cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 424 results. Next

A013965 a(n) = sigma_17(n), the sum of the 17th powers of the divisors of n.

Original entry on oeis.org

1, 131073, 129140164, 17180000257, 762939453126, 16926788715972, 232630513987208, 2251816993685505, 16677181828806733, 100000762939584198, 505447028499293772, 2218628050709022148, 8650415919381337934, 30491579359845314184, 98526126098761952664
Offset: 1

Views

Author

Keywords

Comments

If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Crossrefs

Programs

  • Magma
    [DivisorSigma(17, n): n in [1..20]]; // Vincenzo Librandi, Sep 10 2016
    
  • Mathematica
    DivisorSigma[17,Range[20]] (* Harvey P. Dale, May 30 2013 *)
  • PARI
    my(N=99, q='q+O('q^N)); Vec(sum(n=1, N, n^17*q^n/(1-q^n))) \\ Altug Alkan, Sep 10 2016
    
  • PARI
    a(n) = sigma(n, 17); \\ Amiram Eldar, Oct 29 2023
  • Sage
    [sigma(n,17)for n in range(1,14)] # Zerinvary Lajos, Jun 04 2009
    

Formula

G.f.: Sum_{k>=1} k^17*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
Dirichlet g.f.: zeta(s-17)*zeta(s). - Ilya Gutkovskiy, Sep 10 2016
Empirical: Sum_{n>=1} a(n)/exp(2*Pi*n) = 43867/28728, also equals Bernoulli(18)/36. - Simon Plouffe, May 06 2023
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(17*e+17)-1)/(p^17-1).
Sum_{k=1..n} a(k) = zeta(18) * n^18 / 18 + O(n^19). (End)

A034714 Dirichlet convolution of squares with themselves.

Original entry on oeis.org

1, 8, 18, 48, 50, 144, 98, 256, 243, 400, 242, 864, 338, 784, 900, 1280, 578, 1944, 722, 2400, 1764, 1936, 1058, 4608, 1875, 2704, 2916, 4704, 1682, 7200, 1922, 6144, 4356, 4624, 4900, 11664, 2738, 5776, 6084, 12800, 3362, 14112, 3698, 11616, 12150, 8464
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A000005, A000290, A001620, A038040, A134576, A319085 (partial sums).

Programs

Formula

Dirichlet g.f.: zeta^2(s-2).
Equals n^2*tau(n), where tau(n) = A000005(n) = number of divisors of n. - Jon Perry, Aug 28 2005
Multiplicative with a(p^e) = (e+1)p^(2e). - Mitch Harris, Jun 27 2005
Row sums of triangle A134576. - Gary W. Adamson, Nov 02 2007
G.f.: Sum_{k>=1} k^2*x^k*(1 + x^k)/(1 - x^k)^3. - Ilya Gutkovskiy, Oct 24 2018
a(n) = n * A038040(n). - Torlach Rush, Feb 01 2019
Sum_{k>=1} 1/a(k) = Product_{primes p} (-p^2 * log(1 - 1/p^2)) = 1.27728092754165872535305748273941301416624226497497308879403022758421224... - Vaclav Kotesovec, Sep 19 2020
G.f.: Sum_{n >= 1} q^(n^2)*( n^4*q^(3*n) - n^2*(n^2 + 4*n - 2)*q^(2*n) - n^2*(n^2 - 4*n - 2)*q^n + n^4 )/(1 - q^n)^3 - apply the operator q*d/dq twice to equation 5 in Arndt and set x = 1. - Peter Bala, Jan 21 2021
Sum_{k=1..n} a(k) ~ (n^3/3) * (log(n) + 2*gamma - 1/3), where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 02 2023
a(n) = Sum_{1 <= i, j <= n} sigma_2( gcd(i, j, n) ) = Sum_{d divides n} sigma_2(d) * J_2(n/d), where sigma_2(n) = A001157(n) and the Jordan totient function J_2(n) = A007434(n). - Peter Bala, Jan 22 2024

A073570 G.f.: Sum_{n >= 1} x^n/(1-x^n)^5.

Original entry on oeis.org

1, 6, 16, 41, 71, 147, 211, 371, 511, 791, 1002, 1547, 1821, 2596, 3146, 4247, 4846, 6627, 7316, 9681, 10852, 13657, 14951, 19427, 20546, 25577, 27916, 34096, 35961, 44912, 46377, 56607, 59922, 70896, 74096, 90278, 91391, 108591, 113766, 133421
Offset: 1

Views

Author

Vladeta Jovovic, Aug 31 2002

Keywords

Comments

Inverse Moebius transform of pentatope numbers. - Jonathan Vos Post, Mar 31 2006

Crossrefs

Programs

  • Mathematica
    Table[(DivisorSigma[4,n]+6*DivisorSigma[3,n]+11*DivisorSigma[2,n]+ 6*DivisorSigma[ 1,n])/24,{n,40}] (* Harvey P. Dale, Aug 08 2013 *)
  • PARI
    a(n) = sumdiv(n, d, binomial(d+3, 4)); \\ Seiichi Manyama, Apr 19 2021
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, binomial(k+3, 4)*x^k/(1-x^k))) \\ Seiichi Manyama, Apr 19 2021
    
  • PARI
    a(n) = my(f = factor(n)); (sigma(f, 4) + 6*sigma(f, 3) + 11*sigma(f, 2) + 6*sigma(f)) / 24; \\ Amiram Eldar, Dec 30 2024

Formula

a(n) = (1/24) * (sigma_4(n) + 6*sigma_3(n) + 11*sigma_2(n) + 6*sigma_1(n)).
a(n) = Sum_{d|n} (d+1)*(d+2)*(d+3)*(d+4)/24 = Sum_{d|n} C(d+3,4) = Sum_{d|n} A000332(d+3). - Jonathan Vos Post, Mar 31 2006. Corrected by Joshua Zucker, May 04 2007
From Amiram Eldar, Dec 30 2024: (Start)
Dirichlet g.f.: zeta(s) * (zeta(s-4) + 6*zeta(s-3) + 11*zeta(s-2) + 6*zeta(s-2)) / 24.
Sum_{k=1..n} a(k) ~ (zeta(5)/120) * n^5. (End)

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 31 2007

A116963 Inverse Moebius transform of the shifted tetrahedral numbers.

Original entry on oeis.org

4, 14, 24, 49, 60, 118, 124, 214, 244, 356, 368, 608, 564, 814, 896, 1183, 1144, 1668, 1544, 2162, 2168, 2678, 2604, 3698, 3336, 4228, 4304, 5344, 4964, 6732, 5988, 7728, 7528, 8924, 8616, 11297, 9884, 12214, 12064, 14668, 13248, 17132, 15184, 18928, 18412, 21038
Offset: 1

Views

Author

Jonathan Vos Post, Mar 31 2006

Keywords

Examples

			a(12) = ((1+1)*(1+2)*(1+3)/6) + ((2+1)*(2+2)*(2+3)/6) + ((3+1)*(3+2)*(3+3)/6) + ((4+1)*(4+2)*(4+3)/6) + ((6+1)*(6+2)*(6+3)/6) + ((12+1)*(12+2)*(12+3)/6) = 4 + 10 + 20 + 35 + 84 + 455 = 608.
a(13) = ((1+1)*(1+2)*(1+3)/6) + ((13+1)*(13+2)*(13+3)/6) = 4 + 560 = 564.
		

Crossrefs

See also: A007437 (inverse Moebius transform of triangular numbers).

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Binomial[# + 3, 3] &]; Array[a, 50] (* Amiram Eldar, Jul 05 2023 *)
  • PARI
    my(N=50, x='x+O('x^N)); Vec(sum(k=1, N, 1/(1-x^k)^4-1)) \\ Seiichi Manyama, Jun 12 2023

Formula

a(n) = Sum_{d|n} (d+1)*(d+2)*(d+3)/6 = Sum_{d|n} A000292(d+1).
G.f.: Sum_{k>0} (1/(1-x^k)^4 - 1). - Seiichi Manyama, Jun 12 2023
From Amiram Eldar, Dec 30 2024: (Start)
a(n) = (sigma_3(n) + 6*sigma_2(n) + 11*sigma_1(n) + 6*sigma_0(n))/6.
Dirichlet g.f.: zeta(s) * (zeta(s-3) + 6*zeta(s-2) + 11*zeta(s-1) + 6*zeta(s)) / 6.
Sum_{k=1..n} a(k) ~ (zeta(4)/24) * n^4. (End)

A317797 Sum of the norm of divisors of n over Gaussian integers, with associated divisors counted only once.

Original entry on oeis.org

1, 7, 10, 31, 36, 70, 50, 127, 91, 252, 122, 310, 196, 350, 360, 511, 324, 637, 362, 1116, 500, 854, 530, 1270, 961, 1372, 820, 1550, 900, 2520, 962, 2047, 1220, 2268, 1800, 2821, 1444, 2534, 1960, 4572, 1764, 3500, 1850, 3782, 3276, 3710, 2210, 5110, 2451, 6727
Offset: 1

Views

Author

Jianing Song, Aug 07 2018

Keywords

Comments

Equivalent of sigma (A000203) in the ring of Gaussian integers. Note that only norms are summed up.

Examples

			Let ||d|| denote the norm of d.
a(2) = ||1|| + ||1 + i|| + ||2|| = 1 + 2 + 4 = 7.
a(5) = ||1|| + ||2 + i|| + ||2 - i|| + ||5|| = 1 + 5 + 5 + 25 = 36. Note that 2 - i and 1 + 2i are associated so their norm is only counted once.
		

Crossrefs

Cf. A001157.
Equivalent of arithmetic functions in the ring of Gaussian integers (the corresponding functions in the ring of integers are in the parentheses): A062327 ("d", A000005), this sequence ("sigma", A000203), A079458 ("phi", A000010), A227334 ("psi", A002322), A086275 ("omega", A001221), A078458 ("Omega", A001222), A318608 ("mu", A008683).
Equivalent in the ring of Eisenstein integers: A319449.

Programs

  • Mathematica
    f[p_, e_] := If[p == 2, 2^(2*e + 1) - 1, Switch[Mod[p, 4], 1, ((p^(e + 1) - 1)/(p - 1))^2, 3, (p^(2 e + 2) - 1)/(p^2 - 1)]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 12 2020 *)
  • PARI
    a(n)=
    {
        my(r=1, f=factor(n));
        for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]);
            if(p==2, r*=(2^(2*e+1)-1));
            if(Mod(p,4)==1, r*=((p^(e+1)-1)/(p-1))^2);
            if(Mod(p,4)==3, r*=(p^(2*e+2)-1)/(p^2-1));
        );
        return(r);
    }

Formula

Multiplicative with a(2^e) = sigma(2^(2e)) = 2^(2e+1) - 1, a(p^e) = sigma(p^e)^2 = ((p^(e+1) - 1)/(p - 1))^2 if p == 1 (mod 4) and sigma_2(p^e) = A001157(p^e) = (p^(2e+2) - 1)/(p^2 - 1) if p == 3 (mod 4).

A065472 Decimal expansion of Product_{p prime} (1 - 1/(p+1)^2).

Original entry on oeis.org

7, 7, 5, 8, 8, 3, 5, 1, 0, 0, 0, 3, 8, 9, 5, 4, 9, 9, 6, 2, 0, 4, 0, 4, 2, 8, 4, 4, 2, 7, 9, 0, 0, 6, 1, 1, 4, 8, 2, 4, 1, 3, 4, 6, 5, 9, 7, 3, 0, 1, 6, 2, 7, 6, 2, 2, 1, 0, 6, 3, 1, 1, 6, 4, 6, 1, 3, 8, 7, 6, 4, 9, 2, 4, 9, 7, 4, 5, 6, 9, 9, 5, 3, 7, 1, 9, 3, 1, 3, 2, 3, 3, 1, 2, 8, 1, 4, 2
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Comments

The probablity that two randomly chosen squarefree numbers are coprime. - Amiram Eldar, Aug 04 2020
The asymptotic mean of A001157(n)/(n*A000203(n)). - Richard R. Forberg, May 27 2023

Examples

			0.7758835100038954996204042844279...
		

Crossrefs

Programs

  • Mathematica
    digits = 98; Exp[NSum[(-1)^n*(2^(n-1)-2)*PrimeZetaP[n-1]/(n-1), {n, 3, Infinity}, WorkingPrecision -> 2 digits, Method -> "AlternatingSigns"]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 18 2016 *)
  • PARI
    prodeulerrat(1 - 1/(p+1)^2) \\ Amiram Eldar, Mar 17 2021

Formula

Equals lim_{n->oo} (Pi^2/(3*n^2*log(n))) * Sum_{k=1..n} A145388(k). - Amiram Eldar, May 14 2019
Equals Sum_{k>=1} mu(k)/sigma(k)^2, where mu is the Möbius function (A008683) and sigma(k) is the sum of divisors of k (A000203). - Amiram Eldar, Jan 14 2022

Extensions

Definition corrected by Dan Asimov, Apr 15 2006

A068020 a(n) = Z(S_m; sigma[1](n), sigma[2](n),..., sigma[m](n)) where Z(S_m; x_1,x_2,...,x_m) is the cycle index of the symmetric group S_m and sigma[k](n) is the sum of k-th powers of divisors of n; m=3.

Original entry on oeis.org

1, 15, 40, 155, 156, 672, 400, 1395, 1210, 2520, 1464, 7280, 2380, 6336, 6600, 11811, 5220, 21030, 7240, 26880, 16672, 22752, 12720, 66960, 20306, 36792, 33880, 67040, 25260, 119592, 30784, 97155, 60144, 80136, 64080, 230966, 52060, 110880, 97384
Offset: 1

Views

Author

Vladeta Jovovic, Feb 08 2002

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := 1/3!*(DivisorSigma[1, n]^3 + 3*DivisorSigma[1, n]*DivisorSigma[2, n] + 2*DivisorSigma[3, n]); Table[a[n], {n, 1, 39}] (* Jean-François Alcover, Dec 12 2011, after given formula *)
    CIP3 = CycleIndexPolynomial[SymmetricGroup[3], Array[x, 3]]; a[n_] := CIP3 /. x[k_] -> DivisorSigma[k, n]; Array[a, 39] (* Jean-François Alcover, Nov 04 2016 *)
  • PARI
    a(n) = my(f = factor(n)); (2*sigma(f, 3) + 3*sigma(f, 1)*sigma(f, 2) + sigma(f)^3) / 6; \\ Amiram Eldar, Jan 03 2025

Formula

a(n) = (1/3!)*(sigma_1(n)^3 + 3*sigma_1(n)*sigma_2(n) + 2*sigma_3(n)).
a(n) = Sum_{r|n, s|n, t|n, r<=s<=t} r*s*t.
From Amiram Eldar, Jan 03 2025: (Start)
Dirichlet g.f.: (zeta(s)*zeta(s-3)/6) * (zeta(s-1)*zeta(s-2) * (f(s) + 3/zeta(2*s-3)) + 2), where f(s) = Product_{primes p} (1 + 1/p^(2*s-3) + 2/p^(s-1) + 2/p^(s-2)).
Sum_{k=1..n} a(k) ~ c * n^4, where c = (7/96) * zeta(3) * zeta(6) * Product_{primes p} (1 + 2/p^2 + 2/p^3 + 1/p^5) + zeta(2)*zeta(3)*zeta(4)/(8*zeta(5)) + zeta(4)/12 = 0.60106209766277728837... . (End)

A082245 Sum of (n-1)-th powers of divisors of n.

Original entry on oeis.org

1, 3, 10, 73, 626, 8052, 117650, 2113665, 43053283, 1001953638, 25937424602, 743375541244, 23298085122482, 793811662272744, 29192932133689220, 1152956690052710401, 48661191875666868482, 2185928253847184914509
Offset: 1

Views

Author

Reinhard Zumkeller, May 22 2003

Keywords

Comments

a(n) = t(n,n-1), t as defined in A082771;
a(1)=A000005(1), a(2)=A000203(2), a(3)=A001157(3), a(4)=A001158(4), a(5)=A001159(5), a(6)=A001160(6), a(7)=A013954(7), a(8)=A013955(8).

Examples

			a(6) = 1^5 + 2^5 + 3^5 + 6^5 = 1 + 32 + 243 + 7776 = 8052.
		

Crossrefs

Programs

  • Magma
    [DivisorSigma(n-1, n): n in [1..20]]; // G. C. Greubel, Nov 02 2018
  • Mathematica
    Table[Total[Divisors[n]^(n-1)], {n,18}] (* T. D. Noe, Oct 25 2006 *)
    Table[DivisorSigma[n-1,n], {n,1,20}] (* G. C. Greubel, Nov 02 2018 *)
  • PARI
    a(n) = sigma(n, n-1); \\ Michel Marcus, Nov 07 2017
    
  • PARI
    N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-(k*x)^k)^(1/k^2))))) \\ Seiichi Manyama, Jun 23 2019
    
  • Sage
    [sigma(n,(n-1))for n in range(1,19)] # Zerinvary Lajos, Jun 04 2009
    

Formula

G.f.: Sum_{k>=1} k^(k-1)*x^k/(1 - (k*x)^k). - Ilya Gutkovskiy, Nov 02 2018
L.g.f.: -log(Product_{k>=1} (1 - (k*x)^k)^(1/k^2)) = Sum_{k>=1} a(k)*x^k/k. - Seiichi Manyama, Jun 23 2019
Limit_{n->oo} a(n)/A023887(n-1) = e (A001113) (Sugunamma, 1960). - Amiram Eldar, Apr 15 2021

Extensions

Corrected by T. D. Noe, Oct 25 2006

A101289 Inverse Moebius transform of 5-simplex numbers A000389.

Original entry on oeis.org

1, 7, 22, 63, 127, 280, 463, 855, 1309, 2135, 3004, 4704, 6189, 9037, 11776, 16359, 20350, 27901, 33650, 44695, 53614, 68790, 80731, 103776, 118882, 148701, 171220, 210469, 237337, 292292, 324633, 393351, 438922, 522298, 576346, 690333, 749399
Offset: 1

Views

Author

Jonathan Vos Post, Mar 31 2006

Keywords

Comments

From Georg Fischer, Aug 06 2025: (Start)
The general pattern is a(n) = Sum_{d|n} (Product_{k=0..m-1} d+k)/m! = Sum_{d|n} binomial(d+m-1, m) = Sum{d|n} Axxxxxx(d), with:
m Axxxxxx resulting sequence
------------------------------
5 A000389 A101289 (this sequence)
The other formulas generalize correspondingly.
A116989 uses A000579 and m=6 within a modified formula.
(End)

Crossrefs

Programs

  • PARI
    a(n) = sumdiv(n, d, binomial(d+4, 5)); \\ Seiichi Manyama, Apr 19 2021
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, binomial(k+4, 5)*x^k/(1-x^k))) \\ Seiichi Manyama, Apr 19 2021
    
  • PARI
    a(n) = my(f = factor(n));  (sigma(f, 5) + 10*sigma(f, 4) + 35*sigma(f, 3) + 50*sigma(f, 2) + 24*sigma(f))/120; \\ Amiram Eldar, Dec 30 2024

Formula

a(n) = Sum_{d|n} d*(d+1)*(d+2)*(d+3)*(d+4)/120 = Sum_{d|n} C(d+4,5) = Sum{d|n} A000389(d) = Sum_{d|n} (d^5+10*d^4+35*d^3+50*d^2+24*d)/120.
G.f.: Sum_{k>=1} x^k/(1 - x^k)^6 = Sum_{k>=1} binomial(k+4,5) * x^k/(1 - x^k). - Seiichi Manyama, Apr 19 2021
From Amiram Eldar, Dec 30 2024: (Start)
a(n) = (sigma_5(n) + 10*sigma_4(n) + 35*sigma_3(n) + 50*sigma_2(n) + 24*sigma_1(n)) / 120.
Dirichlet g.f.: zeta(s) * (zeta(s-5) + 10*zeta(s-4) + 35*zeta(s-3) + 50*zeta(s-2) + 24*zeta(s-1)) / 120.
Sum_{k=1..n} a(k) ~ (zeta(6)/720) * n^6. (End)

A013967 a(n) = sigma_19(n), the sum of the 19th powers of the divisors of n.

Original entry on oeis.org

1, 524289, 1162261468, 274878431233, 19073486328126, 609360902796252, 11398895185373144, 144115462954287105, 1350851718835253557, 10000019073486852414, 61159090448414546292, 319480609006403630044, 1461920290375446110678, 5976315357844100294616
Offset: 1

Views

Author

Keywords

Comments

If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Crossrefs

Programs

Formula

G.f.: Sum_{k>=1} k^19*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(19*e+19)-1)/(p^19-1).
Dirichlet g.f.: zeta(s)*zeta(s-19).
Sum_{k=1..n} a(k) = zeta(20) * n^20 / 20 + O(n^21). (End)
Previous Showing 101-110 of 424 results. Next