, 18443, 141744, 1237755, 12088266, 130457479, 1541023936, 19769882767, 273671845058, 4065274481939, 64493941507232, 1088226653465139, 19458541429154250, 367527663494842671, 7311506648705326672, 152804399672163086695, 3347034732868985727202, 76675452816691696778843
Offset: 0

Views

Author

Jianing Song, May 15 2025

Keywords

Comments

Let m_0(x) = -x for x < 0 and (1/2)*m_0(x - m_0(x-1)) for x >= 0, then:
m_0(1 - 2^(-n)) = 2^(-(n+1)) for n >= -1;
m_0(2 - 2^(-n)) = 2^(-(2*n+3)) for n >= -2;
m_0(3 - 2^(-n)) = 2^(-a(n+2)) for n >= -2 (see my link for a proof).
Let F_0 = {x + m_0(x) : x in R}, then the intersection of F_0 and (-oo,n) is well-ordered with order type omega^^n. As a result, F_0 is well-ordered with order type epsilon_0 = omega^^omega. F_0 is a proper subset of F, the set of fusible numbers.
It had been believed that x + m_0(x) was the least fusible greater than x. Junyan Xu points out that this is false. Indeed, let x_n = 17/8 - 1/2^(n+1), c_n = 5/4 - 1/2^(n+1), and d_n = 2 - 1/2^(n-2) + 1/2^(2*n-1) for n >= 0, then
c_n = (1/2 + (1-1/2^n) + 1)/2,
d_n = ((1-1/2^(2*n-2)) + d_{n-1} + 1)/2, n >= 1
are both fusible numbers, hence so is (c_n + d_{n+3} + 1)/2 = 17/8 - 1/2^(n+1) + 1/2^(2*n+6); in other words, the least fusible number greater than x_n is at most x_n + 1/2^(2*n+6). But we have m_0(x_n) = 1/2^(n+8) > 1/2^(2*n+6) for n >= 3.
Junyan Xu gives a conjecture on the recursive formula of m(x), where x + m(x) is the least fusible greater than x. (A188545(n) is -log_2 m(n)). We have m(x) = m_0(x) for x < 33/16 (i.e., F_0 and F coincide on the interval (-oo,33/16]), but they differ for x >= 33/16, even if the intersection of F and (-oo,n) still has order type omega^^n if the conjecture is true. In fact, we have -log_2 m_0(3) = 1541023937, while -log_2 m(3) > 2^^^^^^^^^16 in Knuth's up-arrow notation.

Crossrefs

Programs

Formula

E.g.f.: exp(x) * (-2*log(1-x) + x/(1-x)).
E.g.f. satisfies (1-x)^2 * (A'(x) - A(x)) = (-2*x+3)*exp(x).
Recurrence: n*a(n) = (n^2+n-1)*a(n-1) - (n^2-1)*a(n-2) + 2*n + 1, a(0) = 0, a(1) = 3.
Recurrence: a(n) = n*a(n-1) - a(n-2) - (n-2)*a(n-3) + 4, a(0) = 0, a(1) = 3, a(2) = 10.
a(n) ~ exp(1)*n!.

A120281 Logarithmic numbers A002104[p+1] divided by p=Prime[n].

Original entry on oeis.org

4, 8, 83, 2296, 10861936, 1411410779, 60443686054995, 18373508669927544, 3194533046674386845000, 858410779506468749371519333771, 745094155915562576848262528092832
Offset: 1

Views

Author

Alexander Adamchuk, Jul 05 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[m!/k!,{k,0,m}],{m,0,Prime[n]}]/Prime[n],{n,1,15}]

Formula

a(n) = Sum[Sum[m!/k!,{k,0,m}],{m,0,Prime[n]}]/Prime[n]. a(n) = A002104[p+1]/p, where p=Prime[n].

A000522 Total number of ordered k-tuples (k=0..n) of distinct elements from an n-element set: a(n) = Sum_{k=0..n} n!/k!.

Original entry on oeis.org

1, 2, 5, 16, 65, 326, 1957, 13700, 109601, 986410, 9864101, 108505112, 1302061345, 16926797486, 236975164805, 3554627472076, 56874039553217, 966858672404690, 17403456103284421, 330665665962404000, 6613313319248080001, 138879579704209680022, 3055350753492612960485, 70273067330330098091156
Offset: 0

Views

Author

Keywords

Comments

Total number of permutations of all subsets of an n-set.
Also the number of one-to-one sequences that can be formed from n distinct objects.
Old name "Total number of permutations of a set with n elements", or the same with the word "arrangements", both sound too much like A000142.
Related to number of operations of addition and multiplication to evaluate a determinant of order n by cofactor expansion - see A026243.
a(n) is also the number of paths (without loops) in the complete graph on n+2 vertices starting at one vertex v1 and ending at another v2. Example: when n=2 there are 5 paths in the complete graph with 4 vertices starting at the vertex 1 and ending at the vertex 2: (12),(132),(142),(1342),(1432) so a(2) = 5. - Avi Peretz (njk(AT)netvision.net.il), Feb 23 2001; comment corrected by Jonathan Coxhead, Mar 21 2003
Also row sums of Table A008279, which can be generated by taking the derivatives of x^k. For example, for y = 1*x^3, y' = 3x^2, y" = 6x, y'''= 6 so a(4) = 1 + 3 + 6 + 6 = 16. - Alford Arnold, Dec 15 1999
a(n) is the permanent of the n X n matrix with 2s on the diagonal and 1s elsewhere. - Yuval Dekel, Nov 01 2003
(A000166 + this_sequence)/2 = A009179, (A000166 - this_sequence)/2 = A009628.
Stirling transform of A006252(n-1) = [1,1,1,2,4,14,38,...] is a(n-1) = [1,2,5,16,65,...]. - Michael Somos, Mar 04 2004
Number of {12,12*,21*}- and {12,12*,2*1}-avoiding signed permutations in the hyperoctahedral group.
a(n) = b such that Integral_{x=0..1} x^n*exp(-x) dx = a-b*exp(-1). - Sébastien Dumortier, Mar 05 2005
a(n) is the number of permutations on [n+1] whose left-to-right record lows all occur at the start. Example: a(2) counts all permutations on [3] except 231 (the last entry is a record low but its predecessor is not). - David Callan, Jul 20 2005
a(n) is the number of permutations on [n+1] that avoid the (scattered) pattern 1-2-3|. The vertical bar means the "3" must occur at the end of the permutation. For example, 21354 is not counted by a(4): 234 is an offending subpermutation. - David Callan, Nov 02 2005
Number of deco polyominoes of height n+1 having no reentrant corners along the lower contour (i.e., no vertical step that is followed by a horizontal step). In other words, a(n)=A121579(n+1,0). A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column. Example: a(1)=2 because the only deco polyominoes of height 2 are the vertical and horizontal dominoes, having no reentrant corners along their lower contours. - Emeric Deutsch, Aug 16 2006
Unreduced numerators of partial sums of the Taylor series for e. - Jonathan Sondow, Aug 18 2006
a(n) is the number of permutations on [n+1] (written in one-line notation) for which the subsequence beginning at 1 is increasing. Example: a(2)=5 counts 123, 213, 231, 312, 321. - David Callan, Oct 06 2006
a(n) is the number of permutations (written in one-line notation) on the set [n + k], k >= 1, for which the subsequence beginning at 1,2,...,k is increasing. Example: n = 2, k = 2. a(2) = 5 counts 1234, 3124, 3412, 4123, 4312. - Peter Bala, Jul 29 2014
a(n) and (1,-2,3,-4,5,-6,7,...) form a reciprocal pair under the list partition transform and associated operations described in A133314. - Tom Copeland, Nov 01 2007
Consider the subsets of the set {1,2,3,...,n} formed by the first n integers. E.g., for n = 3 we have {}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}. Let the variable sbst denote a subset. For each subset sbst we determine its number of parts, that is nprts(sbst). The sum over all possible subsets is written as Sum_{sbst=subsets}. Then a(n) = Sum_{sbst=subsets} nprts(sbst)!. E.g., for n = 3 we have 1!+1!+1!+1!+2!+2!+2!+3!=16. - Thomas Wieder, Jun 17 2006
Equals row sums of triangle A158359(unsigned). - Gary W. Adamson, Mar 17 2009
Equals eigensequence of triangle A158821. - Gary W. Adamson, Mar 30 2009
For positive n, equals 1/BarnesG(n+1) times the determinant of the n X n matrix whose (i,j)-coefficient is the (i+j)th Bell number. - John M. Campbell, Oct 03 2011
a(n) is the number of n X n binary matrices with i) at most one 1 in each row and column and ii) the subset of rows that contain a 1 must also be the columns that contain a 1. Cf. A002720 where restriction ii is removed. - Geoffrey Critzer, Dec 20 2011
Number of restricted growth strings (RGS) [d(1),d(2),...,d(n)] such that d(k) <= k and d(k) <= 1 + (number of nonzero digits in prefix). The positions of nonzero digits determine the subset, and their values (decreased by 1) are the (left) inversion table (a rising factorial number) for the permutation, see example. - Joerg Arndt, Dec 09 2012
Number of a restricted growth strings (RGS) [d(0), d(1), d(2), ..., d(n)] where d(k) >= 0 and d(k) <= 1 + chg([d(0), d(1), d(2), ..., d(k-1)]) and chg(.) gives the number of changes of its argument. Replacing the function chg(.) by a function asc(.) that counts the ascents in the prefix gives A022493 (ascent sequences). - Joerg Arndt, May 10 2013
The sequence t(n) = number of i <= n such that floor(e*i!) is a square is mentioned in the abstract of Luca & Shparlinski. The values are t(n) = 0 for 0 <= n <= 2 and t(n) = 1 for at least 3 <= n <= 300. - R. J. Mathar, Jan 16 2014
a(n) = p(n,1) = q(n,1), where p and q are polynomials defined at A248664 and A248669. - Clark Kimberling, Oct 11 2014
a(n) is the number of ways at most n people can queue up at a (slow) ticket counter when one or more of the people may choose not to queue up. Note that there are C(n,k) sets of k people who quene up and k! ways to queue up. Since k can run from 0 to n, a(n) = Sum_{k=0..n} n!/(n-k)! = Sum_{k=0..n} n!/k!. For example, if n=3 and the people are A(dam), B(eth), and C(arl), a(3)=16 since there are 16 possible lineups: ABC, ACB, BAC, BCA, CAB, CBA, AB, BA, AC, CA, BC, CB, A, B, C, and empty queue. - Dennis P. Walsh, Oct 02 2015
As the row sums of A008279, Motzkin uses the abbreviated notation $n_<^\Sigma$ for a(n).
The piecewise polynomial function f defined by f(x) = a(n)*x^n/n! on each interval [ 1-1/a(n), 1-1/a(n+1) ) is continuous on [0,1) and lim_{x->1} f(x) = e. - Luc Rousseau, Oct 15 2019
a(n) is composite for 3 <= n <= 2015, but a(2016) is prime (or at least a strong pseudoprime): see Johansson link. - Robert Israel, Jul 27 2020 [a(2016) is prime, ECPP certificate generated with CM 0.4.3 and checked by factordb. - Jason H Parker, Jun 15 2025]
In general, sequences of the form a(0)=a, a(n) = n*a(n-1) + k, n>0, will have a closed form of n!*a + floor(n!*(e-1))*k. - Gary Detlefs, Oct 26 2020
From Peter Bala, Apr 03 2022: (Start)
a(2*n) is odd and a(2*n+1) is even. More generally, a(n+k) == a(n) (mod k) for all n and k. It follows that for each positive integer k, the sequence obtained by reducing a(n) modulo k is periodic, with the exact period dividing k. Various divisibility properties of the sequence follow from this; for example, a(5*n+2) == a(5*n+4) == 0 (mod 5), a(25*n+7) == a(25*n+19) == 0 (mod 25) and a(13*n+4) == a(13*n+10)== a(13*n+12) == 0 (mod 13). (End)
Number of possible ranking options on a typical ranked choice voting ballot with n candidates (allowing undervotes). - P. Christopher Staecker, May 05 2024
From Thomas Scheuerle, Dec 28 2024: (Start)
Number of decorated permutations of size n.
Number of Le-diagrams with bounding box semiperimeter n, for n > 0.
By counting over all k = 1..n and n > 0, the number of positroid cells for the totally nonnegative real Grassmannian Gr(k, n), equivalently the number of Grassmann necklaces of type (k, n). (End)

Examples

			G.f. = 1 + 2*x + 5*x^2 + 16*x^3 + 65*x^4 + 326*x^5 + 1957*x^6 + 13700*x^7 + ...
With two objects we can form 5 sequences: (), (a), (b), (a,b), (b,a), so a(2) = 5.
From _Joerg Arndt_, Dec 09 2012: (Start)
The 16 arrangements of the 3-set and their RGS (dots denote zeros) are
  [ #]       RGS        perm. of subset
  [ 1]    [ . . . ]      [  ]
  [ 2]    [ . . 1 ]      [ 3 ]
  [ 3]    [ . 1 . ]      [ 2 ]
  [ 4]    [ . 1 1 ]      [ 2 3 ]
  [ 5]    [ . 1 2 ]      [ 3 2 ]
  [ 6]    [ 1 . . ]      [ 1 ]
  [ 7]    [ 1 . 1 ]      [ 1 3 ]
  [ 8]    [ 1 . 2 ]      [ 3 1 ]
  [ 9]    [ 1 1 . ]      [ 1 2 ]
  [10]    [ 1 1 1 ]      [ 1 2 3 ]
  [11]    [ 1 1 2 ]      [ 1 3 2 ]
  [12]    [ 1 1 3 ]      [ 2 3 1 ]
  [13]    [ 1 2 . ]      [ 2 1 ]
  [14]    [ 1 2 1 ]      [ 2 1 3 ]
  [15]    [ 1 2 2 ]      [ 3 1 2 ]
  [16]    [ 1 2 3 ]      [ 3 2 1 ]
(End)
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 75, Problem 9.
  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 65, p. 23, Ellipses, Paris 2008.
  • J. M. Gandhi, On logarithmic numbers, Math. Student, 31 (1963), 73-83.
  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section E11.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 16.
  • D. Singh, The numbers L(m,n) and their relations with prepared Bernoulli and Eulerian numbers, Math. Student, 20 (1952), 66-70.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Average of n-th row of triangle in A068424 [Corrected by N. J. A. Sloane, Feb 29 2024].
Row sums of A008279 and A094816.
First differences give A001339. Second differences give A001340.
Partial sums are in A001338, A002104.
A row of the array in A144502.
See also A370973, Nearest integer to e*n!.

Programs

  • Haskell
    import Data.List (subsequences, permutations)
    a000522 = length . choices . enumFromTo 1 where
    choices = concat . map permutations . subsequences
    -- Reinhard Zumkeller, Feb 21 2012, Oct 25 2010
    
  • Magma
    [1] cat [n eq 1 select (n+1) else n*Self(n-1)+1: n in [1..25]]; // Vincenzo Librandi, Feb 15 2015
    
  • Maple
    a(n):= exp(1)*int(x^n*exp(-x)*Heaviside(x-1), x=0..infinity); # Karol A. Penson, Oct 01 2001
    A000522 := n->add(n!/k!,k=0..n);
    G(x):=exp(x)/(1-x): f[0]:=G(x): for n from 1 to 26 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..20);
    # Zerinvary Lajos, Apr 03 2009
    G:=exp(z)/(1-z): Gser:=series(G,z=0,21):
    for n from 0 to 20 do a(n):=n!*coeff(Gser,z,n): end do
    # Paul Weisenhorn, May 30 2010
    k := 1; series(hypergeom([1,k],[],x/(1-x))/(1-x), x=0, 20); # Mark van Hoeij, Nov 07 2011
    # one more Maple program:
    a:= proc(n) option remember;
          `if`(n<0, 0, 1+n*a(n-1))
        end:
    seq(a(n), n=0..23);  # Alois P. Heinz, Sep 13 2019
    seq(simplify(KummerU(-n, -n, 1)), n = 0..23); # Peter Luschny, May 10 2022
  • Mathematica
    Table[FunctionExpand[Gamma[n + 1, 1]*E], {n, 0, 24}]
    nn = 20; Accumulate[Table[1/k!, {k, 0, nn}]] Range[0, nn]! (* Jan Mangaldan, Apr 21 2013 *)
    FoldList[#1*#2 + #2 &, 0, Range@ 23] + 1 (* or *)
    f[n_] := Floor[E*n!]; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Feb 13 2015 *)
    RecurrenceTable[{a[n + 1] == (n + 1) a[n] + 1, a[0] == 1}, a, {n, 0, 12}] (* Emanuele Munarini, Apr 27 2017 *)
    nxt[{n_,a_}]:={n+1,a(n+1)+1}; NestList[nxt,{0,1},30][[All,2]] (* Harvey P. Dale, Jan 29 2023 *)
  • Maxima
    a(n) := if n=0 then 1 else n*a(n-1)+1; makelist(a(n),n,0,12); /* Emanuele Munarini, Apr 27 2017 */
  • PARI
    {a(n) = local(A); if( n<0, 0, A = vector(n+1); A[1]=1; for(k=1, n, A[k+1] = k*A[k] + 1); A[n+1])}; /* Michael Somos, Jul 01 2004 */
    
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( exp( x +x * O(x^n)) / (1 - x), n))}; /* Michael Somos, Mar 06 2004 */
    
  • PARI
    a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1-x)^2+x^2*deriv(A)/(1-x)); polcoeff(A, n) \\ Paul D. Hanna, Sep 03 2008
    
  • PARI
    {a(n)=local(X=x+x*O(x^n));polcoeff(sum(m=0,n,(m+2)^m*x^m/(1+(m+1)*X)^(m+1)),n)} /* Paul D. Hanna */
    
  • PARI
    a(n)=sum(k=0,n,binomial(n,k)*k!); \\ Joerg Arndt, Dec 14 2014
    
  • Sage
    # program adapted from Alois P. Heinz's Maple code in A022493
    @CachedFunction
    def b(n, i, t):
        if n <= 1:
            return 1
        return sum(b(n - 1, j, t + (j == i)) for j in range(t + 2))
    def a(n):
        return b(n, 0, 0)
    v000522 = [a(n) for n in range(33)]
    print(v000522)
    # Joerg Arndt, May 11 2013
    

Formula

a(n) = n*a(n-1) + 1, a(0) = 1.
a(n) = A007526(n-1) + 1.
a(n) = A061354(n)*A093101(n).
a(n) = n! * Sum_{k=0..n} 1/k! = n! * (e - Sum_{k>=n+1} 1/k!). - Michael Somos, Mar 26 1999
a(0) = 1; for n > 0, a(n) = floor(e*n!).
E.g.f.: exp(x)/(1-x).
a(n) = 1 + Sum_{n>=k>=j>=0} (k-j+1)*k!/j! = a(n-1) + A001339(n-1) = A007526(n) + 1. Binomial transformation of n!, i.e., A000142. - Henry Bottomley, Jun 04 2001
a(n) = floor(2/(n+1))*A009578(n+1)-1. - Emeric Deutsch, Oct 24 2001
Integral representation as n-th moment of a nonnegative function on a positive half-axis: a(n) = e*Integral_{x>=0} x^n*e^(-x)*Heaviside(x-1) dx. - Karol A. Penson, Oct 01 2001
Formula, in Mathematica notation: Special values of Laguerre polynomials, a(n)=(-1)^n*n!*LaguerreL[n, -1-n, 1], n=1, 2, ... . This relation cannot be checked by Maple, as it appears that Maple does not incorporate Laguerre polynomials with second index equal to negative integers. It does check with Mathematica. - Karol A. Penson and Pawel Blasiak ( blasiak(AT)lptl.jussieu.fr), Feb 13 2004
G.f.: Sum_{k>=0} k!*x^k/(1-x)^(k+1). a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*k^(n-k)*(k+1)^k. - Vladeta Jovovic, Aug 18 2002
a(n) = Sum_{k=0..n} A008290(n, k)*2^k. - Philippe Deléham, Dec 12 2003
a(n) = Sum_{k=0..n} A046716(n, k). - Philippe Deléham, Jun 12 2004
a(n) = e*Gamma(n+1,1) where Gamma(z,t) = Integral_{x>=t} e^(-x)*x^(z-1) dx is incomplete gamma function. - Michael Somos, Jul 01 2004
a(n) = Sum_{k=0..n} P(n, k). - Ross La Haye, Aug 28 2005
Given g.f. A(x), then g.f. A059115 = A(x/(1-x)). - Michael Somos, Aug 03 2006
a(n) = 1 + n + n*(n-1) + n*(n-1)*(n-2) + ... + n!. - Jonathan Sondow, Aug 18 2006
a(n) = Sum_{k=0..n} binomial(n,k) * k!; interpretation: for all k-subsets (sum), choose a subset (binomial(n,k)), and permutation of subset (k!). - Joerg Arndt, Dec 09 2012
a(n) = Integral_{x>=0} (x+1)^n*e^(-x) dx. - Gerald McGarvey, Oct 19 2006
a(n) = Sum_{k=0..n} A094816(n, k), n>=0 (row sums of Poisson-Charlier coefficient matrix). - N. J. A. Sloane, Nov 10 2007
From Tom Copeland, Nov 01 2007, Dec 10 2007: (Start)
Act on 1/(1-x) with 1/(1-xDx) = Sum_{j>=0} (xDx)^j = Sum_{j>=0} x^j*D^j*x^j = Sum_{j>=0} j!*x^j*L(j,-:xD:,0) where Lag(n,x,0) are the Laguerre polynomials of order 0, D the derivative w.r.t. x and (:xD:)^j = x^j*D^j. Truncating the operator series at the j = n term gives an o.g.f. for a(0) through a(n) consistent with Jovovic's.
These results and those of Penson and Blasiak, Arnold, Bottomley and Deleham are related by the operator A094587 (the reverse of A008279), which is the umbral equivalent of n!*Lag[n,(.)!*Lag[.,x,-1],0] = (1-D)^(-1) x^n = (-1)^n * n! Lag(n,x,-1-n) = Sum_{j=0..n} binomial(n,j)*j!*x^(n-j) = Sum_{j=0..n} (n!/j!)*x^j. Umbral substitution of b(.) for x and then letting b(n)=1 for all n connects the results. See A132013 (the inverse of A094587) for a connection between these operations and 1/(1-xDx).
(End)
From Peter Bala, Jul 15 2008: (Start)
a(n) = n!*e - 1/(n + 1/(n+1 + 2/(n+2 + 3/(n+3 + ...)))).
Asymptotic result (Ramanujan): n!*e - a(n) ~ 1/n - 1/n^3 + 1/n^4 + 2/n^5 - 9/n^6 + ..., where the sequence [1,0,-1,1,2,-9,...] = [(-1)^k*A000587(k)], for k>=1.
a(n) is a difference divisibility sequence, that is, the difference a(n) - a(m) is divisible by n - m for all n and m (provided n is not equal to m). For fixed k, define the derived sequence a_k(n) = (a(n+k)-a(k))/n, n = 1,2,3,... . Then a_k(n) is also a difference divisibility sequence.
For example, the derived sequence a_0(n) is just a(n-1). The set of integer sequences satisfying the difference divisibility property forms a ring with term-wise operations of addition and multiplication.
Recurrence relations: a(0) = 1, a(n) = (n-1)*(a(n-1) + a(n-2)) + 2, for n >= 1. a(0) = 1, a(1) = 2, D-finite with recurrence: a(n) = (n+1)*a(n-1) - (n-1)*a(n-2) for n >= 2. The sequence b(n) := n! satisfies the latter recurrence with the initial conditions b(0) = 1, b(1) = 1. This leads to the finite continued fraction expansion a(n)/n! = 1/(1-1/(2-1/(3-2/(4-...-(n-1)/(n+1))))), n >= 2.
Limit_{n->oo} a(n)/n! = e = 1/(1-1/(2-1/(3-2/(4-...-n/((n+2)-...))))). This is the particular case m = 0 of the general result m!/e - d_m = (-1)^(m+1) *(1/(m+2 -1/(m+3 -2/(m+4 -3/(m+5 -...))))), where d_m denotes the m-th derangement number A000166(m).
For sequences satisfying the more general recurrence a(n) = (n+1+r)*a(n-1) - (n-1)*a(n-2), which yield series acceleration formulas for e/r! that involve the Poisson-Charlier polynomials c_r(-n;-1), refer to A001339 (r=1), A082030 (r=2), A095000 (r=3) and A095177 (r=4).
For the corresponding results for the constants log(2), zeta(2) and zeta(3) refer to A142992, A108625 and A143007 respectively.
(End)
G.f. satisfies: A(x) = 1/(1-x)^2 + x^2*A'(x)/(1-x). - Paul D. Hanna, Sep 03 2008
From Paul Barry, Nov 27 2009: (Start)
G.f.: 1/(1-2*x-x^2/(1-4*x-4*x^2/(1-6*x-9*x^2/(1-8*x-16*x^2/(1-10*x-25*x^2/(1-... (continued fraction);
G.f.: 1/(1-x-x/(1-x/(1-x-2*x/(1-2*x/(1-x-3*x/(1-3*x/(1-x-4*x/(1-4*x/(1-x-5*x/(1-5*x/(1-... (continued fraction).
(End)
O.g.f.: Sum_{n>=0} (n+2)^n*x^n/(1 + (n+1)*x)^(n+1). - Paul D. Hanna, Sep 19 2011
G.f. hypergeom([1,k],[],x/(1-x))/(1-x), for k=1,2,...,9 is the generating function for A000522, A001339, A082030, A095000, A095177, A096307, A096341, A095722, and A095740. - Mark van Hoeij, Nov 07 2011
G.f.: 1/U(0) where U(k) = 1 - x - x*(k+1)/(1 - x*(k+1)/U(k+1)); (continued fraction). - Sergei N. Gladkovskii, Oct 14 2012
E.g.f.: 1/U(0) where U(k) = 1 - x/(1 - 1/(1 + (k+1)/U(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 16 2012
G.f.: 1/(1-x)/Q(0), where Q(k) = 1 - x/(1-x)*(k+1)/(1 - x/(1-x)*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, May 19 2013
G.f.: 2/(1-x)/G(0), where G(k) = 1 + 1/(1 - x*(2*k+2)/(x*(2*k+3) - 1 + x*(2*k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 31 2013
G.f.: (B(x)+ 1)/(2-2*x) = Q(0)/(2-2*x), where B(x) be g.f. A006183, Q(k) = 1 + 1/(1 - x*(k+1)/(x*(k+1) + (1-x)/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 08 2013
G.f.: 1/Q(0), where Q(k) = 1 - 2*x*(k+1) - x^2*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 30 2013
E.g.f.: e^x/(1-x) = (1 - 12*x/(Q(0) + 6*x - 3*x^2))/(1-x), where Q(k) = 2*(4*k+1)*(32*k^2 + 16*k + x^2 - 6) - x^4*(4*k-1)*(4*k+7)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 18 2013
G.f.: conjecture: T(0)/(1-2*x), where T(k) = 1 - x^2*(k+1)^2/(x^2*(k+1)^2 - (1 - 2*x*(k+1))*(1 - 2*x*(k+2))/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 18 2013
0 = a(n)*(+a(n+1) - 3*a(n+2) + a(n+3)) + a(n+1)*(+a(n+1) - a(n+3)) + a(n+2)*(+a(n+2)) for all n>=0. - Michael Somos, Jul 04 2014
From Peter Bala, Jul 29 2014: (Start)
a(n) = F(n), where the function F(x) := Integral_{0..infinity} e^(-u)*(1 + u)^x du smoothly interpolates this sequence to all real values of x. Note that F(-1) = G and for n = 2,3,... we have F(-n) = (-1)^n/(n-1)! *( A058006(n-2) - G ), where G = 0.5963473623... denotes Gompertz's constant - see A073003.
a(n) = n!*e - e*( Sum_{k >= 0} (-1)^k/((n + k + 1)*k!) ).
(End)
a(n) = hypergeometric_U(1, n+2, 1). - Peter Luschny, Nov 26 2014
a(n) ~ exp(1-n)*n^(n-1/2)*sqrt(2*Pi). - Vladimir Reshetnikov, Oct 27 2015
a(n) = A038155(n+2)/A000217(n+1). - Anton Zakharov, Sep 08 2016
a(n) = round(exp(1)*n!), n > 1 - Simon Plouffe, Jul 28 2020
a(n) = KummerU(-n, -n, 1). - Peter Luschny, May 10 2022
a(n) = (e/(2*Pi))*Integral_{x=-oo..oo} (n+1+i*x)!/(1+i*x) dx. - David Ulgenes, Apr 18 2023
Sum_{i=0..n} (-1)^(n-i) * binomial(n, i) * a(i) = n!. - Werner Schulte, Apr 03 2024

Extensions

Additional comments from Michael Somos

A001705 Generalized Stirling numbers: a(n) = n! * Sum_{k=0..n-1} (k+1)/(n-k).

Original entry on oeis.org

0, 1, 5, 26, 154, 1044, 8028, 69264, 663696, 6999840, 80627040, 1007441280, 13575738240, 196287356160, 3031488633600, 49811492505600, 867718162483200, 15974614352793600, 309920046408806400, 6320046028584960000, 135153868608460800000, 3024476051557847040000
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the sum of the positions of the right-to-left minima in all permutations of [n]. Example: a(3)=26 because the positions of the right-to-left minima in the permutations 123,132,213,231,312 and 321 are 123, 13, 23, 3, 23 and 3, respectively and 1 + 2 + 3 + 1 + 3 + 2 + 3 + 3 + 2 + 3 + 3 = 26. - Emeric Deutsch, Sep 22 2008
The asymptotic expansion of the higher order exponential integral E(x,m=2,n=2) ~ exp(-x)/x^2*(1 - 5/x + 26/x^2 - 154/x^3 + 1044/x^4 - 8028/x^5 + 69264/x^6 - ...) leads to the sequence given above. See A163931 and A028421 for more information. - Johannes W. Meijer, Oct 20 2009
a(n) is the total number of cycles (excluding fixed points) in all permutations of [n+1]. - Olivier Gérard, Oct 23 2012; Dec 31 2012
A length n sequence is formed by randomly selecting (one-by-one) n real numbers in (0,1). a(n)/(n+1)! is the expected value of the sum of the new maximums in such a sequence. For example for n=3: If we select (in this order): 0.591996, 0.646474, 0.163659 we would add 0.591996 + 0.646474 which would be a bit above the average of a(3)/4! = 26/24. - Geoffrey Critzer, Oct 17 2013

Examples

			(1-x)^-2 * (-log(1-x)) = x + 5/2*x^2 + 13/3*x^3 + 77/12*x^4 + ...
Examples: a(6) = 6!*(1/6 + 2/5 + 3/4 + 4/3 + 5/2 + 6/1) = 8028; a(20) = 20!*(1/20 + 2/19 + 3/18 + 4/17 + 5/16 + ... + 16/5 + 17/4 + 18/3 + 19/2 + 20/1) = 135153868608460800000. - _Alexander Adamchuk_, Oct 09 2004
From _Olivier Gérard_, Dec 31 2012: (Start)
The cycle decomposition of all permutations of 4 elements gives the following list: {{{1},{2},{3},{4}}, {{1},{2},{3,4}}, {{1},{2,3},{4}}, {{1},{2,4,3}}, {{1},{2,3,4}}, {{1},{2,4},{3}}, {{1,2},{3},{4}}, {{1,2},{3,4}}, {{1,3,2},{4}},{{1,4,3,2}}, {{1,3,4,2}}, {{1,4,2},{3}}, {{1,2,3},{4}}, {{1,2,4,3}},{{1,3},{2},{4}}, {{1,4,3},{2}}, {{1,3},{2,4}}, {{1,4,2,3}}, {{1,2,3,4}}, {{1,2,4},{3}}, {{1,3,4},{2}}, {{1,4},{2},{3}}, {{1,3,2,4}}, {{1,4},{2,3}}}.
Deleting the fixed points gives the following 26 items: {{3,4}, {2,3}, {2,4,3}, {2,3,4}, {2,4}, {1,2}, {1,2}, {3,4}, {1,3,2}, {1,4,3,2}, {1,3,4,2}, {1,4,2}, {1,2,3}, {1,2,4,3}, {1,3}, {1,4,3}, {1,3}, {2,4}, {1,4,2,3}, {1,2,3,4}, {1,2,4}, {1,3,4}, {1,4}, {1,3,2,4}, {1,4}, {2,3}}. (End)
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000254 (total number of cycles in permutations, including fixed points).
Cf. A002104 (number of different cycles in permutations, without fixed points).
Cf. A006231 (number of different cycles in permutations, including fixed points).
Related to n!*the k-th successive summation of the harmonic numbers:
(k=0) A000254, (k=1) A001705, (k=2) A001711, (k=3) A001716,
(k=4) A001721, (k=5) A051524, (k=6) A051545, (k=7) A051560,
(k=8) A051562, (k=9) A051564.

Programs

  • Maple
    a := n-> add((n+1)!/k, k=2..n+1): seq(a(n), n=0..21); # Zerinvary Lajos, Jan 22 2008; edited Johannes W. Meijer, Nov 28 2012
    a := n -> ((n+1)!*(h(n+1)-1)): h := n-> harmonic(n): seq(a(n), n=0..21); # Gary Detlefs, Dec 18 2009; corrected by Johannes W. Meijer, Nov 28 2012
  • Mathematica
    Table[n!*Sum[Sum[1/k,{k,1,m}], {m,1,n}], {n,0,20}] (* Alexander Adamchuk, Apr 14 2006 *)
    a[n_] := (n + 1)! (EulerGamma - 1 + PolyGamma[n + 2]);
    Table[a[n], {n, 0, 21}] (* Peter Luschny, Feb 19 2022 *)
  • Maxima
    a(n):=n!*sum(((-1)^(k+1)*binomial(n+1,k+1))/k,k,1,n); /* Vladimir Kruchinin, Oct 10 2016 */
    
  • PARI
    for(n=0,25, print1(n!*sum(k=0,n-1,(k+1)/(n-k)), ", ")) \\ G. C. Greubel, Jan 20 2017
    
  • Python
    from math import factorial
    def A001705(n):
        f = factorial(n)
        return sum(f*(k+1)//(n-k) for k in range(n)) # Chai Wah Wu, Jun 23 2022

Formula

Partial sum of first n harmonic numbers multiplied by n!.
a(n) = n!*Sum_{m=1..n} Sum_{k=1..m} 1/k = n!*Sum_{m=1..n} H(m), where H(m) = Sum_{k=1..m} 1/k = A001008(m)/A002805(m) is m-th Harmonic number.
E.g.f.: - log (1 - x) / (1 - x)^2.
a(n) = (n+1)! * H(n) - n*n!, H(n) = Sum_{k=1..n} (1/k).
a(n) = A112486(n, 1).
a(n) = a(n-1)*(n+1) + n! = A000254(n+1) - A000142(n+1) = A067176(n+1, 1). - Henry Bottomley, Jan 09 2002
a(n) = Sum_{k=0..n-1} ((-1)^(n-1+k) * (k+1) * 2^k * Stirling1(n, k+1)). - Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
With alternating signs: Ramanujan polynomials psi_2(n, x) evaluated at 0. - Ralf Stephan, Apr 16 2004
a(n) = Sum_{k=1..n} (k*StirlingCycle(n+1,k+1)). - David Callan, Sep 25 2006
a(n) = Sum_{k=n..n*(n+1)/2} k*A143947(n,k). - Emeric Deutsch, Sep 22 2008
For n >= 1, a(n) = Sum_{j=0..n-1} ((-1)^(n-j-1) * 2^j * (j+1) * Stirling1(n,j+1)). - Milan Janjic, Dec 14 2008
a(n) = (2*n+1)*a(n-1) - n^2*a(n-2). - Gary Detlefs, Nov 27 2009
a(n) = (n+1)!*(H(n+1) - 1) where H(n) is the n-th harmonic number. - Gary Detlefs, Dec 18 2009
a(n) = n!*Sum_{k=1..n} (-1)^(k+1)*binomial(n+1,k+1)/k. - Vladimir Kruchinin, Oct 10 2016
a(n) = (n+1)!*Sum_{k = 1..n} (-1)^(k+1)*binomial(n+1,k+1)*k/(k+1). - Peter Bala, Feb 15 2022
a(n) = Gamma(n + 2) * (Digamma(n + 2) + EulerGamma - 1). - Peter Luschny, Feb 19 2022
From Mélika Tebni, Jun 22 2022: (Start)
a(n) = -Sum_{k=0..n} k!*A066667(n, k+1).
a(n) = Sum_{k=0..n} k!*A132159(n, k+1). (End)
a(n) = n*(n + 1)!*hypergeom([1, 1, 1 - n], [2, 3], 1)/2. - Peter Luschny, Jun 22 2022

Extensions

More terms from Sascha Kurz, Mar 22 2002

A094816 Triangle read by rows: T(n,k) are the coefficients of Charlier polynomials: A046716 transposed, for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 8, 6, 1, 1, 24, 29, 10, 1, 1, 89, 145, 75, 15, 1, 1, 415, 814, 545, 160, 21, 1, 1, 2372, 5243, 4179, 1575, 301, 28, 1, 1, 16072, 38618, 34860, 15659, 3836, 518, 36, 1, 1, 125673, 321690, 318926, 163191, 47775, 8274, 834, 45, 1, 1, 1112083, 2995011
Offset: 0

Views

Author

Philippe Deléham, Jun 12 2004

Keywords

Comments

The a-sequence for this Sheffer matrix is A027641(n)/A027642(n) (Bernoulli numbers) and the z-sequence is A130189(n)/ A130190(n). See the W. Lang link.
Take the lower triangular matrix in A049020 and invert it, then read by rows! - N. J. A. Sloane, Feb 07 2009
Exponential Riordan array [exp(x), log(1/(1-x))]. Equal to A007318*A132393. - Paul Barry, Apr 23 2009
A signed version of the triangle appears in [Gessel]. - Peter Bala, Aug 31 2012
T(n,k) is the number of permutations over all subsets of {1,2,...,n} (Cf. A000522) that have exactly k cycles. T(3,2) = 6: We permute the elements of the subsets {1,2}, {1,3}, {2,3}. Each has one permutation with 2 cycles. We permute the elements of {1,2,3} and there are three permutations that have 2 cycles. 3*1 + 1*3 = 6. - Geoffrey Critzer, Feb 24 2013
From Wolfdieter Lang, Jul 28 2017: (Start)
In Chihara's book the row polynomials (with rising powers) are the Charlier polynomials (-1)^n*C^(a)_n(-x), with a = -1, n >= 0. See p. 170, eq. (1.4).
In Ismail's book the present Charlier polynomials are denoted by C_n(-x;a=1) on p. 177, eq. (6.1.25). (End)
The triangle T(n,k) is a representative of the parametric family of triangles T(m,n,k), whose columns are the coefficients of the standard expansion of the function f(x) = (-log(1-x))^(k)*exp(-m*x)/k! for the case m=-1. See A381082. - Igor Victorovich Statsenko, Feb 14 2025

Examples

			From _Paul Barry_, Apr 23 2009: (Start)
Triangle begins
  1;
  1,     1;
  1,     3,     1;
  1,     8,     6,     1;
  1,    24,    29,    10,     1;
  1,    89,   145,    75,    15,    1;
  1,   415,   814,   545,   160,   21,   1;
  1,  2372,  5243,  4179,  1575,  301,  28,  1;
  1, 16072, 38618, 34860, 15659, 3836, 518, 36, 1;
Production matrix is
  1, 1;
  0, 2, 1;
  0, 1, 3,  1;
  0, 1, 3,  4,  1;
  0, 1, 4,  6,  5,  1;
  0, 1, 5, 10, 10,  6,  1;
  0, 1, 6, 15, 20, 15,  7,  1;
  0, 1, 7, 21, 35, 35, 21,  8, 1;
  0, 1, 8, 28, 56, 70, 56, 28, 9, 1; (End)
		

References

  • T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, London, Paris, 1978, Ch. VI, 1., pp. 170-172.
  • Classical and Quantum Orthogonal Polynomials in One Variable, Cambridge University Press, 2005, EMA, Vol. 98, p. 177.

Crossrefs

Columns k=0..4 give A000012, A002104, A381021, A381022, A381023.
Diagonals: A000012, A000217.
Row sums A000522, alternating row sums A024000.
KummerU(-n,1-n-x,z): this sequence (z=1), |A137346| (z=2), A327997 (z=3).

Programs

  • Maple
    A094816 := (n,k) -> (-1)^(n-k)*add(binomial(-j-1,-n-1)*Stirling1(j,k), j=0..n):
    seq(seq(A094816(n, k), k=0..n), n=0..9); # Peter Luschny, Apr 10 2016
  • Mathematica
    nn=10;f[list_]:=Select[list,#>0&];Map[f,Range[0,nn]!CoefficientList[Series[ Exp[x]/(1-x)^y,{x,0,nn}],{x,y}]]//Grid  (* Geoffrey Critzer, Feb 24 2013 *)
    Flatten[Table[(-1)^(n-k) Sum[Binomial[-j-1,-n-1] StirlingS1[j,k],{j,0,n}], {n,0,9},{k,0,n}]] (* Peter Luschny, Apr 10 2016 *)
    p[n_] := HypergeometricU[-n, 1 - n - x, 1];
    Table[CoefficientList[p[n], x], {n,0,9}] // Flatten (* Peter Luschny, Oct 27 2019 *)
  • PARI
    {T(n, k)= local(A); if( k<0 || k>n, 0, A = x * O(x^n); polcoeff( n! * polcoeff( exp(x + A) / (1 - x + A)^y, n), k))} /* Michael Somos, Nov 19 2006 */
    
  • Sage
    def a_row(n):
        s = sum(binomial(n,k)*rising_factorial(x,k) for k in (0..n))
        return expand(s).list()
    [a_row(n) for n in (0..9)] # Peter Luschny, Jun 28 2019

Formula

E.g.f.: exp(t)/(1-t)^x = Sum_{n>=0} C(x,n)*t^n/n!.
Sum_{k = 0..n} T(n, k)*x^k = C(x, n), Charlier polynomials; C(x, n)= A024000(n), A000012(n), A000522(n), A001339(n), A082030(n), A095000(n), A095177(n), A096307(n), A096341(n), A095722(n), A095740(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Feb 27 2013
T(n+1, k) = (n+1)*T(n, k) + T(n, k-1) - n*T(n-1, k) with T(0, 0) = 1, T(0, k) = 0 if k>0, T(n, k) = 0 if k<0.
PS*A008275*PS as infinite lower triangular matrices, where PS is a triangle with PS(n, k) = (-1)^k*A007318(n, k). PS = 1/PS. - Gerald McGarvey, Aug 20 2009
T(n,k) = (-1)^(n-k)*Sum_{j=0..n} C(-j-1, -n-1)*S1(j, k) where S1 are the signed Stirling numbers of the first kind. - Peter Luschny, Apr 10 2016
Absolute values T(n,k) of triangle (-1)^(n+k) T(n,k) where row n gives coefficients of x^k, 0 <= k <= n, in expansion of Sum_{k=0..n} binomial(n,k) (-1)^(n-k) x^{(k)}, where x^{(k)} := Product_{i=0..k-1} (x-i), k >= 1, and x^{(0)} := 1, the falling factorial powers. - Daniel Forgues, Oct 13 2019
From Peter Bala, Oct 23 2019: (Start)
The n-th row polynomial is
R(n, x) = Sum_{k = 0..n} (-1)^k*binomial(n, k)*k! * binomial(-x, k).
These polynomials occur in series acceleration formulas for the constant
1/e = n! * Sum_{k >= 0} (-1)^k/(k!*R(n,k)*R(n,k+1)), n >= 0. (cf. A068985, A094816 and A137346). (End)
R(n, x) = KummerU[-n, 1 - n - x, 1]. - Peter Luschny, Oct 27 2019
Sum_{j=0..m} (-1)^(m-j) * Bell(n+j) * T(m,j) = m! * Sum_{k=0..n} binomial(k,m) * Stirling2(n,k). - Vaclav Kotesovec, Aug 06 2021
From Natalia L. Skirrow, Jun 11 2025: (Start)
G.f.: 2F0(1,y;x/(1-x)) / (1-x).
Polynomial for the n-th row is R(n,y) = 2F0(-n,y;-1).
Falling g.f. for n-th row: Sum_{k=0..n} a(n,k)*(y)_k = [x^0] 2F0(1,-n;-1/x) * (1+log(1/(1-x)))^y = [x^n] e^x * Gamma(n+1,x) * (1+log(1/(1-x)))^y, where (y)_k = y!/(y-k)! denotes the falling factorial. (End)

A133942 a(n) = (-1)^n * n!.

Original entry on oeis.org

1, -1, 2, -6, 24, -120, 720, -5040, 40320, -362880, 3628800, -39916800, 479001600, -6227020800, 87178291200, -1307674368000, 20922789888000, -355687428096000, 6402373705728000, -121645100408832000, 2432902008176640000
Offset: 0

Views

Author

Michael Somos, Sep 30 2007

Keywords

Comments

A variant of A000142, the factorial numbers. - N. J. A. Sloane, Oct 03 2007
The terms of this sequences form the factorial series which Euler called the divergent series par excellence.
Euler summed this series to 0.596347... (A073003 = Gompertz's constant).
Sum_{n>=0} 1/a(n) = 1/e. - Jaume Oliver Lafont, Mar 03 2009
A002104(n+1) = p(-1) where p(x) is the unique degree-n polynomial such that p(k) = a(k) for k = 0, 1, ..., n. - Michael Somos, Apr 30 2012
a(n) = A048594(2*n+1, n+1). - Reinhard Zumkeller, Mar 02 2014
log(1+x) = Sum_{n>=1} a(n-1)/n!*x^n. - James R. Buddenhagen, May 24 2015
It seems that a(n) is the determinant of n+1 X n+1 matrix whose elements are m(i,j) = quotient(i/j) + remainder(i/j). - Andres Cicuttin, Feb 11 2018

Examples

			G.f. = 1 - x + 2*x^2 - 6*x^3 + 24*x^4 - 120*x^5 + 720*x^6 - 5040*x^7 + ...
		

References

  • A. N. Khovanskii. The Application of Continued Fractions and Their Generalizations to Problem in Approximation Theory. Groningen: Noordhoff, Netherlands, 1963. See p. 141 (10.19)
  • R. Roy, Sources in the Development of Mathematics, Cambridge University Press, 2011. See p. 186.

Crossrefs

Partial sums are A058006.
Alternating row sums of A048994.
Also, a(n) = A048994(n+1,1).

Programs

  • GAP
    List([0..20],n->(-1)^n*Factorial(n)); # Muniru A Asiru, Oct 27 2018
  • Haskell
    a133942 n = a133942_list !! n
    a133942_list = zipWith (*) a000142_list $ cycle [1, -1]
    -- Reinhard Zumkeller, Mar 02 2014
    
  • Magma
    [(-1)^n * Factorial(n): n in [0..25]]; // Vincenzo Librandi, May 12 2011
    
  • Maple
    seq((-1)^n*factorial(n),n=0..20); # Muniru A Asiru, Oct 27 2018
  • Mathematica
    nn=20;CoefficientList[Series[1/(1+x),{x,0,nn}],x]Range[0,nn]! (* or *)
    RecurrenceTable[{a[0]==1,a[n]==-n*a[n-1]},a[n],{n,20}] (* Harvey P. Dale, May 10 2011 and slightly modified by Robert G. Wilson v, Feb 12 2018 *)
    a[n_] := (-1)^n*n!; Array[a, 22, 0] (* Robert G. Wilson v, Feb 11 2018 *)
    Times@@@Partition[Riffle[Range[0,30]!,{1,-1}],2] (* Harvey P. Dale, Dec 30 2019 *)
  • PARI
    {a(n) = if( n<0, 0, (-1)^n * n! )};
    
  • Python
    import math
    for n in range(0, 25): print((-1)**n*math.factorial(n), end=', ') # Stefano Spezia, Oct 27 2018
    

Formula

Sum_{i=0..n} (-1)^i * i^n * binomial(n, i) = (-1)^n * n!. - Yong Kong (ykong(AT)curagen.com), Dec 26 2000
Stirling transform of a(n) = [1, -1, 2, -6, 24, ...] is A000007(n) = [1, 0, 0, 0, 0, ...].
a(n) = -n * a(n-1) unless n=0. a(n) = (-1)^n * A000142(n).
E.g.f.: 1/(1 + x).
G.f.: integral(t=1/x,infinity, (e^-t)/t) e^(1/x)/x = 1/(1 + x/(1 + x/(1 + 2*x/(1 + 2*x/(1 + 3*x/(1 + 3*x/(1 + ...))))))).
Convolution inverse of A158882. HANKEL transform is A055209. PSUM transform is A058006. BIN1 transform is A002741(n+1). - Michael Somos, Apr 30 2012
G.f.: 1 - x/(G(0)+x) where G(k) = 1 + (k+1)*x/(1 + x*(k+2)/G(k+1)), G(0) = W(1,1;x)/W(1,2;x), W(a,b,x) = 1 - a*b*x/1! + a*(a+1)*b*(b+1)*x^2/2! - ... + a*(a+1)*...*(a+n-1)*b*(b+1)*...*(b+n-1)*x^n/n! + ...; see [A. N. Khovanskii, p. 141 (10.19)]; (continued fraction, 2-step). - Sergei N. Gladkovskii, Aug 14 2012
G.f.: 1/U(0) where U(k) = 1 + x*(k+1)/(1 + x*(k+1)/U(k+1)); (continued fraction, 2-step). - Sergei N. Gladkovskii, Oct 15 2012
a(n) = (-1)^n*det(S(i+1,j)|, 1 <= i,j <= n), where S(n,k) are Stirling numbers of the second kind. - Mircea Merca, Apr 06 2013
G.f.: 2/G(0), where G(k)= 1 + 1/(1 - 2*x*(k+1)/(2*x*(k+1) + 1 + 2*x*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 30 2013
E.g.f.: 1/(1 + x)= G(0), where G(k) = 1 - x*(k+1)*(k+2)/(1 + (k+1)/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Jan 29 2014
For n >= 1, a(n) = round(zeta^(n)(2)), where zeta^(n) is the n-th derivative of the Riemann zeta function. - Iain Fox, Nov 13 2017
a(n) = (n+1)^(n+1) * Integral_{x=0..1} (x*log(x))^n dx. - Peter James Foreman, Oct 27 2018

A238363 Coefficients for the commutator for the logarithm of the derivative operator [log(D),x^n D^n]=d[(xD)!/(xD-n)!]/d(xD) expanded in the operators :xD:^k.

Original entry on oeis.org

1, -1, 2, 2, -3, 3, -6, 8, -6, 4, 24, -30, 20, -10, 5, -120, 144, -90, 40, -15, 6, 720, -840, 504, -210, 70, -21, 7, -5040, 5760, -3360, 1344, -420, 112, -28, 8, 40320, -45360, 25920, -10080, 3024, -756, 168, -36, 9, -362880, 403200, -226800, 86400, -25200, 6048, -1260, 240, -45, 10
Offset: 1

Views

Author

Tom Copeland, Feb 25 2014

Keywords

Comments

Let D=d/dx and [A,B]=A·B-B·A. Then each row corresponds to the coefficients of the operators :xD:^k = x^k D^k in the expansion of the commutator [log(D),:xD:^n]=[-log(x),:xD:^n]=sum(k=0 to n-1, a(n,k) :xD:^k). The e.g.f. is derived from [log(D), exp(t:xD:)]=[-log(x), exp(t:xD:)]= log(1+t)exp(t:xD:), using the shift property exp(t:xD:)f(x)=f((1+t)x).
The reversed unsigned array is A111492.
See the mathoverflow link and link therein to an associated mathstackexchange question for other formulas for log(D). In addition, R_x = log(D) = -log(x) + c - sum[n=1 to infnty, (-1)^n 1/n :xD:^n/n!]=
-log(x) + Psi(1+xD) = -log(x) + c + Ein(:xD:), where c is the Euler-Mascheroni constant, Psi(x), the digamma function, and Ein(x), a breed of the exponential integrals (cf. Wikipedia). The :xD:^k ops. commute; therefore, the commutator reduces to the -log(x) term.
Also the n-th row corresponds to the expansion of d[(xD)!/(xD-n)!]/d(xD) = d[:xD:^n]/d(xD) in the operators :xD:^k, or, equivalently, the coefficients of x in d[z!/(z-n)!]/dz=d[St1(n,z)]]/dz evaluated umbrally with z=St2(.,x), i.e., z^n replaced by St2(n,x), where St1(n,x) and St2(n,x) are the signed and unsigned Stirling polynomials of the first (A008275) and second (A008277) kinds. The derivatives of the unsigned St1 are A028421. See examples. This formalism follows from the relations between the raising and lowering operators presented in the MathOverflow link and the Pincherle derivative. The results can be generalized through the operator relations in A094638, which are related to the celebrated Witt Lie algebra and pseudodifferential operators / symbols, to encompass other integral arrays.
A002741(n)*(-1)^(n+1) (row sums), A002104(n)*(-1)^(n+1) (alternating row sums). Column sequences: A133942(n-1), A001048(n-1), A238474, ... - Wolfdieter Lang, Mar 01 2014
Add an additional head row of zeros to the lower triangular array and denote it as T (with initial indexing in columns and rows being 0). Let dP = A132440, the infinitesimal generator for the Pascal matrix, and I, the identity matrix, then exp(T)=I+dP, i.e., T=log(I+dP). Also, (T_n)^n=0, where T_n denotes the n X n submatrix, i.e., T_n is nilpotent of order n. - Tom Copeland, Mar 01 2014
Any pair of lowering and raising ops. L p(n,x) = n·p(n-1,x) and R p(n,x) = p(n+1,x) satisfy [L,R]=1 which implies (RL)^n = St2(n,:RL:), and since (St2(·,u))!/(St2(·,u)-n)!= u^n, when evaluated umbrally, d[(RL)!/(RL-n)!]/d(RL) = d[:RL:^n]/d(RL) is well-defined and gives A238363 when the LHS is reduced to a sum of :RL:^k terms, exactly as for L=d/dx and R=x above. (Note that R_x above is a raising op. different from x, with associated L_x=-xD.) - Tom Copeland, Mar 02 2014
For relations to colored forests, disposition of flags on flagpoles, and the colorings of the vertices of the complete graphs K_n, encoded in their chromatic polynomials, see A130534. - Tom Copeland, Apr 05 2014
The unsigned triangle, omitting the main diagonal, gives A211603. See also A092271. Related to the infinitesimal generator of A008290. - Peter Bala, Feb 13 2017

Examples

			The first few row polynomials are
p(1,x)=  1
p(2,x)= -1 + 2x
p(3,x)=  2 - 3x + 3x^2
p(4,x)= -6 + 8x - 6x^2 + 4x^3
p(5,x)= 24 -30x +20x^2 -10x^3 + 5x^4
...........
For n=3: z!/(z-3)!=z^3-3z^2+2z=St1(3,z) with derivative 3z^2-6z+2, and
3·St2(2,x)-6·St2(1,x)+2=3(x^2+x)-6x+2=3x^2-3x+2=p(3,x). To see the relation to the operator formalism, note that (xD)^k=St2(k,:xD:) and (xD)!/(xD-k)!=[St2(·,:xD:)]!/[St2(·,:xD:)-k]!= :xD:^k.
The triangle a(n,k) begins:
n\k       0       1       2      3      4     5      6    7   8   9 ...
1:        1
2:       -1       2
3:        2      -3       3
4:       -6       8      -6      4
5:       24     -30      20    -10      5
6:     -120     144     -90     40    -15     6
7:      720    -840     504   -210     70   -21      7
8:    -5040    5760   -3360   1344   -420   112    -28    8
9:    40320  -45360   25920 -10080   3024  -756    168  -36   9
10: -362880  403200 -226800  86400 -25200  6048  -1260  240 -45  10
... formatted by _Wolfdieter Lang_, Mar 01 2014
-----------------------------------------------------------------------
		

Crossrefs

Programs

  • Mathematica
    a[n_, k_] := (-1)^(n-k-1)*n!/((n-k)*k!); Table[a[n, k], {n, 1, 10}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Jul 09 2015 *)

Formula

a(n,k) = (-1)^(n-k-1)*n!/((n-k)*k!) for k=0 to (n-1).
E.g.f.: log(1+t)*exp(x*t).
E.g.f.for unsigned array: -log(1-t)*exp(x*t).
The lowering op. for the row polynomials is L=d/dx, i.e., L p(n,x) = n*p(n-1,x).
An e.g.f. for an unsigned related version is -log(1+t)*exp(x*t)/t= exp(t*s(·,x)) with s(n,x)=(-1)^n * p(n+1,-x)/(n+1). Let L=d/dx and R= x-(1/((1-D)log(1-D))+1/D),then R s(n,x)= s(n+1,x) and L s(n,x)= n*s(n-1,x), defining a special Sheffer sequence of polynomials, an Appell sequence. So, R (-1)^(n-1) p(n,-x)/n = (-1)^n p(n+1,-x)/(n+1).
From Tom Copeland, Apr 17 2014: (Start)
Dividing each diagonal by its first element (-1)^(n-1)*(n-1)! yields the reverse of A104712.
Multiply each n-th diagonal of the Pascal lower triangular matrix by x^n and designate the result as A007318(x) = P(x). Then with dP = A132440, M = padded A238363 = A238385-I, I = identity matrix, and (B(.,x))^n = B(n,x) = the n-th Bell polynomial Bell(n,x) of A008277,
A) P(x)= exp(x*dP) = exp[x*(e^M-I)] = exp[M*B(.,x)] = (I+dP)^B(.,x), and
B) P(:xD:)=exp(dP:xD:)=exp[(e^M-I):xD:]=exp[M*B(.,:xD:)]=exp[M*xD]=
(1+dP)^(xD) with action P(:xD:)g(x) = exp(dP:xD:)g(x) = g[(I+dP)*x].
C) P(x)^m = P(m*x). P(2x) = A038207(x) = exp[M*B(.,2x)], face vectors of n-D hypercubes. (End)
From Tom Copeland, Apr 26 2014: (Start)
M = padded A238363 = A238385-I
A) = [St1]*[dP]*[St2] = [padded A008275]*A132440*A048993
B) = [St1]*[dP]*[St1]^(-1)
C) = [St2]^(-1)*[dP]*[St2]
D) = [St2]^(-1)*[dP]*[St1]^(-1),
where [St1]=padded A008275 just as [St2]=A048993=padded A008277.
E) P(x) = [St2]*exp(x*M)*[St1] = [St2]*(I + dP)^x*[St1].
F) exp(x*M) = [St1]*P(x)*[St2] = (I + dP)^x,
where (I + dP)^x = sum(k>=0, C(x,k)*dP^k).
Let the row vector Rv=(c0 c1 c2 c3 ...) and the column vector Cv(x)=(1 x x^2 x^3 ...)^Transpose. Form the power series V(x)= Rv * Cv(x) and W(y) := V(x.) evaluated umbrally with (x.)^n = x_n = (y)_n = y!/(y-n)!. Then
G) U(:xD:) = dV(:xD:)/d(xD) = dW(xD)/d(xD) evaluated with (xD)^n = Bell(n,:xD:),
H) U(x) = dV(x.)/dy := dW(y)/dy evaluated with y^n=y_n=Bell(n,x), and
I) U(x) = Rv * M * Cv(x). (Cf. A132440, A074909.) (End)
The Bernoulli polynomials Ber_n(x) are related to the polynomials q_n(x) = p(n+1,x) / (n+1) with the e.g.f. [log(1+t)/t] e^(xt) (cf. s_n (x) above) as Ber_n(x) = St2_n[q.(St1.(x))], umbrally, or [St2]*[q]*[St1], in matrix form. Since q_n(x) is an Appell sequence of polynomials, q_n(x) = [log(1+D_x)/D_x]x^n. - Tom Copeland, Nov 06 2016

Extensions

Pincherle formalism added by Tom Copeland, Feb 27 2014

A046716 Coefficients of a special case of Poisson-Charlier polynomials.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 8, 1, 1, 10, 29, 24, 1, 1, 15, 75, 145, 89, 1, 1, 21, 160, 545, 814, 415, 1, 1, 28, 301, 1575, 4179, 5243, 2372, 1, 1, 36, 518, 3836, 15659, 34860, 38618, 16072, 1, 1, 45, 834, 8274, 47775, 163191, 318926, 321690, 125673, 1, 1, 55, 1275, 16290, 125853, 606417, 1809905, 3197210, 2995011, 1112083, 1
Offset: 0

Views

Author

Keywords

Comments

Diagonals: A000012, A000217; A000012, A002104. - Philippe Deléham, Jun 12 2004
The sequence a(n) = Sum_{k = 0..n} T(n,k)*x^(n-k) is the binomial transform of the sequence b(n) = (n+x-1)! / (x-1)!. - Philippe Deléham, Jun 18 2004

Examples

			Triangle starts:
  1;
  1,  1;
  1,  3,   1;
  1,  6,   8,    1;
  1, 10,  29,   24,     1;
  1, 15,  75,  145,    89,     1;
  1, 21, 160,  545,   814,   415,     1;
  1, 28, 301, 1575,  4179,  5243,  2372,     1;
  1, 36, 518, 3836, 15659, 34860, 38618, 16072,   1;
		

Crossrefs

Diagonals include: A000012, A000217, A002104.
Sums include: A000522 (row), A001339, A023443 (alternating sign row), A082030, A081367.

Programs

  • Magma
    A046716:= func< n,k | (&+[(-1)^j*Binomial(n,k-j)*StirlingFirst(j+n-k, n-k): j in [0..k]]) >;
    [A046716(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 31 2024
    
  • Maple
    a := proc(n,k) option remember;
       if k = 0 then 1
    elif k < 0 then 0
    elif k = n then (-1)^n
    else a(n-1,k) - n*a(n-1,k-1) - (n-1)*a(n-2,k-2) fi end:
    A046716 := (n,k) -> abs(a(n,k));
    seq(seq(A046716(n,k),k=0..n),n=0..9); # Peter Luschny, Apr 05 2011
  • Mathematica
    t[, 0] = 1; t[n, k_] := (-1)^k*Sum[(-1)^i*Binomial[n, i]*StirlingS1[i, n-k], {i, n-k, n}]; Table[t[n, k] // Abs, {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 10 2014 *)
    T[n_, k_]:= T[n,k]= If[k<0 || k>n, 0, If[k==0 || k==n, 1, T[n-1,k] +n*T[n-1,k-1] - (n-1)*T[n-2,k-2]]];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 31 2024 *)
  • SageMath
    def A046716(n, k): return sum(binomial(n, k-j)*stirling_number1(j+n-k, n-k) for j in range(k+1))
    flatten([[A046716(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 31 2024

Formula

Enneking and Ahuja reference gives the recurrence t(n, k) = t(n-1, k) - n*t(n-1, k-1) - (n-1)*t(n-2, k-2), with t(n, 0) = 1 and t(n, n) = (-1)^n. This sequence is T(n, k) = (-1)^k * t(n, k).
Sum_{k = 0..n} T(n, k)*x^(n-k) = A000522(n), A001339(n), A082030(n) for x = 1, 2, 3 respectively.
Sum_{k = 0..n} T(n, k)*2^k = A081367(n). - Philippe Deléham, Jun 12 2004
Let P(x, n) = Sum_{k = 0..n} T(n, k)*x^k, then Sum_{n>=0} P(x, n)*t^n / n! = exp(xt)/(1-xt)^(1/x). - Philippe Deléham, Jun 12 2004
T(n, 0) = 1, T(n, k) = (-1)^k * Sum_{i=n-k..n} (-1)^i*C(n, i)*S1(i, n-k), where S1 = Stirling numbers of first kind (A008275).
From G. C. Greubel, Jul 31 2024: (Start)
T(n, k) = T(n-1, k) + n*T(n-1, k-1) - (n-1)*T(n-2, k-2), with T(n, 0) = T(n, n) = 1.
Sum_{k=0..n} (-1)^k*T(n, k) = (-1)^(n+1)*A023443(n). (End)

Extensions

More terms from Vladeta Jovovic, Jun 15 2004

A238385 Shifted lower triangular matrix A238363 with a main diagonal of ones.

Original entry on oeis.org

1, 1, 1, -1, 2, 1, 2, -3, 3, 1, -6, 8, -6, 4, 1, 24, -30, 20, -10, 5, 1, -120, 144, -90, 40, -15, 6, 1, 720, -840, 504, -210, 70, -21, 7, 1, -5040, 5760, -3360, 1344, -420, 112, -28, 8, 1, 40320, -45360, 25920, -10080, 3024, -756, 168, -36, 9, 1, -362880, 403200, -226800, 86400, -25200, 6048, -1260, 240, -45, 10, 1
Offset: 0

Views

Author

Tom Copeland, Feb 25 2014

Keywords

Comments

Shift A238363 and add a main diagonal of ones to obtain this array. The row polynomials form a special Sheffer sequence of polynomials, an Appell sequence.

Examples

			The triangle a(n,k) begins:
n\k       0       1        2      3       4     5      6    7   8   9 10 ...
0:        1
1:        1       1
2:       -1       2        1
3:        2      -3        3      1
4:       -6       8       -6      4       1
5:       24     -30       20    -10       5     1
6:     -120     144      -90     40     -15     6      1
7:      720    -840      504   -210      70   -21      7    1
8:    -5040    5760    -3360   1344    -420   112    -28    8   1
9:    40320  -45360    25920 -10080    3024  -756    168  -36   9   1
10: -362880  403200  -226800  86400  -25200  6048  -1260  240 -45  10  1
... formatted by _Wolfdieter Lang_, Mar 09 2014
----------------------------------------------------------------------------
		

Crossrefs

Formula

a(n,k) = (-1)^(n+k-1)*n!/((n-k)*k!) for k
Along the n-th diagonal (n>0) Diag(n,k) = a(n+k,k) = (-1)^(n-1)(n-1)! * A007318(n+k,k).
E.g.f.: (log(1+t)+1)*exp(x*t).
E.g.f. for inverse: exp(x*t)/(log(1+t)+1).
The lowering/annihilation and raising/creation operators for the row polynomials are L=D=d/dx and R=x+1/[(1+D)(1+log(1+D))], i.e., L p(n,x)= n*p(n-1,x) and R p(n,x)= p(n+1,x).
E.g.f. of row sums: (log(1+t)+1)*exp(t). Cf. |row sums-1|=|A002741|.
E.g.f. of unsigned row sums: (-log(1-t)+1)*exp(t). Cf. A002104 + 1.
Let dP = A132440, the infinitesimal generator for the Pascal matrix, I, the identity matrix, and T, this entry's lower triangular matrix, then exp(T-I)=I+dP, i.e., T=I+log(I+dP). Also, ((T-I)n)^n=0, where (T-I)_n denotes the n X n submatrix, i.e., (T-I)_n is nilpotent of order n. - _Tom Copeland, Mar 02 2014
Dividing each subdiagonal by its first element (-1)^(n-1)*(n-1)! yields Pascal's triangle A007318. This is equivalent to multiplying the e.g.f. by exp(t)/(log(1+t)+1). - Tom Copeland, Apr 16 2014
From Tom Copeland, Apr 25 2014: (Start)
A) T = [St1]*[dP]*[St2] + I = [padded A008275]*A132440*A048993 + I
B) = [St1]*[dP]*[St1]^(-1) + I
C) = [St2]^(-1)*[dP]*[St2] + I
D) = [St2]^(-1)*[dP]*[St1]^(-1) + I,
where [St1]=padded A008275 just as [St2]=A048993=padded A008277 and I=identity matrix. Cf. A074909. (End)
From Tom Copeland, Jul 26 2017: (Start)
p_n(x) = (1 + log(1+D)) x^n = (1 + D - D^2/2 + D^3/3- ...) x^n = x^n + n! * Sum_(k=1,..,n) (-1)^(k+1) (1/k) x^(n-k)/(n-k)!.
Unsigned T with the first two diagonals nulled gives an exponential infinitesimal generator M (infinigen) for the rencontres numbers A008290, and negated M gives the infinigen for A055137; i.e., with M = |T| - I - dP = -log(I-dP)-dP, then e^M = e^(-dP) / (I-dP) = lower triangular A008290, and e^(-M) = e^dP (I-dP) = A007318 * (I-dP) = lower triangular A055137. The matrix formulation is consistent with the operator relations e^(-D) / (1-D) x^n = n-th row polynomial of A008290 and e^D (1-D) x^n = n-th row polynomial of A055137. (End)

A111492 Triangle read by rows: a(n,k) = (k-1)! * C(n,k).

Original entry on oeis.org

1, 2, 1, 3, 3, 2, 4, 6, 8, 6, 5, 10, 20, 30, 24, 6, 15, 40, 90, 144, 120, 7, 21, 70, 210, 504, 840, 720, 8, 28, 112, 420, 1344, 3360, 5760, 5040, 9, 36, 168, 756, 3024, 10080, 25920, 45360, 40320, 10, 45, 240, 1260, 6048, 25200, 86400, 226800, 403200, 362880
Offset: 1

Author

Ross La Haye, Nov 15 2005

Keywords

Comments

For k > 1, a(n,k) = the number of permutations of the symmetric group S_n that are pure k-cycles.
Reverse signed array is A238363. For a relation to (Cauchy-Euler) derivatives of the Vandermonde determinant, see Chervov link. - Tom Copeland, Apr 10 2014
Dividing the k-th column of T by (k-1)! for each column generates A135278 (the f-vectors, or face-vectors for the n-simplices). Then ignoring the first column gives A104712, so T acting on the column vector (-0,d,-d^2/2!,d^3/3!,...) gives the Euler classes for hypersurfaces of degree d in CP^n. Cf. A104712 and Dugger link therein. - Tom Copeland, Apr 11 2014
With initial i,j,n=1, given the n X n Vandermonde matrix V_n(x_1,...,x_n) with elements a(i=row,j=column)=(x_j)^(i-1), its determinant |V_n|, and the column vector of n ones C=(1,1,...,1), the n-th row of the lower triangular matrix T is given by the column vector determined by (1/|V_n|) * V_n(:x_1*d/dx_1:,...,:x_n*d/dx_n:)|V_n| * C, where :x_j*d/dx_j:^n = (x_j)^n*(d/dx_j)^n. - Tom Copeland, May 20 2014
For some other combinatorial interpretations of the first three columns of T, see A208535 and the link to necklace polynomials therein. Because of the simple relation of the array to the Pascal triangle, it can easily be related to many other arrays, e.g., T(p,k)/(p*(k-1)!) with p prime gives the prime rows of A185158 and A051168 when the non-integers are rounded to 0. - Tom Copeland, Oct 23 2014

Examples

			a(3,3) = 2 because (3-1)!C(3,3) = 2.
1;
2 1;
3 3 2;
4 6 8 6;
5 10 20 30 24;
6 15 40 90 144 120;
7 21 70 210 504 840 720;
8 28 112 420 1344 3360 5760 5040;
9 36 168 756 3024 10080 25920 45360 40320;
		

Programs

  • Magma
    /* As triangle: */ [[Factorial(k-1)*Binomial(n,k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Oct 21 2014
  • Mathematica
    Flatten[Table[(k - 1)!Binomial[n, k], {n, 10}, {k, n}]]

Formula

a(n, k) = (k-1)!C(n, k) = P(n, k)/k.
E.g.f. (by columns) = exp(x)((x^k)/k).
a(n, 1) = A000027(n);
a(n, 2) = A000217(n-1);
a(n, 3) = A007290(n);
a(n, 4) = A033487(n-3).
a(n, n) = A000142(n-1);
a(n, n-1) = A001048(n-1) for n > 1.
Sum[a(n, k), {k, 1, n}] = A002104(n);
Sum[a(n, k), {k, 2, n}] = A006231(n).
a(n,k) = sum(j=k..n-1, j!/(j-k)!) (cf. Chervov link). - Tom Copeland, Apr 10 2014
From Tom Copeland, Apr 28 2014: (Start)
E.g.f. by row: [(1+t)^n-1]/t.
E.g.f. of row e.g.f.s: {exp[(1+t)*x]-exp(x)}/t.
O.g.f. of row e.g.f.s: {1/[1-(1+t)*x] - 1/(1-x)}/t.
E.g.f. of row o.g.f.s: -exp(x) * log(1-t*x). (End)
Showing 1-10 of 39 results. Next