A182386
a(0) = 1, a(n) = 1 - n * a(n-1).
Original entry on oeis.org
1, 0, 1, -2, 9, -44, 265, -1854, 14833, -133496, 1334961, -14684570, 176214841, -2290792932, 32071101049, -481066515734, 7697064251745, -130850092279664, 2355301661033953, -44750731559645106, 895014631192902121, -18795307255050944540, 413496759611120779881
Offset: 0
G.f. = 1 + x^2 - 2*x^3 + 9*x^4 - 44*x^5 + 265*x^6 - 1854*x^7 + 14833*x^8 + ...
-
m:=35; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x)/(1+x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 11 2018
-
a:= proc(n) option remember; `if`(n=0, 1, 1-n*a(n-1)) end:
seq(a(n), n=0..30); # Alois P. Heinz, Jul 19 2015
-
a[n_] := x D[1/x Exp[x], {x, n}] x^n Exp[-x]
Table[a[n] /. x -> 1, {n, 0, 20}] (* Gerry Martens , May 05 2016 *)
a[0] = 1; a[n_] := a[n] = 1 - n a[n - 1]; Table[a@ n, {n, 0, 22}] (* Michael De Vlieger, May 05 2016 *)
-
{a(n) = if( n<1, n==0, 1 - n * a(n-1))};
-
A182386 = lambda n: hypergeometric([-n, 1], [], 1)
print([simplify(A182386(n)) for n in range(23)]) # Peter Luschny, Oct 19 2014
A282466
a(n) = n*a(n-1) + n!, with n>0, a(0)=5.
Original entry on oeis.org
5, 6, 14, 48, 216, 1200, 7920, 60480, 524160, 5080320, 54432000, 638668800, 8143027200, 112086374400, 1656387532800, 26153487360000, 439378587648000, 7825123418112000, 147254595231744000, 2919482409811968000, 60822550204416000000, 1328364496464445440000
Offset: 0
- C. Mariconda and A. Tonolo, Calcolo discreto, Apogeo (2012), page 240 (Example 9.57 gives the recurrence).
Cf. sequences with formula (n + k)*n!:
A052521 (k=-5),
A282822 (k=-4),
A052520 (k=-3),
A052571 (k=-2),
A062119 (k=-1),
A001563 (k=0),
A000142 (k=1),
A001048 (k=2),
A052572 (k=3),
A052644 (k=4), this sequence (k=5).
-
A282466:= func< n | (n+5)*Factorial(n) >; // G. C. Greubel, May 14 2025
-
RecurrenceTable[{a[0] == 5, a[n] == n a[n - 1] + n!}, a, {n, 0, 30}] (* or *)
Table[(n + 5) n!, {n, 0, 30}]
-
def A282466(n): return (n+5)*factorial(n) # G. C. Greubel, May 14 2025
A021012
Triangle of coefficients in expansion of x^n in terms of Laguerre polynomials L_n(x).
Original entry on oeis.org
1, 1, -1, 2, -4, 2, 6, -18, 18, -6, 24, -96, 144, -96, 24, 120, -600, 1200, -1200, 600, -120, 720, -4320, 10800, -14400, 10800, -4320, 720, 5040, -35280, 105840, -176400, 176400, -105840, 35280, -5040, 40320, -322560, 1128960, -2257920, 2822400, -2257920, 1128960, -322560, 40320, 362880, -3265920
Offset: 0
Triangle begins:
1;
1, -1;
2, -4, 2;
6, -18, 18, -6;
24, -96, 144, -96, 24;
...
x^3 = 6*LaguerreL(0,x) - 18*LaguerreL(1,x) + 18*LaguerreL(2,x) - 6*LaguerreL(3,x).
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 799.
Cf.
A000165 (row sum of absolute values).
-
[[(-1)^k*Factorial(n)*Binomial(n,k): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Feb 06 2018
-
row[n_] := Table[ a[n, k], {k, 0, n}] /. SolveAlways[ x^n == Sum[ a[n, k]*LaguerreL[k, x], {k, 0, n}], x] // First; (* or, after Vladeta Jovovic: *) row[n_] := Table[(-1)^k*n!*Binomial[n, k], {k, 0, n}]; Table[ row[n], {n, 0, 9}] // Flatten (* Jean-François Alcover, Oct 05 2012 *)
-
for(n=0,10, for(k=0,n, print1((-1)^k*n!*binomial(n,k), ", "))) \\ G. C. Greubel, Feb 06 2018
A052582
a(n) = 2*n*n!.
Original entry on oeis.org
0, 2, 8, 36, 192, 1200, 8640, 70560, 645120, 6531840, 72576000, 878169600, 11496038400, 161902540800, 2440992153600, 39230231040000, 669529276416000, 12093372555264000, 230485453406208000, 4622513815535616000, 97316080327065600000, 2145819571211796480000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
a052582 n = a052582_list !! n
a052582_list = 0 : 2 : zipWith
div (zipWith (*) (tail a052582_list) (drop 2 a000290_list)) [1..]
-- Reinhard Zumkeller, Nov 12 2011
-
spec := [S,{S=Prod(Sequence(Z),Sequence(Z),Union(Z,Z))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
a[ n_] := If[ n<0, 0, n! SeriesCoefficient[ 2 x / (1 - x)^2, {x, 0, n}]]; (* Michael Somos, Oct 20 2011 *)
a[ n_] := If[ n<0, 0, 2 n n!]; (* Michael Somos, Oct 20 2011 *)
-
{a(n) = if( n<0, 0, 2 * n * n!)}; /* Michael Somos, Oct 20 2011 */
Original entry on oeis.org
1, 4, 22, 154, 1306, 12994, 148282, 1908274, 27333706, 431220034, 7428550042, 138737478994, 2792050329706, 60231133487074, 1386484468239802, 33921605427779314, 878976357571495306, 24046780495646314114, 692622345890928153562, 20950628198687114521234, 663992311200423614606506
Offset: 1
-
b:= proc(n, m) option remember;
`if`(n=0, (m+1)!, m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0)/2:
seq(a(n), n=1..23); # Alois P. Heinz, Feb 14 2025
-
a[n_] := (-1)^n (PolyLog[-n - 1, 2] - PolyLog[-n, 2])/8;
Array[a, 21] (* Jean-François Alcover, Sep 10 2018, from A005649 *)
-
a(n)=if(n<0,0,n!*polcoeff(subst((1/(1-y)^2-1)/2,y,exp(x+x*O(x^n))-1),n))
A094258
a(1) = 1, a(n+1) = n*n! for n >= 1.
Original entry on oeis.org
1, 1, 4, 18, 96, 600, 4320, 35280, 322560, 3265920, 36288000, 439084800, 5748019200, 80951270400, 1220496076800, 19615115520000, 334764638208000, 6046686277632000, 115242726703104000, 2311256907767808000, 48658040163532800000, 1072909785605898240000, 24728016011107368960000, 594596384994354462720000
Offset: 1
a(1) = 1;
a(2) = 1*a(1) = 1;
...
a(7) = 6*(a(1) + a(2) + ... + a(6)) = 6*(1 + 1 + 4 + 18 + 96 + 600) = 4320.
- Harvey P. Dale, Table of n, a(n) for n = 1..400
- Jonathan Beagley and Lara Pudwell, Colorful Tilings and Permutations, Journal of Integer Sequences, Vol. 24 (2021), Article 21.10.4.
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, Amer. Math. Monthly 113 (2006) 637-641.
- J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, arXiv:0704.1282 [math.HO], 2007-2010.
Up to the offset and initial value, the same as
A001563, cf. formula.
-
A094258 := proc(n) option remember: if n = 1 then 1; else (n-1)*add(A094258(i),i=1..n-1) ; fi ; end: seq(A094258(n),n=1..24) ; # R. J. Mathar, Jul 27 2007
-
a=s=1;lst={a};Do[a=s*n-s;s+=a;AppendTo[lst,a],{n,2,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Jun 27 2009 *)
Module[{lst={1}},Do[AppendTo[lst,n*Total[lst]],{n,30}];lst] (* Harvey P. Dale, Jul 01 2012 *)
-
A094258(n)=(n-1)!*(n-(n>1)) \\ M. F. Hasler, Oct 21 2012
Edited by Mark Hudson, Jan 05 2005
A094310
Triangle read by rows: T(n,k), the k-th term of the n-th row, is the product of all numbers from 1 to n except k: T(n,k) = n!/k.
Original entry on oeis.org
1, 2, 1, 6, 3, 2, 24, 12, 8, 6, 120, 60, 40, 30, 24, 720, 360, 240, 180, 144, 120, 5040, 2520, 1680, 1260, 1008, 840, 720, 40320, 20160, 13440, 10080, 8064, 6720, 5760, 5040, 362880, 181440, 120960, 90720, 72576, 60480, 51840, 45360, 40320, 3628800, 1814400, 1209600, 907200, 725760, 604800, 518400, 453600, 403200, 362880
Offset: 1
Triangle begins as:
1;
2, 1;
6, 3, 2;
24, 12, 8, 6;
120, 60, 40, 30, 24;
720, 360, 240, 180, 144, 120;
5040, 2520, 1680, 1260, 1008, 840, 720;
40320, 20160, 13440, 10080, 8064, 6720, 5760, 5040;
...
T(4,2) counts the 12 permutations of [4] with elements 1 and 2 in the same cycle, namely, (1 2)(3 4), (1 2)(3)(4), (1 2 3)(4), (1 3 2)(4), (1 2 4)(3), (1 4 2)(3), (1 2 3 4), (1 2 4 3), (1 3 2 4), (1 3 4 2), (1 4 2 3), and (1 4 3 2). - _Dennis P. Walsh_, May 24 2020
-
seq(seq(n!/k, k=1..n), n=1..10);
-
Table[n!/k, {n,10}, {k,n}]//Flatten
Table[n!/Range[n], {n,10}]//Flatten (* Harvey P. Dale, Mar 12 2016 *)
A002468
The game of Mousetrap with n cards: the number of permutations of n cards having at least one hit after 2.
Original entry on oeis.org
0, 0, 1, 3, 13, 65, 397, 2819, 22831, 207605, 2094121, 23205383, 280224451, 3662810249, 51523391965, 776082247979, 12463259986087, 212573743211549, 3837628837381201, 73108996989052175, 1465703611456618891, 30847249002794047793, 679998362512214208901, 15668677914172813691699, 376683592679293811722735
Offset: 1
- R. K. Guy and R. J. Nowakowski, "Mousetrap," in D. Miklos, V. T. Sos and T. Szonyi, eds., Combinatorics, Paul Erdős is Eighty. Bolyai Society Math. Studies, Vol. 1, pp. 193-206, 1993.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Joerg Arndt, Table of n, a(n) for n = 1..102
- R. K. Guy and R. J. Nowakowski, Mousetrap, Preprint, Feb 10 1993 [Annotated scanned copy]
- J. Metzger, Email to N. J. A. Sloane, Apr 30 1991
- Daniel J. Mundfrom, A problem in permutations: the game of 'Mousetrap'. European J. Combin. 15 (1994), no. 6, 555-560.
- A. Steen, Some formulas respecting the game of mousetrap, Quart. J. Pure Applied Math., 15 (1878), 230-241.
- Eric Weisstein's World of Mathematics, Mousetrap
-
a[n_] := (n-2)*(n-2)!-(n-4)*Subfactorial[n-3]-(n-3)*Subfactorial[n-2]; a[1]=a[2]=0; a[3]=1; Table[a[n], {n, 1, 21}] (* Jean-François Alcover, Dec 12 2014 *)
Original entry on oeis.org
9, 53, 181, 465, 1001, 1909, 3333, 5441, 8425, 12501, 17909, 24913, 33801, 44885, 58501, 75009, 94793, 118261, 145845, 178001, 215209, 257973, 306821, 362305, 425001, 495509, 574453, 662481, 760265, 868501, 987909, 1119233, 1263241
Offset: 0
-
LinearRecurrence[{5,-10,10,-5,1},{9,53,181,465,1001},40] (* Harvey P. Dale, May 23 2016 *)
Original entry on oeis.org
44, 309, 1214, 3539, 8544, 18089, 34754, 61959, 104084, 166589, 256134, 380699, 549704, 774129, 1066634, 1441679, 1915644, 2506949, 3236174, 4126179, 5202224, 6492089, 8026194, 9837719, 11962724, 14440269, 17312534, 20624939, 24426264
Offset: 0
-
Table[n^5+10n^4+45n^3+100n^2+109n+44,{n,0,30}] (* or *) LinearRecurrence[ {6,-15,20,-15,6,-1},{44,309,1214,3539,8544,18089},30]
-
a(n)=n^5+10*n^4+45*n^3+100*n^2+109*n+44 \\ Charles R Greathouse IV, Oct 16 2015
Comments