A322790
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where A(n,k) is Sum_{j=0..k} binomial(2*k,2*j)*(n+1)^(k-j)*n^j.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 17, 5, 1, 1, 99, 49, 7, 1, 1, 577, 485, 97, 9, 1, 1, 3363, 4801, 1351, 161, 11, 1, 1, 19601, 47525, 18817, 2889, 241, 13, 1, 1, 114243, 470449, 262087, 51841, 5291, 337, 15, 1, 1, 665857, 4656965, 3650401, 930249, 116161, 8749, 449, 17, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 3, 17, 99, 577, 3363, 19601, ...
1, 5, 49, 485, 4801, 47525, 470449, ...
1, 7, 97, 1351, 18817, 262087, 3650401, ...
1, 9, 161, 2889, 51841, 930249, 16692641, ...
1, 11, 241, 5291, 116161, 2550251, 55989361, ...
1, 13, 337, 8749, 227137, 5896813, 153090001, ...
-
A[0, k_] := 1; A[n_, k_] := Sum[Binomial[2 k, 2 j]*(n + 1)^(k - j)*n^j, {j, 0, k}]; Table[A[n - k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Amiram Eldar, Dec 26 2018 *)
A041038
Numerators of continued fraction convergents to sqrt(24).
Original entry on oeis.org
4, 5, 44, 49, 436, 485, 4316, 4801, 42724, 47525, 422924, 470449, 4186516, 4656965, 41442236, 46099201, 410235844, 456335045, 4060916204, 4517251249, 40198926196, 44716177445, 397928345756
Offset: 0
A077250
Bisection (odd part) of Chebyshev sequence with Diophantine property.
Original entry on oeis.org
11, 103, 1019, 10087, 99851, 988423, 9784379, 96855367, 958769291, 9490837543, 93949606139, 930005223847, 9206102632331, 91131021099463, 902104108362299, 8929910062523527, 88396996516872971, 875040055106206183, 8662003554545188859, 85744995490345682407
Offset: 0
103 = a(1) = sqrt(24*A077249(1)^2 + 25) = sqrt(24*21^2 + 25) = sqrt(10609) = 103.
-
CoefficientList[Series[(11 - 7 z)/(z^2 - 10 z + 1), {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 11 2011 *)
-
a(n)= 2*polchebyshev(n+1,1,5)+polchebyshev(n,1,5) \\ Charles R Greathouse IV, Jun 11 2011
-
Vec((11-7*x)/(1-10*x+x^2) + O(x^30)) \\ Colin Barker, Jun 15 2015
A077409
Bisection (even part) of Chebyshev sequence with Diophantine property.
Original entry on oeis.org
7, 59, 583, 5771, 57127, 565499, 5597863, 55413131, 548533447, 5429921339, 53750679943, 532076878091, 5267018100967, 52138104131579, 516114023214823, 5109002128016651, 50573907256951687, 500630070441500219, 4955726797158050503, 49056637901139004811
Offset: 0
59 = a(1) = sqrt(24*A077251(1)^2 + 25) = sqrt(24*12^2 + 25) = sqrt(3481) = 59.
-
I:=[7,59]; [n le 2 select I[n] else 10*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 18 2018
-
CoefficientList[Series[(7 - 11 z)/(z^2 - 10 z + 1), {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 11 2011 *)
LinearRecurrence[{10,-1}, {7,59}, 30] (* G. C. Greubel, Jan 18 2018 *)
-
a(n)=if(n<0,0,subst(poltchebi(n+1)+2*poltchebi(n),x,5))
-
Vec((7-11*x)/(1-10*x+x^2) + O(x^30)) \\ Colin Barker, Jun 15 2015
-
a(n)=polchebyshev(n+1,,5)+2*polchebyshev(n,,5) \\ Charles R Greathouse IV, Jun 15 2015
-
a(n)=([0,1;-1,10]^n*[7;59])[1,1] \\ Charles R Greathouse IV, Jun 15 2015
A080872
a(n)*a(n+3) - a(n+1)*a(n+2) = 4, given a(0)=a(1)=1, a(2)=5.
Original entry on oeis.org
1, 1, 5, 9, 49, 89, 485, 881, 4801, 8721, 47525, 86329, 470449, 854569, 4656965, 8459361, 46099201, 83739041, 456335045, 828931049, 4517251249, 8205571449, 44716177445, 81226783441, 442644523201, 804062262961, 4381729054565, 7959395846169, 43374646022449, 78789896198729, 429364731169925
Offset: 0
-
CoefficientList[Series[(-x^3-5 x^2+x+1)/(x^4-10 x^2+1),{x,0,30}],x] (* or *) LinearRecurrence[{0,10,0,-1},{1,1,5,9},30] (* Harvey P. Dale, May 06 2012 *)
-
Vec( (-x^3 - 5*x^2 + x + 1)/(x^4 - 10*x^2 + 1) + O(x^66) ) \\ Joerg Arndt, Jan 29 2016
A084765
a(n) = 2*a(n-1)^2 - 1, a(0)=1, a(1)=5.
Original entry on oeis.org
1, 5, 49, 4801, 46099201, 4250272665676801, 36129635465198759610694779187201, 2610701117696295981568349760414651575095962187244375364404428801
Offset: 0
Mario Catalani (mario.catalani(AT)unito.it), Jun 04 2003
- G. C. Greubel, Table of n, a(n) for n = 0..10
- Jeffrey Shallit, Rational numbers with non-terminating, non-periodic modified Engel-type expansions, Fib. Quart., 31 (1993), 37-40.
- H. S. Wilf, Limit of a sequence, Elementary Problem E 1093, Amer. Math. Monthly 61 (1954), 424-425.
-
[n le 2 select 5^(n-1) else 2*Self(n-1)^2-1: n in [1..10]]; // Vincenzo Librandi, Jun 02 2015
-
1,seq(expand((5+2*sqrt(6))^(2^n)+(5-2*sqrt(6))^(2^n))/2, n=0..10); # Robert Israel, Jun 01 2015
-
a[n_]:= a[n]= If[n<2, 5^n, 2 a[n-1]^2 -1]; Table[a[n], {n,0,10}]
Join[{1}, NestList[2 #^2 - 1 &, 5, 10]] (* Harvey P. Dale, Mar 28 2020 *)
-
first(m)={my(v=[1,5]);for(i=3,m,v=concat(v, 2*v[i-1]^2 - 1));v;} \\ Anders Hellström, Aug 22 2015
-
def A084765(n): return 1 if n==0 else chebyshev_T(2^(n-1), 5)
[A084765(n) for n in range(11)] # G. C. Greubel, May 17 2023
A097726
Pell equation solutions (5*a(n))^2 - 26*b(n)^2 = -1 with b(n):=A097727(n), n >= 0.
Original entry on oeis.org
1, 103, 10505, 1071407, 109273009, 11144775511, 1136657829113, 115927953794015, 11823514629160417, 1205882564220568519, 122988198035868828521, 12543590317094399940623, 1279323224145592925115025, 130478425272533383961791927, 13307520054574259571177661529
Offset: 0
(x,y) = (5,1), (515,101), (52525,10301), ... give the positive integer solutions to x^2 - 26*y^2 = -1.
Cf.
A001079,
A037270,
A071253,
A108741,
A132592,
A146311,
A146312,
A146313,
A173115,
A173116,
A173121. -
Artur Jasinski, Feb 10 2010
Cf. similar sequences of the type (1/k)*sinh((2*n+1)*arcsinh(k)) listed in
A097775.
-
Table[(1/5) Round[N[Sinh[(2 n - 1) ArcSinh[5]], 100]], {n, 1, 50}] (* Artur Jasinski, Feb 10 2010 *)
CoefficientList[Series[(1 + x)/(1 - 102 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Apr 13 2014 *)
LinearRecurrence[{102,-1},{1,103},20] (* Harvey P. Dale, Aug 20 2017 *)
-
x='x+O('x^99); Vec((1+x)/(1-102*x+x^2)) \\ Altug Alkan, Apr 05 2018
A122652
a(0) = 0, a(1) = 4; for n > 1, a(n) = 10*a(n-1) - a(n-2).
Original entry on oeis.org
0, 4, 40, 396, 3920, 38804, 384120, 3802396, 37639840, 372596004, 3688320200, 36510605996, 361417739760, 3577666791604, 35415250176280, 350574834971196, 3470333099535680, 34352756160385604, 340057228504320360, 3366219528882817996, 33322138060323859600
Offset: 0
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 283, K{P_2(n)}).
- Michael De Vlieger, Table of n, a(n) for n = 0..1004
- Andersen, K., Carbone, L. and Penta, D., Kac-Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields, Journal of Number Theory and Combinatorics, Vol 2, No. 3 pp 245-278, 2011. See Section 9.
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- John M. Campbell, An Integral Representation of Kekulé Numbers, and Double Integrals Related to Smarandache Sequences, arXiv preprint arXiv:1105.3399 [math.GM], 2011.
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (10,-1).
-
CoefficientList[Series[(4 z)/(z^2 - 10 z + 1), {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 11 2011 *)
LinearRecurrence[{10, -1}, {0, 4}, 21] (* Jean-François Alcover, Jan 07 2019 *)
-
a(n)=if(n<2,(n%2)*4,10*a(n-1)-a(n-2)) \\ Benoit Cloitre, Sep 23 2006
A138281
a(n) = floor((sqrt(2) + sqrt(3))^n).
Original entry on oeis.org
1, 3, 9, 31, 97, 308, 969, 3051, 9601, 30210, 95049, 299052, 940897, 2960313, 9313929, 29304086, 92198401, 290080547, 912670089, 2871501385, 9034502497, 28424933309, 89432354889, 281377831710, 885289046401, 2785353383794, 8763458109129, 27572156006234
Offset: 0
-
[Floor((Sqrt(2) + Sqrt(3))^n): n in [0..50]]; // G. C. Greubel, Jan 27 2018
-
Table[Floor[(Sqrt[2] + Sqrt[3])^n], {n, 0, 50}] (* G. C. Greubel, Jan 27 2018 *)
-
for(n=0,50, print1(floor((sqrt(2) + sqrt(3))^n), ", ")) \\ G. C. Greubel, Jan 27 2018
Terms a(16) and a(18) corrected, terms a(19) onward added by
G. C. Greubel, Jan 27 2018
A098297
Member r=12 of the family of Chebyshev sequences S_r(n) defined in A092184.
Original entry on oeis.org
0, 1, 12, 121, 1200, 11881, 117612, 1164241, 11524800, 114083761, 1129312812, 11179044361, 110661130800, 1095432263641, 10843661505612, 107341182792481, 1062568166419200, 10518340481399521, 104120836647576012
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- S. Barbero, U. Cerruti, and N. Murru, On polynomial solutions of the Diophantine equation (x + y - 1)^2 = wxy, Rendiconti Sem. Mat. Univ. Pol. Torino (2020) Vol. 78, No. 1, 5-12.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (11,-11,1).
-
a:=[0,1,12];; for n in [4..30] do a[n]:=11*a[n-1]-11*a[n-2]+ a[n-3]; od; a; # G. C. Greubel, May 24 2019
-
I:=[0,1,12]; [n le 3 select I[n] else 11*Self(n-1)-11*Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, May 24 2019
-
LinearRecurrence[{11,-11,1}, {0,1,12}, 30] (* G. C. Greubel, May 24 2019 *)
-
my(x='x+O('x^30)); concat([0], Vec(x*(1+x)/((1-x)*(1-10*x+x^2)))) \\ G. C. Greubel, May 24 2019
-
(x*(1+x)/((1-x)*(1-10*x+x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 24 2019
Comments