cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 198 results. Next

A104249 a(n) = (3*n^2 + n + 2)/2.

Original entry on oeis.org

1, 3, 8, 16, 27, 41, 58, 78, 101, 127, 156, 188, 223, 261, 302, 346, 393, 443, 496, 552, 611, 673, 738, 806, 877, 951, 1028, 1108, 1191, 1277, 1366, 1458, 1553, 1651, 1752, 1856, 1963, 2073, 2186, 2302, 2421, 2543, 2668, 2796, 2927, 3061, 3198, 3338, 3481
Offset: 0

Views

Author

Thomas Wieder, Feb 26 2005

Keywords

Comments

Second differences are all 3.
Related to the sequence of odd numbers A005408 since for these numbers the first differences are all 2.
Column 2 of A114202. - Paul Barry, Nov 17 2005
Equals third row of A167560 divided by 2. - Johannes W. Meijer, Nov 12 2009
A242357(a(n)) = n + 1. - Reinhard Zumkeller, May 11 2014
Also, this sequence is related to A011379, for n>0, by A011379(n) = n*a(n) - Sum_{i=0..n-1} a(i). - Bruno Berselli, Jul 08 2015
The number of Hamiltonian nonisomorphic unfoldings in an n-gonal Archimedean antiprism. See sequence A284647. - Rick Mabry, Apr 10 2021

Examples

			The sequence of first differences delta_a(n) = a(n+1) - a(n) is 2, 5, 8, 11, 14, 17, 20, 23, 26, ...
The sequence of second differences delta_delta_a(n) = a(n+2) - 2*a(n+1) + a(n) is: 3, 3, 3, 3, 3, 3, 3, ... E.g., 78 - 2*58 + 41 = 3.
		

Crossrefs

Counts special cases of A284647.

Programs

  • Haskell
    a104249 n = n*(3*n+1) `div` 2 + 1 -- Reinhard Zumkeller, May 11 2014
    
  • Magma
    [(3*n^2+n+2)/2: n in [0..50]]; // Vincenzo Librandi, May 09 2011
    
  • Maple
    a := proc (n) local i, u; option remember; u[0] := 1; u[1] := 3; u[2] := 8; for i from 3 to n do u[i] := -(4*u[i-3]-8*u[i-2]-2*u[i-1]+(-2*u[i-3]+2*u[i-2]-u[i-1])*i)/i end do; [seq(u[i],i = 0 .. n)] end proc;
  • Mathematica
    A104249[n_] := (3*n^2 + n + 2)/2; Table[A104249[n], {n,0,100}] (* Vladimir Joseph Stephan Orlovsky, Jul 22 2011 *)
    LinearRecurrence[{3,-3,1},{1,3,8},70] (* Harvey P. Dale, Jul 21 2023 *)
  • PARI
    a(n)=n*(3*n+1)/2+1 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (1 + 2*x^2)/(1 - x)^3.
Recurrence: (n+3)*u(n+3) + (-5-n)*u(n+2)*(-2+2*n)*u(n+1) + (-2-2*n)*u(n) = 0 for n >= 0 with u(0) = 1, u(1) = 3, and u(2) = 8.
From Paul Barry, Nov 17 2005: (Start)
a(0) = 1, a(n) = a(n-1) + 3*n - 1 for n > 0;
a(n) = Sum_{k=0..n} C(n, k)*C(2, k)*J(k+1), where J(n) = A001045(n). (End)
Binomial transform of [1, 2, 3, 0, 0, 0, ...]. - Gary W. Adamson, Apr 23 2008
E.g.f.: exp(x)*(2 + 4*x + 3*x^2)/2. - Stefano Spezia, Apr 10 2021

A337603 Number of ordered triples of positive integers summing to n whose set of distinct parts is pairwise coprime, where a singleton is not considered coprime unless it is (1).

Original entry on oeis.org

0, 0, 0, 1, 3, 6, 9, 9, 18, 15, 24, 21, 42, 24, 51, 30, 54, 42, 93, 45, 102, 54, 99, 69, 162, 66, 150, 87, 168, 96, 264, 93, 228, 120, 246, 126, 336, 132, 315, 168, 342, 162, 486, 165, 420, 216, 411, 213, 618, 207, 558, 258, 540, 258, 783, 264, 654, 324, 660
Offset: 0

Views

Author

Gus Wiseman, Sep 20 2020

Keywords

Examples

			The a(3) = 1 through a(8) = 18 triples:
  (1,1,1)  (1,1,2)  (1,1,3)  (1,1,4)  (1,1,5)  (1,1,6)
           (1,2,1)  (1,2,2)  (1,2,3)  (1,3,3)  (1,2,5)
           (2,1,1)  (1,3,1)  (1,3,2)  (1,5,1)  (1,3,4)
                    (2,1,2)  (1,4,1)  (2,2,3)  (1,4,3)
                    (2,2,1)  (2,1,3)  (2,3,2)  (1,5,2)
                    (3,1,1)  (2,3,1)  (3,1,3)  (1,6,1)
                             (3,1,2)  (3,2,2)  (2,1,5)
                             (3,2,1)  (3,3,1)  (2,3,3)
                             (4,1,1)  (5,1,1)  (2,5,1)
                                               (3,1,4)
                                               (3,2,3)
                                               (3,3,2)
                                               (3,4,1)
                                               (4,1,3)
                                               (4,3,1)
                                               (5,1,2)
                                               (5,2,1)
                                               (6,1,1)
		

Crossrefs

A014311 intersected with A333228 ranks these compositions.
A220377*6 is the strict case.
A337461 is the strict case except for any number of 1's.
A337601 is the unordered version.
A337602 considers all singletons to be coprime.
A337665 counts these compositions of any length, ranked by A333228 with complement A335238.
A000217(n - 2) counts 3-part compositions.
A001399(n - 3) = A069905(n) = A211540(n + 2) counts 3-part partitions.
A007318 and A097805 count compositions by length.
A051424 counts pairwise coprime or singleton partitions.
A101268 counts pairwise coprime or singleton compositions.
A304711 ranks partitions whose distinct parts are pairwise coprime.
A305713 counts strict pairwise coprime partitions.
A327516 counts pairwise coprime partitions, with strict case A305713.
A333227 ranks pairwise coprime compositions.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{3}],CoprimeQ@@Union[#]&]],{n,0,100}]

A337601 Number of unordered triples of positive integers summing to n whose set of distinct parts is pairwise coprime, where a singleton is not considered coprime unless it is (1).

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 2, 3, 4, 4, 5, 6, 8, 7, 10, 7, 11, 11, 17, 12, 19, 12, 19, 17, 29, 16, 28, 19, 31, 23, 46, 23, 42, 25, 45, 27, 59, 31, 57, 34, 61, 37, 84, 38, 75, 42, 74, 47, 107, 45, 98, 51, 96, 56, 135, 54, 115, 63, 117, 67, 174, 65, 139, 75, 144, 75, 194
Offset: 0

Views

Author

Gus Wiseman, Sep 20 2020

Keywords

Comments

First differs from A337600 at a(9) = 4, A337600(9) = 5.

Examples

			The a(3) = 1 through a(14) = 10 partitions (A = 10, B = 11, C = 12):
  111  211  221  321  322  332  441  433  443  543  544  554
            311  411  331  431  522  532  533  552  553  743
                      511  521  531  541  551  651  661  752
                           611  711  721  722  732  733  761
                                     811  731  741  751  833
                                          911  831  922  851
                                               921  B11  941
                                               A11       A31
                                                         B21
                                                         C11
		

Crossrefs

A014612 intersected with A304711 ranks these partitions.
A220377 is the strict case.
A304709 counts these partitions of any length.
A307719 is the strict case except for any number of 1's.
A337600 considers singletons to be coprime.
A337603 is the ordered version.
A000217 counts 3-part compositions.
A000837 counts relatively prime partitions.
A001399/A069905/A211540 count 3-part partitions.
A023023 counts relatively prime 3-part partitions.
A051424 counts pairwise coprime or singleton partitions.
A101268 counts pairwise coprime or singleton compositions.
A305713 counts pairwise coprime strict partitions.
A327516 counts pairwise coprime partitions.
A333227 ranks pairwise coprime compositions.
A333228 ranks compositions whose distinct parts are pairwise coprime.
A337461 counts pairwise coprime 3-part compositions.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n,{3}],CoprimeQ@@Union[#]&]],{n,0,100}]

Formula

For n > 0, a(n) = A337600(n) - A079978(n).

A337453 Numbers k such that the k-th composition in standard order is an ordered triple of distinct positive integers.

Original entry on oeis.org

37, 38, 41, 44, 50, 52, 69, 70, 81, 88, 98, 104, 133, 134, 137, 140, 145, 152, 161, 176, 194, 196, 200, 208, 261, 262, 265, 268, 274, 276, 289, 290, 296, 304, 321, 324, 328, 352, 386, 388, 400, 416, 517, 518, 521, 524, 529, 530, 532, 536, 545, 560, 577, 578
Offset: 1

Views

Author

Gus Wiseman, Sep 07 2020

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding triples begins:
     37: (3,2,1)    140: (4,1,3)    289: (3,5,1)
     38: (3,1,2)    145: (3,4,1)    290: (3,4,2)
     41: (2,3,1)    152: (3,1,4)    296: (3,2,4)
     44: (2,1,3)    161: (2,5,1)    304: (3,1,5)
     50: (1,3,2)    176: (2,1,5)    321: (2,6,1)
     52: (1,2,3)    194: (1,5,2)    324: (2,4,3)
     69: (4,2,1)    196: (1,4,3)    328: (2,3,4)
     70: (4,1,2)    200: (1,3,4)    352: (2,1,6)
     81: (2,4,1)    208: (1,2,5)    386: (1,6,2)
     88: (2,1,4)    261: (6,2,1)    388: (1,5,3)
     98: (1,4,2)    262: (6,1,2)    400: (1,3,5)
    104: (1,2,4)    265: (5,3,1)    416: (1,2,6)
    133: (5,2,1)    268: (5,1,3)    517: (7,2,1)
    134: (5,1,2)    274: (4,3,2)    518: (7,1,2)
    137: (4,3,1)    276: (4,2,3)    521: (6,3,1)
		

Crossrefs

6*A001399(n - 6) = 6*A069905(n - 3) = 6*A211540(n - 1) counts these compositions.
A007304 is an unordered version.
A014311 is the non-strict version.
A337461 counts the coprime case.
A000217(n - 2) counts 3-part compositions.
A001399(n - 3) = A069905(n) = A211540(n + 2) counts 3-part partitions.
A001399(n - 6) = A069905(n - 3) = A211540(n - 1) counts strict 3-part partitions.
A014612 ranks 3-part partitions.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],Length[stc[#]]==3&&UnsameQ@@stc[#]&]

Formula

These triples are counted by 6*A001399(n - 6) = 6*A069905(n - 3) = 6*A211540(n - 1).
Intersection of A014311 and A233564.

A333330 Array read by antidiagonals: T(n,k) is the number of k-regular loopless multigraphs on n unlabeled nodes, n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 2, 0, 1, 1, 0, 1, 1, 3, 2, 1, 1, 1, 0, 1, 0, 4, 0, 4, 0, 1, 1, 0, 1, 1, 5, 7, 9, 4, 1, 1, 1, 0, 1, 0, 7, 0, 24, 0, 7, 0, 1, 1, 0, 1, 1, 8, 16, 54, 60, 32, 8, 1, 1, 1, 0, 1, 0, 10, 0, 128, 0, 240, 0, 12, 0, 1, 1, 0, 1, 1, 12, 37, 271, 955, 1753, 930, 135, 14, 1, 1
Offset: 0

Views

Author

Andrew Howroyd, Mar 15 2020

Keywords

Comments

Terms may be computed without generating each graph by enumerating the number of graphs by degree sequence. A PARI program showing this technique for graphs with labeled vertices is given in A333351. Burnside's lemma can be used to extend this method to the unlabeled case.

Examples

			Array begins:
=================================================
n\k | 0 1 2  3   4    5      6     7        8
----+--------------------------------------------
  0 | 1 1 1  1   1    1      1     1        1 ...
  1 | 1 0 0  0   0    0      0     0        0 ...
  2 | 1 1 1  1   1    1      1     1        1 ...
  3 | 1 0 1  0   1    0      1     0        1 ...
  4 | 1 1 2  3   4    5      7     8       10 ...
  5 | 1 0 2  0   7    0     16     0       37 ...
  6 | 1 1 4  9  24   54    128   271      582 ...
  7 | 1 0 4  0  60    0    955     0    12511 ...
  8 | 1 1 7 32 240 1753  13467 90913   543779 ...
  9 | 1 0 8  0 930    0 253373     0 35255015 ...
  ...
		

Crossrefs

Columns k=0..8 are (with interspersed 0's for odd k): A000012, A000012, A002865, A129416, A129418, A129420, A129422, A129424, A129426.
Row n=4 is A001399.
Cf. A051031 (simple graphs), A167625 (with loops), A192517 (not necessarily regular), A328682 (connected), A333351 (labeled nodes).

A000098 Number of partitions of n if there are two kinds of 1, two kinds of 2 and two kinds of 3.

Original entry on oeis.org

1, 2, 5, 10, 19, 33, 57, 92, 147, 227, 345, 512, 752, 1083, 1545, 2174, 3031, 4179, 5719, 7752, 10438, 13946, 18519, 24428, 32051, 41805, 54265, 70079, 90102, 115318, 147005, 186626, 236064, 297492, 373645, 467707
Offset: 0

Views

Author

Keywords

Comments

Also number of partitions of 2*n+1 with exactly 3 odd parts (offset 1). - Vladeta Jovovic, Jan 12 2005
Convolution of A000041 and A001399. - Vaclav Kotesovec, Aug 18 2015
Also the sum of binomial(D(p),3) over partitions p of n+6, where D(p) is the number of different sizes of parts in p. - Emily Anible, May 13 2018

Examples

			a(3)=10 because we have 3, 3', 2+1, 2+1', 2'+1, 2'+1', 1+1+1, 1+1+1', 1+1'+1' and 1'+1'+1'.
		

References

  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 90.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Fourth column of Riordan triangle A008951 and of triangle A103923.

Programs

  • Mathematica
    CoefficientList[1/((1-x)*(1-x^2)*(1-x^3)*QPochhammer[x]) + O[x]^40, x] (* Jean-François Alcover, Feb 04 2016 *)
    Table[Length@IntegerPartitions[n, All, Range@n~Join~Range@3], {n,0,35}] (* Robert Price, Jul 28 2020 *)
    T[n_, 0] := PartitionsP[n];
    T[n_, m_] /; (n >= m (m + 1)/2) := T[n, m] = T[n - m, m - 1] + T[n - m, m];
    T[, ] = 0;
    a[n_] := T[n + 6, 3];
    Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 30 2021 *)

Formula

Euler transform of 2 2 2 1 1 1 1...
G.f.: 1/((1-x)(1-x^2)(1-x^3)*Product_{k>=1} (1-x^k)).
a(n) = Sum_{j=0..floor(n/3)} A000097(n-3*j), n >= 0.
a(n) ~ sqrt(n) * exp(Pi*sqrt(2*n/3)) / (2*sqrt(2)*Pi^3). - Vaclav Kotesovec, Aug 18 2015

Extensions

Edited by Emeric Deutsch, Mar 23 2005

A008724 a(n) = floor(n^2/12).

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 21, 24, 27, 30, 33, 36, 40, 44, 48, 52, 56, 60, 65, 70, 75, 80, 85, 90, 96, 102, 108, 114, 120, 126, 133, 140, 147, 154, 161, 168, 176, 184, 192, 200, 208, 216, 225, 234, 243, 252, 261, 270, 280, 290, 300, 310, 320, 330, 341, 352
Offset: 0

Views

Author

Keywords

Comments

With a different offset, Molien series for 3-dimensional group [2,n] = *22n.

Crossrefs

Programs

Formula

a(n) = a(n-6) + n - 3. - Paul Barry, Jul 14 2004
a(n) = Sum_{j=0..n+2} floor(j/6), a(n-2) = (1/2)*floor(n/6)*(2*n - 4 - 6*floor(n/6)). - Mitch Harris, Sep 08 2008
G.f.: x^4/((1-x)^2*(1-x^6)).
Sum_{n>=4} 1/a(n) = Pi^2/18 - Pi/(2*sqrt(3)) + 49/12. - Amiram Eldar, Aug 14 2022
a(n) = a(-n) = A174709(n+2). - Michael Somos, Dec 05 2023

Extensions

Minor edits by Klaus Brockhaus, Nov 24 2010

A014395 Number of multigraphs with 5 nodes and n edges.

Original entry on oeis.org

1, 1, 3, 7, 17, 35, 76, 149, 291, 539, 974, 1691, 2874, 4730, 7620, 11986, 18485, 27944, 41550, 60744, 87527, 124338, 174403, 241650, 331153, 448987, 602853, 801943, 1057615, 1383343, 1795578, 2313595, 2960656, 3763879, 4755505, 5972927, 7460196, 9267980
Offset: 0

Views

Author

Keywords

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 650.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 88, (4.1.18).
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 517.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[PairGroupIndex[SymmetricGroup[5],s]/.Table[s[i]->1/(1-x^i),{i,1,Binomial[5,2]}],{x,0,30}],x] (* Geoffrey Critzer, Oct 14 2012 *)
  • PARI
    concat([1], G(5, 40)) \\ See A191646 for G. - Andrew Howroyd, Mar 15 2020

Formula

G.f.: (x^21 + x^20 + 5*x^19 + 8*x^18 + 14*x^17 + 22*x^16 + 32*x^15 + 40*x^14 + 39*x^13 + 47*x^12 + 36*x^11 + 36*x^10 + 25*x^9 + 21*x^8 + 12*x^7 + 11*x^6 + 4*x^5 + 4*x^4 + x^3 + x^2 - x + 1)/((x^6 - 1)*(x^5 - 1)^2*(x^4 - 1)^2*(x^3 - 1)^2*(x - 1)^3*(x + 1)).

Extensions

More terms from Vladeta Jovovic, Dec 23 1999

A298204 Number of unlabeled rooted trees with n nodes in which all outdegrees are either 0, 1, or 3.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 9, 16, 29, 55, 104, 200, 389, 763, 1507, 3002, 6010, 12102, 24484, 49751, 101475, 207723, 426542, 878451, 1813945, 3754918, 7790326, 16196629, 33739335, 70410401, 147187513, 308171861, 646188276, 1356847388, 2852809425, 6005542176
Offset: 1

Views

Author

Gus Wiseman, Jan 14 2018

Keywords

Examples

			The a(7) = 9 trees: ((((((o)))))), ((((ooo)))), (((oo(o)))), ((oo((o)))), ((o(o)(o))), (oo(((o)))), (oo(ooo)), (o(o)((o))), ((o)(o)(o)).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, v) option remember; `if`(n=0,
          `if`(v=0, 1, 0), `if`(i<1 or v<1 or n `if`(n<2, n, add(b(n-1$2, j), j=[1, 3])):
    seq(a(n), n=1..40);  # Alois P. Heinz, Jan 30 2018
  • Mathematica
    multing[n_,k_]:=Binomial[n+k-1,k];
    a[n_]:=a[n]=If[n===1,1,Sum[Product[multing[a[x],Count[ptn,x]],{x,Union[ptn]}],{ptn,Select[IntegerPartitions[n-1],MemberQ[{1,3},Length[#]]&]}]];
    Table[a[n],{n,40}]
    (* Second program: *)
    b[n_, i_, v_] := b[n, i, v] = If[n == 0,
         If[v == 0, 1, 0], If[i < 1 || v < 1 || n < v, 0,
         If[n == v, 1, Sum[Binomial[a[i] + j - 1, j]*
         b[n - i*j, i - 1, v - j], {j, 0, Min[n/i, v]}]]]];
    a[n_] := If[n < 2, n, Sum[b[n - 1, n - 1, j], {j, {1, 3}}]];
    Array[a, 40] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)

A325691 Number of length-3 integer partitions of n whose largest part is not greater than the sum of the other two.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 2, 2, 3, 3, 4, 4, 6, 5, 7, 7, 9, 8, 11, 10, 13, 12, 15, 14, 18, 16, 20, 19, 23, 21, 26, 24, 29, 27, 32, 30, 36, 33, 39, 37, 43, 40, 47, 44, 51, 48, 55, 52, 60, 56, 64, 61, 69, 65, 74, 70, 79, 75, 84, 80, 90, 85, 95, 91, 101, 96, 107, 102, 113
Offset: 0

Views

Author

Gus Wiseman, May 15 2019

Keywords

Comments

Also the number of possible triples of edge-lengths of a triangle with perimeter n, where degenerate (self-intersecting) triangles are allowed.
The number of triples (a,b,c) for 1 <= a <= b <= c <= a+b and a+b+c = n. - Yuchun Ji, Oct 15 2020

Examples

			The a(3) = 1 through a(12) = 6 partitions:
  (111)  (211)  (221)  (222)  (322)  (332)  (333)  (433)  (443)  (444)
                       (321)  (331)  (422)  (432)  (442)  (533)  (543)
                                     (431)  (441)  (532)  (542)  (552)
                                                   (541)  (551)  (633)
                                                                 (642)
                                                                 (651)
		

Crossrefs

Cf. A001399, A005044 (nondegenerate triangles), A008642, A069905, A124278.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n,{3}],#[[1]]<=#[[2]]+#[[3]]&]],{n,0,30}]

Formula

Conjectures from Colin Barker, May 16 2019: (Start)
G.f.: x^3*(1 + x - x^4) / ((1 - x)^3*(1 + x)^2*(1 + x^2)*(1 + x + x^2)).
a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-5) - a(n-6) - a(n-7) + a(n-9) for n>8. (End)
a(n) = A005044(n+3) - A000035(n+3). i.e., remove the only one triple (a=0,b,b) if n is even from the A005044 which is the number of triples (a,b,c) for 0 <= a <= b <= c <= a+b and a+b+c = n. - Yuchun Ji, Oct 15 2020
The above conjectured formulas are true. - Stefano Spezia, May 19 2023
Previous Showing 51-60 of 198 results. Next