cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 134 results. Next

A164675 a(n) = 8*a(n-2) for n > 2; a(1) = 1, a(2) = 12.

Original entry on oeis.org

1, 12, 8, 96, 64, 768, 512, 6144, 4096, 49152, 32768, 393216, 262144, 3145728, 2097152, 25165824, 16777216, 201326592, 134217728, 1610612736, 1073741824, 12884901888, 8589934592, 103079215104, 68719476736, 824633720832
Offset: 1

Views

Author

Klaus Brockhaus, Aug 20 2009

Keywords

Comments

Interleaving of A001018 and 12*A001018.
Binomial transform is A164539.

Crossrefs

Cf. A001018 (powers of 8), A164539.

Programs

  • Magma
    [ n le 2 select 11*n-10 else 8*Self(n-2): n in [1..26] ];
  • Mathematica
    Riffle[#, 12*#] & [8^Range[0, 14]] (* or *)
    LinearRecurrence[{0, 8}, {1, 12}, 30] (* Paolo Xausa, Apr 22 2024 *)

Formula

a(n) = (5+(-1)^n)*2^(1/4*(6*n-11+3*(-1)^n)).
G.f.: x*(1+12*x)/(1-8*x^2).

A240841 a(n) = floor(8^n/(1+2*sin(6*Pi/13)/(2*sin(Pi/13)))^n).

Original entry on oeis.org

1, 1, 2, 3, 5, 9, 14, 21, 34, 52, 82, 127, 198, 308, 478, 744, 1156, 1796, 2792, 4339, 6742, 10477, 16282, 25302, 39318, 61100, 94947, 147545, 229281, 356295, 553672, 860388, 1337014, 2077676, 3228640, 5017200, 7796562, 12115600, 18827241, 29256909, 45464268
Offset: 0

Views

Author

Kival Ngaokrajang, Apr 13 2014

Keywords

Comments

a(n) is the perimeter (rounded down) of a tridecaflake after n iterations, let a(0) = 1. The total number of sides is 13*A001018(n). The total number of holes is A091030(n), n >= 1.

Crossrefs

Cf. A001018, A091030, A240523 (pentaflake), A240671 (heptaflake), A240572 (octaflake), A240733 (nonaflake), A240734 (decaflake), A240840 (hendecaflake), A240735 (dodecaflake).

Programs

  • Maple
    A240841:=n->floor(8^n/(1+2*sin(6*Pi/13)/(2*sin(Pi/13)))^n); seq(A240841(n), n=0..50); # Wesley Ivan Hurt, Apr 13 2014
  • Mathematica
    Table[Floor[8^n/(1 + 2*Sin[6*Pi/13]/(2*Sin[Pi/13]))^n], {n, 0, 50}] (* Wesley Ivan Hurt, Apr 13 2014 *)
  • PARI
    {a(n)=floor(8^n/(1+2*sin(6*Pi/13)/(2*sin(Pi/13)))^n)}

A248217 a(n) = 8^n - 2^n.

Original entry on oeis.org

0, 6, 60, 504, 4080, 32736, 262080, 2097024, 16776960, 134217216, 1073740800, 8589932544, 68719472640, 549755805696, 4398046494720, 35184372056064, 281474976645120, 2251799813554176, 18014398509219840, 144115188075331584, 1152921504605798400
Offset: 0

Views

Author

Vincenzo Librandi, Oct 04 2014

Keywords

Comments

If 2^(n+1) is the length of the even leg of a primitive Pythagorean triangle (PPT) then it constrains the odd leg to have a length of 4^n-1 and the hypotenuse to have a length of 4^n+1. The resulting triangle has a semiperimeter of 4^n+2^n, an area of 8^n-2^n and an inradius of 2^n-1. For n > 0, a(n) is the area of such triangles. - Frank M Jackson, Sep 07 2018
Maximum anomalous cancellation multiplicity of (2n+1)-digit integers: number of (2n+1)-digit integers which can be anomalously canceled with a fixed (2n+1)-digit integer. The maximum is obtained at 88...88911...11 containing n 8's and n 1's (see Example below). Anomalous cancellation is a "canceling" of digits of a and b in the numerator and denominator of a fraction a/b which results in a fraction equal to the original, and no 0 or digits that appear different times in a and b are canceled. For example, 49/98 = 4/8, 138/184 = 3/4, 1985/5955 = 185/555, 88911/43956 = 8811/4356, but 120/340 is not because canceling the 0's is not an anomalous cancellation. - Xiaohan Zhang, Nov 21 2019

Examples

			For n=1, there are 6 numbers with 3 digits that can be anomalously canceled with 891: 297, 396, 495, 594, 693, 792. For n=2 there are 60 numbers with 88911: 12987, 13986, 14985, 15984, 16983, 17982, 21978, 22977, 23976, 24975, 25974, 26973, 27972, 28971, 31968, 32967, 33966, 34965, 35964, 36963, 37962, 38961, 41958, 42957, 43956, 44955, 45954, 46953, 47952, 48951, 51948, 52947, 53946, 54945, 55944, 56943, 57942, 58941, 61938, 62937, 63936, 64935, 65934, 66933, 67932, 68931, 71928, 72927, 73926, 74925, 75924, 76923, 77922, 78921, 82917, 83916, 84915, 85914, 86913, 87912. For n=3 504 numbers with 8889111, and no other (2n+1)-digit number has greater multiplicity. There seems to be a pattern of integer partitions in these examples, because the sum of the digits of numbers above are all multiples of 9. - _Xiaohan Zhang_, Nov 21 2019
		

Crossrefs

Cf. similar sequences listed in A248216.

Programs

  • Magma
    [8^n-2^n: n in [0..25]];
    
  • Mathematica
    Table[8^n - 2^n, {n, 0, 25}] (* or *) CoefficientList[Series[6 x /((1 - 2 x) (1 - 8 x)), {x, 0, 30}], x]
    LinearRecurrence[{10,-16},{0,6},30] (* Harvey P. Dale, Mar 29 2015 *)
  • PARI
    a(n) = 8^n-2^n; \\ Altug Alkan, Sep 07 2018
    
  • Python
    def A248217(n): return 6*binomial(pow(2,n) +1, 3)
    print([A248217(n) for n in range(41)]) # G. C. Greubel, Dec 26 2024

Formula

G.f.: 6*x/((1-2*x)*(1-8*x)).
a(n) = 10*a(n-1) - 16*a(n-2).
a(n) = 2^n*(4^n-1) = A000079(n) * A024036(n) = A001018(n) - A000079(n).
E.g.f.: exp(2*x)*(-1 + exp(6*x)). - Stefano Spezia, Sep 07 2018
a(n) = 6*A016131(n-1). - R. J. Mathar, Mar 10 2022

A013713 a(n) = 8^(2n+1).

Original entry on oeis.org

8, 512, 32768, 2097152, 134217728, 8589934592, 549755813888, 35184372088832, 2251799813685248, 144115188075855872, 9223372036854775808, 590295810358705651712, 37778931862957161709568, 2417851639229258349412352
Offset: 0

Views

Author

Keywords

Comments

Additive digital root of a(n) = 8. - Miquel Cerda, Jul 03 2016

Crossrefs

Programs

Formula

a(n) = 64a(n-1), n>0. O.g.f.: 8/(1-64x). - R. J. Mathar, May 07 2008
a(n) = 8*A089357(n) = 2*A013734(n) = A013735(n)/2 . - Philippe Deléham, Nov 24 2008
From Ilya Gutkovskiy, Jul 03 2016: (Start)
E.g.f.: 8*exp(64*x).
a(n) = A001018(A005408(n)). (End)

A014832 a(1)=1; for n>1, a(n) = 9*a(n-1) + n.

Original entry on oeis.org

1, 11, 102, 922, 8303, 74733, 672604, 6053444, 54481005, 490329055, 4412961506, 39716653566, 357449882107, 3217048938977, 28953440450808, 260580964057288, 2345228676515609, 21107058088640499, 189963522797764510, 1709671705179880610, 15387045346618925511, 138483408119570329621
Offset: 1

Views

Author

Keywords

Examples

			For n=5, a(5) = 1*15 + 8*20 + 8^2*15 + 8^3*6 + 8^4*1 = 8303. [_Bruno Berselli_, Nov 13 2015]
		

Crossrefs

Programs

  • Maple
    a:=n->sum((9^(n-j)-1)/8,j=0..n): seq(a(n), n=1..18); # Zerinvary Lajos, Jan 15 2007
    a:= n-> (Matrix([[1,0,1],[1,1,1],[0,0,9]])^n)[2,3]: seq(a(n), n=1..18); # Alois P. Heinz, Aug 06 2008
  • Mathematica
    RecurrenceTable[{a[1]==1,a[n]==9a[n-1]+n},a,{n,20}] (* or *) LinearRecurrence[ {11,-19,9},{1,11,102},20] (* Harvey P. Dale, May 01 2012 *)

Formula

a(n) = (9^(n+1) - 8*n - 9)/64. - Rolf Pleisch, Oct 22 2010
From Harvey P. Dale, May 01 2012: (Start)
a(1)=1, a(2)=11, a(3)=102; for n>3, a(n) = 11*a(n-1) - 19*a(n-2) + 9*a(n-3).
G.f.: -x/((x-1)^2*(9*x-1)). (End)
a(n) = Sum_{i=0..n-1} 8^i*binomial(n+1,n-1-i). - Bruno Berselli, Nov 13 2015
E.g.f.: exp(x)*(9*exp(8*x) - 8*x - 9)/64. - Elmo R. Oliveira, Mar 29 2025

A036294 a(n) = n*8^n.

Original entry on oeis.org

0, 8, 128, 1536, 16384, 163840, 1572864, 14680064, 134217728, 1207959552, 10737418240, 94489280512, 824633720832, 7146825580544, 61572651155456, 527765581332480, 4503599627370496, 38280596832649216, 324259173170675712, 2738188573441261568, 23058430092136939520
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n*8^n: n in [0..20]]; // Vincenzo Librandi, Aug 09 2017
  • Mathematica
    Table[n 7^n, {n, 0, 30}] (* or *) LinearRecurrence[{16,-64},{0,8},31] (* Vincenzo Librandi, Aug 09 2017 *)

Formula

From Vincenzo Librandi, Aug 09 2017: (Start)
G.f.: 8*x/(8*x-1)^2.
a(n) = 16*a(n-1) - 64*a(n-2) for n > 1. (End)
From Amiram Eldar, Jul 20 2020: (Start)
Sum_{n>=1} 1/a(n) = log(8/7).
Sum_{n>=1} (-1)^(n+1)/a(n) = log(9/8). (End)
From Elmo R. Oliveira, Sep 09 2024: (Start)
E.g.f.: 8*x*exp(8*x).
a(n) = n*A001018(n) = 8*A053539(n). (End)

A060195 a(n) = 8^(n-1)*(2^n - 1).

Original entry on oeis.org

1, 24, 448, 7680, 126976, 2064384, 33292288, 534773760, 8573157376, 137304735744, 2197949513728, 35175782154240, 562881233944576, 9006649498927104, 144110790029344768, 2305807824841605120, 36893206672442392576, 590293558558891966464, 9444714951340780945408
Offset: 1

Views

Author

Manish Kumar Gupta (M.Gupta(AT)math.canterbury.ac.nz), Mar 21 2001

Keywords

Crossrefs

Programs

  • Magma
    [8^(n-1)*(2^n-1): n in [1..40]]; // G. C. Greubel, Aug 01 2024
    
  • Mathematica
    Table[8^(n-1) (2^n-1),{n,20}] (* or *) LinearRecurrence[{24,-128},{1,24},20] (* Harvey P. Dale, Oct 20 2014 *)
  • PARI
    { a(n) = 8^(n - 1)*(2^n - 1) } \\ Harry J. Smith, Jul 02 2009
    
  • SageMath
    [8^(n-1)*(2^n-1) for n in range(1,41)] # G. C. Greubel, Aug 01 2024

Formula

a(1)=1, a(2)=24, a(n) = 24*a(n-1) - 128*a(n-2). - Harvey P. Dale, Oct 20 2014
From G. C. Greubel, Aug 01 2024: (Start)
a(n) = A000225(n)*A001018(n-1).
G.f.: x/((1 - 8*x)*(1 - 16*x)).
E.g.f.: (1/4)*exp(12*x)*sinh(4*x). (End)

Extensions

More terms from Jason Earls and Larry Reeves (larryr(AT)acm.org), Mar 21 2001

A139541 There are 4*n players who wish to play bridge at n tables. Each player must have another player as partner and each pair of partners must have another pair as opponents. The choice of partners and opponents can be made in exactly a(n)=(4*n)!/(n!*8^n) different ways.

Original entry on oeis.org

1, 3, 315, 155925, 212837625, 618718975875, 3287253918823875, 28845653137679503125, 388983632561608099640625, 7637693625347175036443671875, 209402646126143497974176151796875, 7752714167528210725497923667975703125, 377130780679409810741846496828678078515625
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 25 2008

Keywords

Comments

From Karol A. Penson, Oct 05 2009: (Start)
Integral representation as n-th moment of a positive function on a positive semi-axis (solution of the Stieltjes moment problem), in Maple notation:
a(n)=int(x^n*((1/4)*sqrt(2)*(Pi^(3/2)*2^(1/4)*hypergeom([], [1/2, 3/4], -(1/32)*x)*sqrt(x)-2*Pi*hypergeom([], [3/4, 5/4], -(1/32)*x)*GAMMA(3/4)*x^(3/4)+sqrt(Pi)*GAMMA(3/4)^2*2^(1/4)*hypergeom([], [5/4, 3/2],-(1/32)*x)*x)/(Pi^(3/2)*GAMMA(3/4)*x^(5/4))), x=0..infinity), n=0,1... .
This solution may not be unique. (End)

References

  • G. Pólya and G. Szegő, Problems and Theorems in Analysis II (Springer 1924, reprinted 1976), Appendix: Problem 203.1, p164.

Crossrefs

Programs

Formula

a(n) = (4*n)!/(n!*8^n).
a(n) = A001147(n)*A001147(2*n).
a(n) = A008977(n)*(A049606(n)/A001316(n))^3. - Reinhard Zumkeller, Apr 28 2008

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 07 2020

A164683 a(n) = 8*a(n-2) for n > 2; a(1) = 1, a(2) = 8.

Original entry on oeis.org

1, 8, 8, 64, 64, 512, 512, 4096, 4096, 32768, 32768, 262144, 262144, 2097152, 2097152, 16777216, 16777216, 134217728, 134217728, 1073741824, 1073741824, 8589934592, 8589934592, 68719476736, 68719476736, 549755813888
Offset: 1

Views

Author

Klaus Brockhaus, Aug 22 2009

Keywords

Comments

Interleaving of A001018 and A001018 without initial term 1.
Binomial transform is A083100. Second binomial transform is A164607.

Crossrefs

Cf. A001018 (powers of 8), A083100, A164607.

Programs

  • Magma
    [ n le 2 select 7*n-6 else 8*Self(n-2): n in [1..26] ];
  • Mathematica
    With[{c=8^Range[0,15]},Riffle[c,c]]//Rest (* Harvey P. Dale, Aug 08 2017 *)

Formula

a(n) = 2^(1/4*(6*n-3+3*(-1)^n)).
G.f.: x*(1+8*x)/(1-8*x^2).

A164737 a(n) = 8*a(n-2) for n > 2; a(1) = 5, a(2) = 12.

Original entry on oeis.org

5, 12, 40, 96, 320, 768, 2560, 6144, 20480, 49152, 163840, 393216, 1310720, 3145728, 10485760, 25165824, 83886080, 201326592, 671088640, 1610612736, 5368709120, 12884901888, 42949672960, 103079215104, 343597383680, 824633720832
Offset: 1

Views

Author

Klaus Brockhaus, Aug 24 2009

Keywords

Comments

Interleaving of 5*A001018 and 12*A001018.
Binomial transform is A096980 without initial terms 1. Second binomial transform is A164593. Third binomial transform is A101386.

Crossrefs

Cf. A001018 (powers of 8), A067412, A096980, A101386, A164593.

Programs

  • Magma
    [ n le 2 select 7*n-2 else 8*Self(n-2): n in [1..26] ];
    
  • Maple
    seq(coeff(series( x*(5+12*x)/(1-8*x^2) , x, n+1), x, n), n=1..30); # G. C. Greubel, Apr 16 2020
  • Mathematica
    LinearRecurrence[{0,8}, {5,12}, 30] (* G. C. Greubel, Apr 16 2020 *)
  • Sage
    [(13 -7*(-1)^n)*2^((6*n -11 +3*(-1)^n)/4) for n in (1..30)] # G. C. Greubel, Apr 16 2020

Formula

a(n) = (13 - 7*(-1)^n)*2^(1/4*(6*n - 11 + 3*(-1)^n)).
G.f.: x*(5 + 12*x)/(1 - 8*x^2).
Previous Showing 51-60 of 134 results. Next