cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 49 results. Next

A322790 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where A(n,k) is Sum_{j=0..k} binomial(2*k,2*j)*(n+1)^(k-j)*n^j.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 17, 5, 1, 1, 99, 49, 7, 1, 1, 577, 485, 97, 9, 1, 1, 3363, 4801, 1351, 161, 11, 1, 1, 19601, 47525, 18817, 2889, 241, 13, 1, 1, 114243, 470449, 262087, 51841, 5291, 337, 15, 1, 1, 665857, 4656965, 3650401, 930249, 116161, 8749, 449, 17, 1
Offset: 0

Views

Author

Seiichi Manyama, Dec 26 2018

Keywords

Examples

			Square array begins:
   1,  1,   1,    1,      1,       1,         1, ...
   1,  3,  17,   99,    577,    3363,     19601, ...
   1,  5,  49,  485,   4801,   47525,    470449, ...
   1,  7,  97, 1351,  18817,  262087,   3650401, ...
   1,  9, 161, 2889,  51841,  930249,  16692641, ...
   1, 11, 241, 5291, 116161, 2550251,  55989361, ...
   1, 13, 337, 8749, 227137, 5896813, 153090001, ...
		

Crossrefs

Columns 0-3 give A000012, A005408, A069129(n+1), A322830.
Main diagonal gives A173174.
A(n-1,n) gives A173148(n).

Programs

  • Mathematica
    A[0, k_] := 1; A[n_, k_] := Sum[Binomial[2 k, 2 j]*(n + 1)^(k - j)*n^j, {j, 0, k}]; Table[A[n - k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Amiram Eldar, Dec 26 2018 *)

Formula

a(n) = 2 * A322699(n) + 1.
A(n,k) + sqrt(A(n,k)^2 - 1) = (sqrt(n+1) + sqrt(n))^(2*k).
A(n,k) - sqrt(A(n,k)^2 - 1) = (sqrt(n+1) - sqrt(n))^(2*k).
A(n,0) = 1, A(n,1) = 2*n+1 and A(n,k) = (4*n+2) * A(n,k-1) - A(n,k-2) for k > 1.
A(n,k) = T_{k}(2*n+1) where T_{k}(x) is a Chebyshev polynomial of the first kind.
T_1(x) = x. So A(n,1) = 2*n+1.

A041038 Numerators of continued fraction convergents to sqrt(24).

Original entry on oeis.org

4, 5, 44, 49, 436, 485, 4316, 4801, 42724, 47525, 422924, 470449, 4186516, 4656965, 41442236, 46099201, 410235844, 456335045, 4060916204, 4517251249, 40198926196, 44716177445, 397928345756
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(2n) = 2*A041006(2n) ; a(2n-1) = A041006(2n-1) = A001079(n). [From M. F. Hasler, Feb 13 2009]
G.f.: (4+5*x+4*x^2-x^3)/(1-10*x^2+x^4)

A077250 Bisection (odd part) of Chebyshev sequence with Diophantine property.

Original entry on oeis.org

11, 103, 1019, 10087, 99851, 988423, 9784379, 96855367, 958769291, 9490837543, 93949606139, 930005223847, 9206102632331, 91131021099463, 902104108362299, 8929910062523527, 88396996516872971, 875040055106206183, 8662003554545188859, 85744995490345682407
Offset: 0

Views

Author

Wolfdieter Lang, Nov 08 2002

Keywords

Comments

a(n)^2 - 24*b(n)^2 = 25, with the companion sequence b(n) = A077249(n).
The even part is A077409(n) with Diophantine companion A077251(n).

Examples

			103 = a(1) = sqrt(24*A077249(1)^2 + 25) = sqrt(24*21^2 + 25) = sqrt(10609) = 103.
		

Programs

Formula

a(n) = 10*a(n-1)- a(n-2), a(-1)=7, a(0)=11.
a(n) = 2*T(n+1, 5)+T(n, 5), with T(n, x) Chebyshev's polynomials of the first kind, A053120. T(n, 5)= A001079(n).
a(n) = sqrt(25 + 24*A077249(n)^2).
G.f.: (11-7*x)/(1-10*x+x^2).

A077409 Bisection (even part) of Chebyshev sequence with Diophantine property.

Original entry on oeis.org

7, 59, 583, 5771, 57127, 565499, 5597863, 55413131, 548533447, 5429921339, 53750679943, 532076878091, 5267018100967, 52138104131579, 516114023214823, 5109002128016651, 50573907256951687, 500630070441500219, 4955726797158050503, 49056637901139004811
Offset: 0

Views

Author

Wolfdieter Lang, Nov 08 2002

Keywords

Comments

a(n)^2 - 24*b(n)^2 = 25, with the companion sequence b(n) = A077251(n).
The odd part is A077250(n) with Diophantine companion A077249(n).

Examples

			59 = a(1) = sqrt(24*A077251(1)^2 + 25) = sqrt(24*12^2 + 25) = sqrt(3481) = 59.
		

Programs

  • Magma
    I:=[7,59]; [n le 2 select I[n] else 10*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 18 2018
  • Mathematica
    CoefficientList[Series[(7 - 11 z)/(z^2 - 10 z + 1), {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 11 2011 *)
    LinearRecurrence[{10,-1}, {7,59}, 30] (* G. C. Greubel, Jan 18 2018 *)
  • PARI
    a(n)=if(n<0,0,subst(poltchebi(n+1)+2*poltchebi(n),x,5))
    
  • PARI
    Vec((7-11*x)/(1-10*x+x^2) + O(x^30)) \\ Colin Barker, Jun 15 2015
    
  • PARI
    a(n)=polchebyshev(n+1,,5)+2*polchebyshev(n,,5) \\ Charles R Greathouse IV, Jun 15 2015
    
  • PARI
    a(n)=([0,1;-1,10]^n*[7;59])[1,1] \\ Charles R Greathouse IV, Jun 15 2015
    

Formula

a(n) = 10*a(n-1)- a(n-2), a(-1)=11, a(0)=7.
a(n) = T(n+1, 5)+2*T(n, 5), with T(n, x) Chebyshev's polynomials of the first kind, A053120. T(n, 5) = A001079(n).
a(n) = sqrt(24*A077251(n)^2 + 25).
G.f.: (7-11*x)/(1-10*x+x^2).

A080872 a(n)*a(n+3) - a(n+1)*a(n+2) = 4, given a(0)=a(1)=1, a(2)=5.

Original entry on oeis.org

1, 1, 5, 9, 49, 89, 485, 881, 4801, 8721, 47525, 86329, 470449, 854569, 4656965, 8459361, 46099201, 83739041, 456335045, 828931049, 4517251249, 8205571449, 44716177445, 81226783441, 442644523201, 804062262961, 4381729054565, 7959395846169, 43374646022449, 78789896198729, 429364731169925
Offset: 0

Views

Author

Paul D. Hanna, Feb 22 2003

Keywords

Crossrefs

Bisections are A001079 and A072256.

Programs

  • Mathematica
    CoefficientList[Series[(-x^3-5 x^2+x+1)/(x^4-10 x^2+1),{x,0,30}],x] (* or *) LinearRecurrence[{0,10,0,-1},{1,1,5,9},30] (* Harvey P. Dale, May 06 2012 *)
  • PARI
    Vec( (-x^3 - 5*x^2 + x + 1)/(x^4 - 10*x^2 + 1) + O(x^66) ) \\ Joerg Arndt, Jan 29 2016

Formula

G.f.: (-x^3 - 5*x^2 + x + 1)/(x^4 - 10*x^2 + 1).
a(n) = (3+sqrt(3))/12*(sqrt(3)-sqrt(2))^n+(3-sqrt(3))/12*(-sqrt(3)+sqrt(2))^n+(3+sqrt(3))/12*(sqrt(3)+sqrt(2))^n+(3-sqrt(3))/12*(-sqrt(3)-sqrt(2))^n. [Richard Choulet, Dec 03 2008]
a(n+4) = 10*a(n+2)-a(n). [Richard Choulet, Dec 04 2008]

A084765 a(n) = 2*a(n-1)^2 - 1, a(0)=1, a(1)=5.

Original entry on oeis.org

1, 5, 49, 4801, 46099201, 4250272665676801, 36129635465198759610694779187201, 2610701117696295981568349760414651575095962187244375364404428801
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Jun 04 2003

Keywords

Comments

Product_{k>=1} (1 + 1/a(k)) = sqrt(3/2) (see A010527).
A subsequence of A001079 (cf. formula), which must contain any prime occurring in A001079. The initial term a(0)=1 seems rather unnatural; using the recurrence relation it would yield the constant sequence 1,1,1,... Note that this sequence corresponds to sequence b(n) in Shallit's paper, which starts only at offset n=1. - M. F. Hasler, Sep 27 2009
Since if x is even (x^2-2)/2 = 2*y^2-1 and 10 is even from a(1) onward this is a reduced version of the LL sequence starting with 10 (A135927) as it is reduced by dividing by 2 it is also the difference between two possible LL sequences. - Roderick MacPhee, May 31 2015
For n >= 3, a(n) == 201 (mod 1000) if n is even, a(n) == 801 (mod 1000) if n is odd. - Robert Israel, Jun 01 2015
The next term -- a(8) -- has 128 digits. - Harvey P. Dale, Mar 28 2020

Crossrefs

Programs

  • Magma
    [n le 2 select 5^(n-1) else 2*Self(n-1)^2-1: n in [1..10]]; // Vincenzo Librandi, Jun 02 2015
    
  • Maple
    1,seq(expand((5+2*sqrt(6))^(2^n)+(5-2*sqrt(6))^(2^n))/2, n=0..10); # Robert Israel, Jun 01 2015
  • Mathematica
    a[n_]:= a[n]= If[n<2, 5^n, 2 a[n-1]^2 -1]; Table[a[n], {n,0,10}]
    Join[{1}, NestList[2 #^2 - 1 &, 5, 10]] (* Harvey P. Dale, Mar 28 2020 *)
  • PARI
    first(m)={my(v=[1,5]);for(i=3,m,v=concat(v, 2*v[i-1]^2 - 1));v;} \\ Anders Hellström, Aug 22 2015
    
  • SageMath
    def A084765(n): return 1 if n==0 else chebyshev_T(2^(n-1), 5)
    [A084765(n) for n in range(11)] # G. C. Greubel, May 17 2023

Formula

a(n+1) = (x^(2^n) + y^(2^n))/2, with x = 5 + 2*sqrt(6), y = 5 - 2*sqrt(6).
a(n) = A001079(2^(n-1)) with a(0) = 1. - M. F. Hasler, Sep 27 2009
4*sqrt(6)/11 = Product_{n >= 1} (1 - 1/(2*a(n))). See A002812 for some general properties of the recurrence a(n+1) = 2*a(n)^2 - 1. - Peter Bala, Nov 11 2012
a(n) = cos(2^(n-1)*arccos(5)) for n >= 1. - Peter Luschny, Oct 12 2022

A097726 Pell equation solutions (5*a(n))^2 - 26*b(n)^2 = -1 with b(n):=A097727(n), n >= 0.

Original entry on oeis.org

1, 103, 10505, 1071407, 109273009, 11144775511, 1136657829113, 115927953794015, 11823514629160417, 1205882564220568519, 122988198035868828521, 12543590317094399940623, 1279323224145592925115025, 130478425272533383961791927, 13307520054574259571177661529
Offset: 0

Views

Author

Wolfdieter Lang, Aug 31 2004

Keywords

Comments

a(-1) = -1. - Artur Jasinski, Feb 10 2010
5*a(n) gives the x-values in the solution to the Pell equation x^2 - 26*y^2 = -1. - Colin Barker, Aug 24 2013

Examples

			(x,y) = (5,1), (515,101), (52525,10301), ... give the positive integer solutions to x^2 - 26*y^2 = -1.
		

Crossrefs

Cf. A097725 for S(n, 102).
Cf. similar sequences of the type (1/k)*sinh((2*n+1)*arcsinh(k)) listed in A097775.

Programs

  • Mathematica
    Table[(1/5) Round[N[Sinh[(2 n - 1) ArcSinh[5]], 100]], {n, 1, 50}] (* Artur Jasinski, Feb 10 2010 *)
    CoefficientList[Series[(1 + x)/(1 - 102 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Apr 13 2014 *)
    LinearRecurrence[{102,-1},{1,103},20] (* Harvey P. Dale, Aug 20 2017 *)
  • PARI
    x='x+O('x^99); Vec((1+x)/(1-102*x+x^2)) \\ Altug Alkan, Apr 05 2018

Formula

G.f.: (1 + x)/(1 - 102*x + x^2).
a(n) = S(n, 2*51) + S(n-1, 2*51) = S(2*n, 2*sqrt(26)), with Chebyshev polynomials of the 2nd kind. See A049310 for the triangle of S(n, x)= U(n, x/2) coefficients. S(-1, x) := 0 =: U(-1, x).
a(n) = ((-1)^n)*T(2*n+1, 5*i)/(5*i) with the imaginary unit i and Chebyshev polynomials of the first kind. See the T-triangle A053120.
a(n) = 102*a(n-1) - a(n-2) for n > 1; a(0)=1, a(1)=103. - Philippe Deléham, Nov 18 2008
a(n) = (1/5)*sinh((2*n-1)*arcsinh(5)), n >= 1. - Artur Jasinski, Feb 10 2010

Extensions

More terms from Harvey P. Dale, Aug 20 2017

A122652 a(0) = 0, a(1) = 4; for n > 1, a(n) = 10*a(n-1) - a(n-2).

Original entry on oeis.org

0, 4, 40, 396, 3920, 38804, 384120, 3802396, 37639840, 372596004, 3688320200, 36510605996, 361417739760, 3577666791604, 35415250176280, 350574834971196, 3470333099535680, 34352756160385604, 340057228504320360, 3366219528882817996, 33322138060323859600
Offset: 0

Views

Author

N. J. A. Sloane, Sep 21 2006

Keywords

Comments

Kekulé numbers for the benzenoids P_2(n).
a(n) are the values of m where A032528(m) - 1 has integer square roots. The roots are given by A001079. - Richard R. Forberg, Aug 05 2013
Numbers n such that 6*n^2 + 4 is a square. - Colin Barker, Mar 17 2014

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 283, K{P_2(n)}).

Crossrefs

Programs

Formula

G.f.: 4*x/(1 - 10*x + x^2). - Philippe Deléham, Nov 17 2008
3*a(n)^2 + 2 = 2*A001079(n)^2. - Charlie Marion, Feb 01 2013
a(n) = (2*arcsinh(sqrt(2))*sinh(2*n*arcsinh(sqrt(2)))/log(sqrt(2) + sqrt(3)))/sqrt(6). - Artur Jasinski, Aug 09 2016
a(n) = 2*A001078(n). - Bruno Berselli, Nov 25 2016
E.g.f.: sqrt(6)*exp(5*x)*sinh(2*sqrt(6)*x)/3. - Franck Maminirina Ramaharo, Jan 07 2019

Extensions

More terms and better definition from Benoit Cloitre, Sep 23 2006

A138281 a(n) = floor((sqrt(2) + sqrt(3))^n).

Original entry on oeis.org

1, 3, 9, 31, 97, 308, 969, 3051, 9601, 30210, 95049, 299052, 940897, 2960313, 9313929, 29304086, 92198401, 290080547, 912670089, 2871501385, 9034502497, 28424933309, 89432354889, 281377831710, 885289046401, 2785353383794, 8763458109129, 27572156006234
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 12 2008

Keywords

Crossrefs

Programs

  • Magma
    [Floor((Sqrt(2) + Sqrt(3))^n): n in [0..50]]; // G. C. Greubel, Jan 27 2018
  • Mathematica
    Table[Floor[(Sqrt[2] + Sqrt[3])^n], {n, 0, 50}] (* G. C. Greubel, Jan 27 2018 *)
  • PARI
    for(n=0,50, print1(floor((sqrt(2) + sqrt(3))^n), ", ")) \\ G. C. Greubel, Jan 27 2018
    

Formula

a(2*n) = floor(A001079(n) + A001078(n)*sqrt(6));
(sqrt(2) + sqrt(3))^(2*n) = A001079(n) + A001078(n)*sqrt(6);
a(2*n+1) = floor(A054320(n)*sqrt(2) + A138288(n)*sqrt(3));
(sqrt(2)+sqrt(3))^(2*n+1) = A054320(n)*sqrt(2) + A138288(n)*sqrt(3).

Extensions

Terms a(16) and a(18) corrected, terms a(19) onward added by G. C. Greubel, Jan 27 2018

A098297 Member r=12 of the family of Chebyshev sequences S_r(n) defined in A092184.

Original entry on oeis.org

0, 1, 12, 121, 1200, 11881, 117612, 1164241, 11524800, 114083761, 1129312812, 11179044361, 110661130800, 1095432263641, 10843661505612, 107341182792481, 1062568166419200, 10518340481399521, 104120836647576012
Offset: 0

Views

Author

Wolfdieter Lang, Oct 18 2004

Keywords

Crossrefs

Programs

  • GAP
    a:=[0,1,12];; for n in [4..30] do a[n]:=11*a[n-1]-11*a[n-2]+ a[n-3]; od; a; # G. C. Greubel, May 24 2019
  • Magma
    I:=[0,1,12]; [n le 3 select I[n] else 11*Self(n-1)-11*Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, May 24 2019
    
  • Mathematica
    LinearRecurrence[{11,-11,1}, {0,1,12}, 30] (* G. C. Greubel, May 24 2019 *)
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(x*(1+x)/((1-x)*(1-10*x+x^2)))) \\ G. C. Greubel, May 24 2019
    
  • Sage
    (x*(1+x)/((1-x)*(1-10*x+x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 24 2019
    

Formula

a(n) = (T(n, 5)-1)/4 with Chebyshev's polynomials of the first kind evaluated at x=5: T(n, 5) = A001079(n) = ((5 + 2*sqrt(6))^n + (5 - 2*sqrt(6))^n)/2.
a(n) = 10*a(n-1) - a(n-2) + 2, n >= 2, a(0)=0, a(1)=1.
a(n) = 11*a(n-1) - 11*a(n-2) + a(n-3), n >= 3, a(0)=0, a(1)=1, a(2)=12.
G.f.: x*(1+x)/((1-x)*(1-10*x+x^2)) = x*(1+x)/(1-11*x+11*x^2-x^3) (from the Stephan link, see A092184).
a(n) = A132596(n) / 2. - Peter Bala, Dec 31 2012
Previous Showing 31-40 of 49 results. Next