A173116
a(n) = sinh(2*arcsinh(n))^2 = 4*n^2*(n^2 + 1).
Original entry on oeis.org
0, 8, 80, 360, 1088, 2600, 5328, 9800, 16640, 26568, 40400, 59048, 83520, 114920, 154448, 203400, 263168, 335240, 421200, 522728, 641600, 779688, 938960, 1121480, 1329408, 1565000, 1830608, 2128680, 2461760, 2832488, 3243600
Offset: 0
G.f. = 8*x + 80*x^2 + 360*x^3 + 1088*x^4 + 2600*x^5 + 5328*x^6 + 9800*x^7 + ... - _Michael Somos_, Jul 05 2018
-
[4*n^2*(n^2+1): n in [0..40]]; // Vincenzo Librandi, Jun 15 2011
-
Table[4*n^2*(n^2 + 1), {n, 0, 30}] (* OR *)
Table[Round[N[Sinh[2 ArcSinh[n]]^2, 100]], {n, 0, 30}]
a[ n_] := TrigExpand @ Sinh[ 2 ArcSinh @ n]^2; (* Michael Somos, Jul 05 2018 *)
-
a(n)=4*n^2*(n^2+1) \\ Charles R Greathouse IV, Apr 17 2012
-
a(n)=8*binomial(n^2+1,2) \\ Charles R Greathouse IV, Apr 17 2012
A204518
Numbers such that floor(a(n)^2 / 6) is a square.
Original entry on oeis.org
0, 1, 2, 3, 5, 10, 27, 49, 98, 267, 485, 970, 2643, 4801, 9602, 26163, 47525, 95050, 258987, 470449, 940898, 2563707, 4656965, 9313930, 25378083, 46099201, 92198402, 251217123, 456335045, 912670090, 2486793147, 4517251249, 9034502498, 24616714347
Offset: 1
-
b=6;for(n=0,2e9,issquare(n^2\b) & print1(n","))
-
concat(0, Vec(-x^2*(x+1)*(3*x^4+7*x^3-2*x^2-x-1)/(x^6-10*x^3+1) + O(x^100))) \\ Colin Barker, Sep 18 2014
A001078
a(n) = 10*a(n-1) - a(n-2) with a(0) = 0, a(1) = 2.
Original entry on oeis.org
0, 2, 20, 198, 1960, 19402, 192060, 1901198, 18819920, 186298002, 1844160100, 18255302998, 180708869880, 1788833395802, 17707625088140, 175287417485598, 1735166549767840, 17176378080192802, 170028614252160180, 1683109764441408998
Offset: 0
- O. Bottema: Verscheidenheden XXVI. Het vraagstuk van Malfatti, Euclides 25 (1949-50), pp. 144-149 [in Dutch].
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (pp. 283, 302, P_{16}).
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- V. Thébault, Les Récréations Mathématiques. Gauthier-Villars, Paris, 1952, p. 281.
- G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..100 from T. D. Noe)
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- O. Bottema, The Malfatti problem (translation of Het vraagstuk van Malfatti), Forum Geom. 1 (2001) 43-50.
- O. Bottema, Het Vraagstuk Van Malfatti, from Euclides.
- L. Euler, De solutione problematum diophanteorum per numeros integros, par. 18.
- Tanya Khovanova, Recursive Sequences.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Index entries for linear recurrences with constant coefficients, signature (10,-1).
-
a001078 n = a001078_list !! n
a001078_list =
0 : 2 : zipWith (-) (map (10*) $ tail a001078_list) a001078_list
-- Reinhard Zumkeller, Mar 18 2011
-
I:=[0, 2]; [n le 2 select I[n] else 10*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 19 2017
-
A001078 := proc(n) option remember; if n=0 then 0 elif n=1 then 2 else 10*A001078(n-1)-A001078(n-2); fi; end;
A001078:=2*z/(1-10*z+z**2); # conjectured by Simon Plouffe in his 1992 dissertation
-
a[0]=0; a[1]=2; a[n_] := a[n] = 10*a[n-1] - a[n-2]; Table[a[n],{n,0,19}] (* Jean-François Alcover, Mar 18 2011 *)
LinearRecurrence[{10,-1},{0,2},20] (* Harvey P. Dale, Jun 23 2011 *)
CoefficientList[Series[2*x/(1 - 10*x + x^2), {x, 0, 50}], x] (* G. C. Greubel, Dec 19 2017 *)
-
nxsqp1(m,n) = { for(x=1,m, y = n*x*x+1; if(issquare(y),print1(x" ")) ) }
-
a(n)=imag((5+2*quadgen(24))^n) /* Michael Somos, Jul 05 2005 */
-
a(n)=subst(poltchebi(n+1)-5*poltchebi(n),x,5)/12 /* Michael Somos, Jul 05 2005 */
-
x='x+O('x^30); concat([0], Vec(2*x/(1 - 10*x + x^2))) \\ G. C. Greubel, Dec 19 2017
Thanks to Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr) and
Floor van Lamoen for the Bottema references.
A173129
a(n) = cosh(2 * n * arccosh(n)).
Original entry on oeis.org
1, 1, 97, 19601, 7380481, 4517251249, 4097989415521, 5170128475599457, 8661355881006882817, 18605234632923999244961, 49862414878754347585980001, 163104845048002042971670685041, 639582975902942936737758325440001
Offset: 0
Cf.
A001079,
A037270,
A053120 (Chebyshev polynomial),
A058331,
A115066,
A132592,
A146311,
A146312,
A146313,
A173115,
A173116,
A173121,
A173127,
A173128,
A173148.
-
seq(orthopoly[T](2*n,n), n=0..50); # Robert Israel, Dec 27 2018
-
Table[Round[Cosh[2 n ArcCosh[n]]], {n, 0, 20}] (* Artur Jasinski, Feb 10 2010 *)
Round[Table[1/2 (x - Sqrt[ -1 + x^2])^(2 x) + 1/2 (x + Sqrt[ -1 + x^2])^(2 x), {x, 0, 10}]] (* Artur Jasinski, Feb 14 2010 *)
Table[ChebyshevT[2*n, n], {n, 0, 15}] (* Vaclav Kotesovec, Nov 07 2021 *)
-
{a(n) = sum(k=0, n, binomial(2*n, 2*k)*(n^2-1)^(n-k)*n^(2*k))} \\ Seiichi Manyama, Dec 27 2018
-
{a(n) = polchebyshev(2*n, 1, n)} \\ Seiichi Manyama, Dec 28 2018
-
{a(n) = polchebyshev(n, 1, 2*n^2-1)} \\ Seiichi Manyama, Dec 29 2018
A041006
Numerators of continued fraction convergents to sqrt(6).
Original entry on oeis.org
2, 5, 22, 49, 218, 485, 2158, 4801, 21362, 47525, 211462, 470449, 2093258, 4656965, 20721118, 46099201, 205117922, 456335045, 2030458102, 4517251249, 20099463098, 44716177445, 198964172878, 442644523201, 1969542265682, 4381729054565, 19496458483942
Offset: 0
-
I:=[2, 5, 22, 49]; [n le 4 select I[n] else 10*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 10 2015
-
Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[6],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011 *)
LinearRecurrence[{0, 10, 0, -1}, {2, 5, 22, 49}, 50] (* Vincenzo Librandi, Jun 10 2015 *)
-
A41006=contfracpnqn(c=contfrac(sqrt(6)), #c)[1, ][^-1] \\ Discard possibly incorrect last element. NB: a(n)=A41006[n+1]! M. F. Hasler, Nov 01 2019
-
\\ For correct index & more terms:
A041006(n)={n<#A041006|| A041006=extend(A041006, [2, 10; 4, -1], n\.8); A041006[n+1]}
extend(A, c, N)={for(n=#A+1, #A=Vec(A, N), A[n]=[A[n-i]|i<-c[, 1]]*c[, 2]); A} \\ M. F. Hasler, Nov 01 2019
A173127
a(n) = sinh((2n-1)*arcsinh(3)).
Original entry on oeis.org
-3, 3, 117, 4443, 168717, 6406803, 243289797, 9238605483, 350823718557, 13322062699683, 505887558869397, 19210405174337403, 729489509065951917, 27701390939331835443, 1051923366185543794917, 39945386524111332371403
Offset: 0
-
[-3] cat [n: n in [0..10^7]|IsSquare((n^2+1)/10)]; // Vincenzo Librandi, Jan 02 2012
-
LinearRecurrence[{38,-1},{-3,3},30] (* Harvey P. Dale, Jan 14 2015 *)
-
from itertools import islice
def A173127_gen(): # generator of terms
x, y = -30, 10
while True:
yield x//10
x, y = x*19+y*60, x*6+y*19
A173127_list = list(islice(A173127_gen(),20)) # Chai Wah Wu, Apr 24 2025
A056771
a(n) = a(-n) = 34*a(n-1) - a(n-2), and a(0)=1, a(1)=17.
Original entry on oeis.org
1, 17, 577, 19601, 665857, 22619537, 768398401, 26102926097, 886731088897, 30122754096401, 1023286908188737, 34761632124320657, 1180872205318713601, 40114893348711941777, 1362725501650887306817, 46292552162781456490001
Offset: 0
G.f. = 1 + 17*x + 577*x^2 + 19601*x^3 + 665857*x^4 + 22619537*x^5 + ...
-
I:=[1, 17]; [n le 2 select I[n] else 34*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Dec 18 2011
-
LinearRecurrence[{34,-1},{1,17},30] (* Vincenzo Librandi, Dec 18 2011 *)
a[ n_] := ChebyshevT[ 2 n, 3]; (* Michael Somos, May 28 2014 *)
-
makelist(expand(((17+sqrt(288))^n+(17-sqrt(288))^n))/2, n, 0, 15); /* Vincenzo Librandi, Dec 18 2011 */
-
{a(n) = polchebyshev( n, 1, 17)}; /* Michael Somos, Apr 05 2019 */
-
[lucas_number2(n,34,1)/2 for n in range(0,15)] # Zerinvary Lajos, Jun 27 2008
Original entry on oeis.org
1, 9, 89, 881, 8721, 86329, 854569, 8459361, 83739041, 828931049, 8205571449, 81226783441, 804062262961, 7959395846169, 78789896198729, 779939566141121, 7720605765212481, 76426118085983689, 756540575094624409, 7488979632860260401, 74133255753507979601, 733843577902219535609
Offset: 0
1 + 9*x + 89*x^2 + 881*x^3 + 8721*x^4 + 86329*x^5 + ...
- H. Brocard, Note #2049, L'Intermédiaire des Mathématiciens, 8 (1901), pp. 212-213. - N. J. A. Sloane, Mar 02 2022
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Jean-Paul Allouche, Jeffrey Shallit, and Manon Stipulanti, Combinatorics on words and generating Dirichlet series of automatic sequences, arXiv:2401.13524 [math.CO], 2024.
- Bruno Deschamps, Sur les bonnes valeurs initiales de la suite de Lucas-Lehmer, Journal of Number Theory, Volume 130, Issue 12, December 2010, Pages 2658-2670.
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (I).
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (II).
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (III).
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (IV).
- Index entries for linear recurrences with constant coefficients, signature (10, -1).
Cf. similar sequences listed in
A238379.
-
CoefficientList[Series[(1 - x)/(1 - 10 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)
a[c_, n_] := Module[{},
p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];
d := Denominator[Convergents[Sqrt[c], n p]];
t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];
Return[t];
] (* Complement of A041007, A041039 *)
a[6, 20] (* Gerry Martens, Jun 07 2015 *)
-
{a(n) = subst( poltchebi(n+1) + poltchebi(n), x, 5) / 6} /* Michael Somos, Jan 25 2013 */
-
[lucas_number1(n,10,1)-lucas_number1(n-1,10,1) for n in range(1, 20)] # Zerinvary Lajos, Nov 10 2009
A173128
a(n) = cosh(2*n*arcsinh(n)).
Original entry on oeis.org
1, 3, 161, 27379, 9478657, 5517751251, 4841332221601, 5964153172084899, 9814664424981012481, 20791777842234580902499, 55106605639755476546020001, 178627672869645203363556318483, 695165908550906808156689590141441
Offset: 0
Cf.
A058331,
A001079,
A037270,
A071253,
A108741,
A132592,
A146311,
A146312,
A146313,
A173115,
A173116,
A173121,
A173127,
A173129,
A173174.
-
seq(expand( (1/2)*((n + sqrt(n^2 + 1))^(2*n) + (n - sqrt(n^2 + 1))^(2*n))), n=0..30); # Robert Israel, Apr 05 2016
-
Round[Table[Cosh[2 n ArcSinh[n]], {n, 0, 20}]] (* Artur Jasinski *)
Round[Table[1/2 (x - Sqrt[1 + x^2])^(2 x) + 1/2 (x + Sqrt[1 + x^2])^(2 x), {x, 0, 20}]] (* Artur Jasinski, Feb 14 2010 *)
-
{a(n) = sum(k=0, n, binomial(2*n, 2*k)*(n^2+1)^(n-k)*n^(2*k))} \\ Seiichi Manyama, Dec 27 2018
-
{a(n) = polchebyshev(n, 1, 2*n^2+1)} \\ Seiichi Manyama, Dec 29 2018
A142238
Numerators of continued fraction convergents to sqrt(3/2).
Original entry on oeis.org
1, 5, 11, 49, 109, 485, 1079, 4801, 10681, 47525, 105731, 470449, 1046629, 4656965, 10360559, 46099201, 102558961, 456335045, 1015229051, 4517251249, 10049731549, 44716177445, 99482086439, 442644523201, 984771132841, 4381729054565, 9748229241971
Offset: 0
N. J. A. Sloane, Oct 05 2008, following a suggestion from Rob Miller (rmiller(AT)AmtechSoftware.net)
The initial convergents are 1, 5/4, 11/9, 49/40, 109/89, 485/396, 1079/881, 4801/3920, 10681/8721, 47525/38804, 105731/86329, ...
-
with(numtheory): cf := cfrac (sqrt(3)/sqrt(2),100): [seq(nthnumer(cf,i), i=0..50)]; [seq(nthdenom(cf,i), i=0..50)]; [seq(nthconver(cf,i), i=0..50)];
-
Numerator[Convergents[Sqrt[3/2], 30]] (* Bruno Berselli, Nov 11 2013 *)
LinearRecurrence[{0,10,0,-1},{1,5,11,49},30] (* Harvey P. Dale, Dec 30 2017 *)
-
a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,0,10,0]^n*[1;5;11;49])[1,1] \\ Charles R Greathouse IV, Jun 21 2015
Comments