cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 215 results. Next

A053088 a(n) = 3*a(n-2) + 2*a(n-3) for n > 2, a(0)=1, a(1)=0, a(2)=3.

Original entry on oeis.org

1, 0, 3, 2, 9, 12, 31, 54, 117, 224, 459, 906, 1825, 3636, 7287, 14558, 29133, 58248, 116515, 233010, 466041, 932060, 1864143, 3728262, 7456549, 14913072, 29826171, 59652314, 119304657, 238609284, 477218599, 954437166, 1908874365
Offset: 0

Views

Author

Pauline Gorman (pauline(AT)gorman65.freeserve.co.uk), Feb 26 2000

Keywords

Comments

Growth of happy bug population in GCSE math course work assignment.
The generalized (3,2)-Padovan sequence p(3,2;n). See the W. Lang link under A000931. - Wolfdieter Lang, Jun 25 2010
With offset 1: a(n) = -2^n*Sum_{k=0..n} k^p*q^k for p=1, q=-1/2. See also A232603 (p=2, q=-1/2), A232604 (p=3, q=-1/2). - Stanislav Sykora, Nov 27 2013
From Paul Curtz, Nov 02 2021 (Start)
a(n-2) difference table (from 0, 0, a(n)):
0 0 1 0 3 2 9 12 31 54 ...
0 1 -1 3 -1 7 3 19 23 63 ...
1 -2 4 -4 8 -4 16 4 40 44 ...
-3 6 -8 12 -12 20 -12 36 4 84 ...
9 -14 20 -24 32 -32 48 -32 80 0 ...
-23 34 -44 56 -64 80 -80 112 -80 176 ...
57 -78 100 -120 144 -160 192 -192 256 -192 ...
... .
The signature is valid for every row.
a(n-2) + a(n-1) = A001045(n).
a(n-2) + a(n+1) = A062510(n) = 3*A001045(n).
a(n-2) + a(n+3) = see A144472(n+1).
Second subdiagonal: 1, 6, 20, 56, 144, 352, ... = A014480(n).
First subdiagonal: -A036895(n) = -2*A001787(n).
Main diagonal: A001787(n) = -first and -third upper diagonals.
Second, fourth and fifth upper diagonals: A001792(n), A045891(n+2) and A172160(n+1). (End)

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1 - 3 x^2 - 2 x^3), {x, 0, 32}], x] (* Michael De Vlieger, Sep 30 2019 *)
  • PARI
    c(n)=(2^(n+1)-(-1)^n*(3*n+2))/9; a(n)=c(n+1); \\ Stanislav Sykora, Nov 27 2013

Formula

G.f.: 1 / (1-3*x^2-2*x^3).
With offset 1: a(1)=1; a(n) = 2*a(n-1) - (-1)^n*n; a(n) = (1/9)*(2^(n+1) - (-1)^n*(3*n+2)). - Benoit Cloitre, Nov 02 2002
a(n) = Sum_{k=0..floor(n/2)} A078008(n-2k). - Paul Barry, Nov 24 2003
a(n) = Sum_{k=0..floor(n/2)} binomial(k, n-2k)*3^k*(2/3)^(n-2k). - Paul Barry, Oct 16 2004
a(n) = Sum_{k=0..n} A078008(k)*(1 - (-1)^(n+k-1))/2. - Paul Barry, Apr 16 2005
a(n) = ( 2^(n+2) + (-1)^n*(3*n+5) )/9 (see also the B. Cloitre comment above). From the o.g.f. 1/(1-3*x^2-2*x^3) = 1/((1-2*x)*(1+x)^2) = (3/(1+x)^2 + 2/(1+x) + 4/(1-2*x))/9. - Wolfdieter Lang, Jun 25 2010
From Wolfdieter Lang, Aug 26 2010: (Start)
a(n) = a(n-1) + 2*a(n-2) + (-1)^n for n > 1, a(0)=1, a(1)=0.
Due to the identity for the o.g.f. A(x): A(x) = x*(1+2*x)*A(x) + 1/(1+x).
(This recurrence was observed by Gary Detlefs in a 08/25/10 e-mail to the author.) (End)
G.f.: Sum_{n>=0} binomial(3*n,n)*x^n / (1+x)^(3*n+3). - Paul D. Hanna, Mar 03 2012
E.g.f.: 1 + (1/9)*(exp(-x)*(3*x - 2) + 2*exp(2*x)). - Stefano Spezia, Sep 27 2019

Extensions

More terms from James Sellers, Feb 28 2000 and Christian G. Bower, Feb 29 2000

A053469 a(n) = n*6^(n-1).

Original entry on oeis.org

1, 12, 108, 864, 6480, 46656, 326592, 2239488, 15116544, 100776960, 665127936, 4353564672, 28298170368, 182849716224, 1175462461440, 7522959753216, 47958868426752, 304679870005248, 1929639176699904, 12187194800209920, 76779327241322496, 482612914088312832
Offset: 1

Views

Author

Barry E. Williams, Jan 13 2000

Keywords

Comments

Binomial transform of A053464. - R. J. Mathar, Oct 26 2011

Examples

			G.f. = x + 12*x^2 + 108*x^3 + 864*x^4 + 6480*x^5 + 46656*x^6 + ... - _Michael Somos_, Dec 16 2019
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Programs

Formula

a(n) = 12*a(n-1) - 36*a(n-2), n>=3.
G.f.: x/(6x-1)^2. - Zerinvary Lajos, Apr 28 2009
E.g.f.: x*exp(6*x). - Michael Somos, Dec 16 2019
From Amiram Eldar, Oct 28 2020: (Start)
Sum_{n>=1} 1/a(n) = 6*log(6/5).
Sum_{n>=1} (-1)^(n+1)/a(n) = 6*log(7/6). (End)

Extensions

More terms from James Sellers, Feb 02 2000
More terms from Zerinvary Lajos, Oct 02 2007

A059576 Summatory Pascal triangle T(n,k) (0 <= k <= n) read by rows. Top entry is 1. Each entry is the sum of the parallelogram above it.

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 4, 8, 8, 4, 8, 20, 26, 20, 8, 16, 48, 76, 76, 48, 16, 32, 112, 208, 252, 208, 112, 32, 64, 256, 544, 768, 768, 544, 256, 64, 128, 576, 1376, 2208, 2568, 2208, 1376, 576, 128, 256, 1280, 3392, 6080, 8016, 8016, 6080, 3392, 1280, 256
Offset: 0

Views

Author

Floor van Lamoen, Jan 23 2001

Keywords

Comments

We may also relabel the entries as U(0,0), U(1,0), U(0,1), U(2,0), U(1,1), U(0,2), U(3,0), ... [That is, T(n,k) = U(n-k, k) for 0 <= k <= n and U(m,s) = T(m+s, s) for m,s >= 0.]
From Petros Hadjicostas, Jul 16 2020: (Start)
We explain the parallelogram definition of T(n,k).
T(0,0) *
|\
| \
| * T(k,k)
T(n-k,0) * |
\ |
\|
* T(n,k)
The definition implies that T(n,k) is the sum of all T(i,j) such that (i,j) has integer coordinates over the set
{(i,j): a(1,0) + b(1,1), 0 <= a <= n-k, 0 <= b <= k} - {(n,k)}.
The parallelogram can sometimes be degenerate; e.g., when k = 0 or n = k. (End)
T(n,k) is the number of 2-compositions of n having sum of the entries of the first row equal to k (0 <= k <= n). A 2-composition of n is a nonnegative matrix with two rows, such that each column has at least one nonzero entry and whose entries sum up to n. - Emeric Deutsch, Oct 12 2010
From Michel Marcus and Petros Hadjicostas, Jul 16 2020: (Start)
Robeva and Sun (2020) let A(m,n) = U(m-1, n-1) be the number of subdivisions of a 2-row grid with m points on the top and n points at the bottom (and such that the lower left point is the origin).
The authors proved that A(m,n) = 2*(A(m,n-1) + A(m-1,n) - A(m-1,n-1)) for m, n >= 2 (with (m,n) <> (2,2)), which is equivalent to a similar recurrence for U(n,k) given in the Formula section below. (They did not explicitly specify the value of A(1,1) = U(0,0) because they did not care about the number of subdivisions of a degenerate polygon with only one side.)
They also proved that, for (m,n) <> (1,1), A(m,n) = (2^(m-2)/(n-1)!) * Q_n(m) =
= (2^(m-2)/(n-1)!) * Sum_{k=1..n} A336244(n,k) * m^(n-k), where Q_n(m) is a polynomial in m of degree n-1. (End)
With the square array notation of Petros Hadjicostas, Jul 16 2020 below, U(i,j) is the number of lattice paths from (0,0) to (i,j) whose steps move north or east or have positive slope. For example, representing a path by its successive lattice points rather than its steps, U(1,2) = 8 counts {(0,0),(1,2)}, {(0,0),(0,1),(1,2)}, {(0,0),(0,2),(1,2)}, {(0,0),(1,0),(1,2)}, {(0,0),(1,1),(1,2)}, {(0,0),(0,1),(0,2),(1,2)}, {(0,0),(0,1),(1,1),(1,2)}, {(0,0),(1,0),(1,1),(1,2)}. If north (vertical) steps are excluded, the resulting paths are counted by A049600. - David Callan, Nov 25 2021

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins
[0]   1;
[1]   1,   1;
[2]   2,   3,   2;
[3]   4,   8,   8,   4;
[4]   8,  20,  26,  20,   8;
[5]  16,  48,  76,  76,  48,  16;
[6]  32, 112, 208, 252, 208, 112, 32;
  ...
T(5,2) = 76 is the sum of the elements above it in the parallelogram bordered by T(0,0), T(5-2,0) = T(3,0), T(2,2) and T(5,2). We of course exclude T(5,2) from the summation. Thus
T(5,2) = Sum_{a=0..5-2, b=0..2, (a,b) <> (5-2,2)} T(a(1,0) + b(1,1)) =
= (1 + 1 + 2) + (1 + 3 + 8) + (2 + 8 + 26) + (4 + 20) = 76. [Edited by _Petros Hadjicostas_, Jul 16 2020]
From _Petros Hadjicostas_, Jul 16 2020: (Start)
Square array U(n,k) (with rows n >= 0 and columns k >= 0) begins
   1,   1,   2,    4,    8, ...
   1,   3,   8,   20,   48, ...
   2,   8,  26,   76,  208, ...
   4,  20,  76,  252,  768, ...
   8,  48, 208,  768, 2568, ...
  16, 112, 544, 2208, 8016, ...
  ...
Consider the following 2-row grid with n = 3 points at the top and k = 2 points at the bottom:
   A  B  C
   *--*--*
   |    /
   |   /
   *--*
   D  E
The sets of the dividing internal lines of the A(3,2) = U(3-1, 2-1) = 8 subdivisions of the above 2-row grid are as follows: { }, {DC}, {DB}, {EB}, {EA}, {DB, DC}, {DB, EB}, and {EA, EB}. See Robeva and Sun (2020).
These are the 2-compositions of n = 3 with sum of first row entries equal to k = 1:
[1; 2], [0,1; 2,0], [0,1; 1,1], [1,0; 0,2], [1,0; 1,1], [0,0,1; 1,1,0], [0,1,0; 1,0,1], and [1,0,0; 0,1,1]. We have T(3,2) = 8 such matrices. See _Emeric Deutsch_'s contribution above. See also Section 2 in Castiglione et al. (2007). (End)
		

Crossrefs

Programs

  • Haskell
    a059576 n k = a059576_tabl !! n !! k
    a059576_row n = a059576_tabl !! n
    a059576_tabl = [1] : map fst (iterate f ([1,1], [2,3,2])) where
       f (us, vs) = (vs, map (* 2) ws) where
         ws = zipWith (-) (zipWith (+) ([0] ++ vs) (vs ++ [0]))
                          ([0] ++ us ++ [0])
    -- Reinhard Zumkeller, Dec 03 2012
    
  • Magma
    A011782:= func< n | n eq 0 select 1 else 2^(n-1) >;
    function T(n,k) // T = A059576
      if k eq 0 or k eq n then return A011782(n);
      else return 2*T(n-1, k-1) + 2*T(n-1, k) - (2 - 0^(n-2))*T(n-2, k-1);
      end if; return T;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 02 2022
    
  • Maple
    A059576 := proc(n,k) local b,t1; t1 := min(n+k-2,n,k); add( (-1)^b * 2^(n+k-b-2) * (n+k-b-2)! * (1/(b! * (n-b)! * (k-b)!)) * (-2 * n-2 * k+2 * k^2+b^2-3 * k * b+2 * n^2+5 * n * k-3 * n * b), b=0..t1); end;
    T := proc (n, k) if k <= n then add((-1)^j*2^(n-j-1)*binomial(k, j)*binomial(n-j, k), j = 0 .. min(k, n-k)) fi end proc: 1; for n to 10 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form # Emeric Deutsch, Oct 12 2010
    T := (n, k) -> `if`(n=0, 1, 2^(n-1)*binomial(n, k)*hypergeom([-k, k - n], [-n], 1/2)): seq(seq(simplify(T(n, k)), k=0..n), n=0..10); # Peter Luschny, Nov 26 2021
  • Mathematica
    T[0, 0] = 1; T[n_, k_] := 2^(n-k-1)*n!*Hypergeometric2F1[ -k, -k, -n, -1 ] / (k!*(n-k)!); Flatten[ Table[ T[n, k], {n, 0, 9}, {k, 0, n}]] (* Jean-François Alcover, Feb 01 2012, after Robert Israel *)
  • SageMath
    def T(n,k): # T = A059576
        if (k==0 or k==n): return 1 if (n==0) else 2^(n-1) # A011782
        else: return 2*T(n-1, k-1) + 2*T(n-1, k) - (2 - 0^(n-2))*T(n-2, k-1)
    flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 02 2022

Formula

T(n, n-1) = A001792(n-1).
T(2*n, n) = A052141(n).
Sum_{k=0..n} T(n, k) = A003480(n).
G.f.: U(z, w) = Sum_{n >= 0, k >= 0} U(n, k)*z^n*w^k = Sum{n >= 0, k >= 0} T(n, k)*z^(n-k)*w^k = (1-z)*(1-w)/(1 - 2*w - 2*z + 2*z*w).
Maple code gives another explicit formula for U(n, k).
From Jon Stadler (jstadler(AT)capital.edu), Apr 30 2003: (Start)
U(n,k) is the number of ways of writing the vector (n,k) as an ordered sum of vectors, equivalently, the number of paths from (0,0) to (n,k) in which steps may be taken from (i,j) to (p,q) provided (p,q) is to the right or above (i,j).
2*U(n,k) = Sum_{i <= n, j <= k} U(i,j).
U(n,k) = 2*U(n-1,k) + Sum_{i < k} U(n,i).
U(n,k) = Sum_{j=0..n+k} C(n,j-k+1)*C(k,j-n+1)*2^j. (End)
T(n, k) = 2*(T(n-1, k-1) + T(n-1, k)) - (2 - 0^(n-2))*T(n-2, k-1) for n > 1 and 1 < k < n; T(n, 0) = T(n, n) = 2*T(n-1, 0) for n > 0; and T(0, 0) = 1. - Reinhard Zumkeller, Dec 03 2004
From Emeric Deutsch, Oct 12 2010: (Start)
Sum_{k=0..n} k*T(n,k) = A181292(n).
T(n,k) = Sum_{j=0..min(k, n-k)} (-1)^j*2^(n-j-1)*binomial(k, j)*binomial(n-j, k) for (n,k) != (0,0).
G.f.: G(t,z) = (1-z)*(1-t*z)/(1 - 2*z - 2*t*z + 2*t*z^2). (End)
U(n,k) = 0 if k < 0; else U(k,n) if k > n; else 1 if n <= 1; else 3 if n = 2 and k = 1; else 2*U(n,k-1) + 2*U(n-1,k) - 2*U(n-1,k-1). - David W. Wilson; corrected in the case k > n by Robert Israel, Jun 15 2011 [Corrected by Petros Hadjicostas, Jul 16 2020]
U(n,k) = binomial(n,k) * 2^(n-1) * hypergeom([-k,-k], [n+1-k], 2) if n >= k >= 0 with (n,k) <> (0,0). - Robert Israel, Jun 15 2011 [Corrected by Petros Hadjicostas, Jul 16 2020]
U(n,k) = Sum_{0 <= i+j <= n+k-1} (-1)^j*C(i+j+1, j)*C(n+i, n)*C(k+i, k). - Masato Maruoka, Dec 10 2019
T(n, k) = 2^(n - 1)*binomial(n, k)*hypergeom([-k, k - n], [-n], 1/2) = A059474(n, k)/2 for n >= 1. - Peter Luschny, Nov 26 2021
From G. C. Greubel, Sep 02 2022: (Start)
T(n, n-k) = T(n, k).
T(n, 0) = T(n, n) = A011782(n).
T(n, n-2) = 2*A049611(n-1), n >= 2.
T(n, n-3) = 4*A049612(n-2), n >= 3.
T(n, n-4) = 8*A055589(n-3), n >= 4.
T(n, n-5) = 16*A055852(n-4), n >= 5.
T(n, n-6) = 32*A055853(n-5), n >= 6.
Sum_{k=0..floor(n/2)} T(n, k) = A181306(n). (End)

A124736 Table where row n has k C(n,k-1) times.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 2, 3, 3, 3, 4, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 0

Views

Author

Keywords

Examples

			The table starts:
1
1 2
1 2 2 3
1 2 2 2 3 3 3 4
		

Crossrefs

Cf. A124737, A124748, A000079 (row lengths), A001792 (row sums), A007318.

Formula

a(n) = A124737(n) + 1

A152920 Triangle read by rows: triangle A062111 reversed.

Original entry on oeis.org

0, 1, 1, 2, 3, 4, 3, 5, 8, 12, 4, 7, 12, 20, 32, 5, 9, 16, 28, 48, 80, 6, 11, 20, 36, 64, 112, 192, 7, 13, 24, 44, 80, 144, 256, 448, 8, 15, 28, 52, 96, 176, 320, 576, 1024, 9, 17, 32, 60, 112, 208, 384, 704, 1280, 2304, 10, 19, 36, 68, 128, 240, 448, 832, 1536, 2816, 5120
Offset: 0

Views

Author

Paul Curtz, Dec 15 2008

Keywords

Examples

			Triangle starts:
  0;
  1,  1;
  2,  3,  4;
  3,  5,  8, 12;
  4,  7, 12, 20, 32;
  ...
		

Crossrefs

Programs

  • Magma
    [2^k*(n-k/2): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 27 2022
    
  • Maple
    A062111 := proc(n,k) (k+n)*2^(k-n-1) ; end: A152920 := proc(n,k) A062111(n-k,n) ; end: for n from 0 to 15 do for k from 0 to n do printf("%d,",A152920(n,k)) ; od: od: # R. J. Mathar, Jan 22 2009
    # second Maple program:
    T:= proc(n, k) option remember;
         `if`(k=0, n, T(n, k-1)+T(n-1, k-1))
        end:
    seq(seq(T(n, k), k=0..n), n=0..12);  # Alois P. Heinz, Sep 12 2022
  • Mathematica
    t[0, k_]:= k; t[n_, k_]:= t[n, k]= t[n-1, k] + t[n-1, k+1];
    Table[t[n-k, k], {n,0,10}, {k,n,0,-1}]//Flatten (* Jean-François Alcover, Sep 11 2016 *)
  • SageMath
    flatten([[2^(k-1)*(2*n-k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Sep 27 2022

Formula

Row sums: (2^n-1)(n+1) = A058877(n). - R. J. Mathar, Jan 22 2009
T(2n, n) = 3*n*2^(n-1) = 3*A001787(n). - Philippe Deléham, Apr 20 2009
From Werner Schulte, Jul 31 2020: (Start)
T(n, k) = (2*n-k) * 2^(k-1) for 0 <= k <= n.
G.f.: Sum_{n>=0, k=0..n} T(n,k) * x^k * t^n = t*(1+x-3*x*t) / ((1-t)^2 * (1-2*x*t)^2).
Sum_{k=0..n} (-1)^k * binomial(n,k) * T(n,k) = 0 for n >= 0.
Sum_{k=0..n} binomial(n,k) * T(n,k) = 2*n * 3^(n-1) for n >= 0.
Define the array B(n,p) = (Sum_{k=0..n} binomial(p+k,p) * T(n,k))/(n+p+1) for n >= 0 and p >= 0. Then see the comment of Robert Coquereaux (2014) at A193844. Conjecture: B(n+1,p) = A(n,p). (End)
T(n, k) = T(n, k-1) + T(n-1, k-1) for k>=1, T(n,0) = n. - Alois P. Heinz, Sep 12 2022
From G. C. Greubel, Sep 27 2022: (Start)
T(n, n-1) = A001792(n).
T(2*n-1, n-1) = A053220(n).
T(2*n+1, n-1) = 3*A001792(n).
T(m*n, n) = (2*m-1)*A001787(n), for m >= 1. (End)

Extensions

Edited by N. J. A. Sloane, Dec 19 2008
More terms from R. J. Mathar, Jan 22 2009

A047858 T(n, k) = 2^(k-1)*(k + 2*n) - n + 1, array read by descending antidiagonals.

Original entry on oeis.org

1, 2, 1, 5, 3, 1, 13, 8, 4, 1, 33, 20, 11, 5, 1, 81, 48, 27, 14, 6, 1, 193, 112, 63, 34, 17, 7, 1, 449, 256, 143, 78, 41, 20, 8, 1, 1025, 576, 319, 174, 93, 48, 23, 9, 1, 2305, 1280, 703, 382, 205, 108, 55, 26, 10, 1, 5121, 2816, 1535, 830, 445, 236, 123, 62, 29, 11, 1
Offset: 0

Views

Author

Keywords

Comments

Previous name was: Array T read by diagonals; n-th difference of (T(k,n),T(k,n-1),...,T(k,0)) is k+n, for n=1,2,3,...; k=0,1,2,...

Examples

			From _Stefano Spezia_, Jan 03 2023: (Start)
The array begins:
  1, 2,  5, 13,  33,  81,...
  1, 3,  8, 20,  48, 112,...
  1, 4, 11, 27,  63, 143,...
  1, 5, 14, 34,  78, 174,...
  1, 6, 17, 41,  93, 205,...
  1, 7, 20, 48, 108, 236,...
  ...
(End)
		

Crossrefs

Row 1 = (1, 2, 5, 13, 33, ...) = A005183.
Row 2 = (1, 3, 8, 20, 48, ...) = A001792.

Programs

  • Mathematica
    T[n_,k_]:=2^(k-1)*(k+2n)-n+1;Table[Reverse[Table[T[n-k,k],{k,0,n}]],{n,0,10}]//Flatten (* Stefano Spezia, Jan 02 2023 *)

Formula

T(n, k) = 2^(k-1)*(k + 2*n) - n + 1. - Benoit Cloitre, Jun 17 2003
G.f.: (1 - x - 3*y + 4*x*y + 3*y^2 - 5*x*y^2)/((1 - x)^2*(1 - 2*y)^2*(1 - y)). - Stefano Spezia, Jan 02 2023

Extensions

New name using formula by Benoit Cloitre, Joerg Arndt, Jan 03 2023

A084858 Binomial transform of A001651.

Original entry on oeis.org

1, 3, 9, 24, 60, 144, 336, 768, 1728, 3840, 8448, 18432, 39936, 86016, 184320, 393216, 835584, 1769472, 3735552, 7864320, 16515072, 34603008, 72351744, 150994944, 314572800, 654311424, 1358954496, 2818572288, 5838471168, 12079595520
Offset: 0

Views

Author

Paul Barry, Jun 11 2003

Keywords

Comments

a(n+1)/3 = A001792(n).

Programs

  • Magma
    I:=[1, 3, 9]; [n le 3 select I[n] else 4*Self(n-1)-4*Self(n-2): n in [1..50]]; // Vincenzo Librandi, Jun 24 2012
  • Mathematica
    CoefficientList[Series[(x^2-x+1)/(1-2x)^2,{x,0,40}],x] (* Vincenzo Librandi, Jun 24 2012 *)
  • PARI
    a(n)=3*(0^n/3+2^n+n<Charles R Greathouse IV, Nov 11 2011
    

Formula

G.f.: (x^2 - x + 1)/(1-2*x)^2.
a(n) = 3*(0^n/3 + 2^n + n*2^n)/4.
For n > 1: a(n) = 2*a(n-1) + 3*2^(n-2). - Philippe Deléham, Nov 10 2011
a(n) = 4*a(n-1) - 4*a(n-2). - Vincenzo Librandi, Jun 24 2012

A007403 a(n) = Sum_{m=0..n} (Sum_{k=0..m} binomial(n,k))^3 = (n+2)*2^(3*n-1) - 3*2^(n-2)*n*binomial(2*n,n).

Original entry on oeis.org

1, 9, 92, 920, 8928, 84448, 782464, 7130880, 64117760, 570166784, 5023524864, 43915595776, 381350330368, 3292451880960, 28283033157632, 241884640182272, 2060565937127424, 17492250190544896, 148027589475696640
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

If the exponent E in a(n) = Sum_{m=0..n} (Sum_{k=0..m} C(n,k))^E is 1, 2, 3, 4, 5 we get A001792, A003583, A007403, A294435, A294436 respectively.

Programs

  • GAP
    List([0..20],n->Sum([0..n],m->Sum([0..m],k->Binomial(n,k))^3)); # Muniru A Asiru, Aug 15 2018
    
  • Magma
    [(n+2)*2^(3*n-1)-3*2^(n-2)*n*Binomial(2*n,n): n in [0..20]]; // Vincenzo Librandi, Jul 27 2014
    
  • Maple
    f:=n->n*8^n/2+8^n-(3*n/4)*2^n*binomial(2*n,n);
    [seq(f(n),n=0..50)];
    A:=proc(n,k) local j; add(binomial(n,j),j=0..k); end;
    S:=proc(n,p) local i; global A; add(A(n,i)^p, i=0..n); end;
    [seq(S(n,3),n=0..50)]; # N. J. A. Sloane, Nov 17 2017
  • Mathematica
    Table[(n+2)2^(3n-1)-3 2^(n-2)n Binomial[2n,n],{n,0,20}] (* Harvey P. Dale, Jun 30 2011 *)
    CoefficientList[Series[(1 - (4 + 3 Sqrt[1 - 8 x]) x)/(1 - 8 x)^2, {x, 0, 30}], x] (* Vincenzo Librandi, Jul 27 2014 *)
    nmax = 18; CoefficientList[Series[Exp[8 x] (1 + 4 x) - 3 x Exp[4 x] (BesselI[0, 4 x] + BesselI[1, 4 x]), {x, 0, nmax}], x] Range[0, nmax]! (* Ilya Gutkovskiy, Aug 18 2018 *)
  • PARI
    a(n)=(n+2)<<(3*n-1)-3*n*binomial(2*n,n)<<(n-2) \\ Charles R Greathouse IV, Oct 23 2023

Formula

G.f.: (1 - (4 + 3*sqrt(1 - 8*x))*x)/(1 - 8*x)^2. - Harvey P. Dale, Jun 30 2011
E.g.f.: exp(8*x)*(1 + 4*x) - 3*x*exp(4*x)*(BesselI(0,4*x) + BesselI(1,4*x)). - Ilya Gutkovskiy, Aug 15 2018
a(n) ~ n * 2^(3*n-1) * (1 - 3/(2*sqrt(Pi*n))). - Vaclav Kotesovec, Aug 18 2018

A124182 A skewed version of triangular array A081277.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 0, 3, 4, 0, 0, 1, 8, 8, 0, 0, 0, 5, 20, 16, 0, 0, 0, 1, 18, 48, 32, 0, 0, 0, 0, 7, 56, 112, 64, 0, 0, 0, 0, 1, 32, 160, 256, 128, 0, 0, 0, 0, 0, 9, 120, 432, 576, 256, 0, 0, 0, 0, 0, 1, 50, 400, 1120, 1280, 512
Offset: 0

Views

Author

Philippe Deléham, Dec 05 2006

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows given by [0, 1, -1, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, 0, 0, 0, 0, 0, 0, 0,...] where DELTA is the operator defined in A084938. Falling diagonal sums in A052980.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1, 2;
  0, 0, 3, 4;
  0, 0, 1, 8,  8;
  0, 0, 0, 5, 20, 16;
  0, 0, 0, 1, 18, 48,  32;
  0, 0, 0, 0,  7, 56, 112,  64;
  0, 0, 0, 0,  1, 32, 160, 256,  128;
  0, 0, 0, 0,  0,  9, 120, 432,  576,  256;
  0, 0, 0, 0,  0,  1,  50, 400, 1120, 1280, 512;
		

Crossrefs

Cf. A025192 (column sums). Diagonals include A011782, A001792, A001793, A001794, A006974, A006975, A006976.

Formula

T(0,0)=T(1,1)=1, T(n,k)=0 if n < k or if k < 0, T(n,k) = T(n-2,k-1) + 2*T(n-1,k-1).
Sum_{k=0..n} x^k*T(n,k) = (-1)^n*A090965(n), (-1)^n*A084120(n), (-1)^n*A006012(n), A033999(n), A000007(n), A001333(n), A084059(n) for x = -4, -3, -2, -1, 0, 1, 2 respectively.
Sum_{k=0..floor(n/2)} T(n-k,k) = Fibonacci(n-1) = A000045(n-1).
Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A011782(n), A001333(n), A026150(n), A046717(n), A084057(n), A002533(n), A083098(n), A084058(n), A003665(n), A002535(n), A133294(n), A090042(n), A125816(n), A133343(n), A133345(n), A120612(n), A133356(n), A125818(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 respectively. - Philippe Deléham, Dec 26 2007
Sum_{k=0..n} T(n,k)*(-x)^(n-k) = A011782(n), A000012(n), A146559(n), A087455(n), A138230(n), A006495(n), A138229(n) for x= 0,1,2,3,4,5,6 respectively. - Philippe Deléham, Nov 14 2008
G.f.: (1-y*x)/(1-2y*x-y*x^2). - Philippe Deléham, Dec 04 2011
Sum_{k=0..n} T(n,k)^2 = A002002(n) for n > 0. - Philippe Deléham, Dec 04 2011

A228366 Toothpick sequence from a diagram of compositions of the positive integers (see Comments lines for definition).

Original entry on oeis.org

0, 2, 6, 8, 15, 17, 21, 23, 35, 37, 41, 43, 50, 52, 56, 58, 79, 81, 85, 87, 94, 96, 100, 102, 114, 116, 120, 122, 129, 131, 135, 137, 175, 177, 181, 183, 190, 192, 196, 198, 210, 212, 216, 218, 225, 227, 231, 233, 254, 256, 260, 262, 269, 271, 275
Offset: 0

Views

Author

Omar E. Pol, Aug 22 2013

Keywords

Comments

In order to construct this sequence we use the following rules:
We start in the first quadrant of the square grid with no toothpicks, so a(0) = 0.
At stage n we place the smallest possible number of toothpicks of length 1 connected by their endpoints in horizontal direction starting from the grid point (0, n) such that the x-coordinate of the exposed endpoint of the last toothpick is not equal to the x-coordinate of any outer corner of the structure. Then we place toothpicks of length 1 connected by their endpoints in vertical direction, starting from the exposed toothpick endpoint, downward up to touch the structure or up to touch the x-axis.
The sequence gives the number of toothpicks after n stages. A228367 (the first differences) gives the number of toothpicks added at the n-th stage.
Note that the number of toothpick of added at n-th stage in horizontal direction is also A001511(n) and the number of toothpicks added at n-th stage in vertical direction is also A006519(n). Also counting both the x-axis and the y-axis we have that A001511(n) is also the largest part of the n-th region of the diagram and A006519(n) is also the number of parts of the n-th region of the diagram.
After 2^k stages a new section of the structure is completed, so the structure can be interpreted as a diagram of the 2^(k-1) compositions of k in colexicographic order, if k >= 1 (see A228525). The infinite diagram can be interpreted as a table of compositions of the positive integers.

Examples

			Illustration of initial terms (n = 1..8):
.                                                _ _ _ _
.                                        _       _      |
.                                _ _     _|_     _|_    |
.                        _       _  |    _  |    _  |   |
.                _ _ _   _|_ _   _|_|_   _|_|_   _|_|_  |
.          _     _    |  _    |  _    |  _    |  _    | |
.    _ _   _|_   _|_  |  _|_  |  _|_  |  _|_  |  _|_  | |
._   _  |  _  |  _  | |  _  | |  _  | |  _  | |  _  | | |
. |   | |   | |   | | |   | | |   | | |   | | |   | | | |
.
.2    6     8      15      17      21      23       35
.
After 16 stages there are 79 toothpicks in the structure which represents the compositions of 5 in colexicographic order as shown below:
-------------------------------
n     Diagram      Composition
-------------------------------
.     _ _ _ _ _
16    _        |   5
15    _|_      |   1+4
14    _  |     |   2+3
13    _|_|_    |   1+1+3
12    _    |   |   3+2
11    _|_  |   |   1+2+2
10    _  | |   |   2+1+2
9     _|_|_|_  |   1+1+1+2
8     _      | |   4+1
7     _|_    | |   1+3+1
6     _  |   | |   2+2+1
5     _|_|_  | |   1+1+2+1
4     _    | | |   3+1+1
3     _|_  | | |   1+2+1+1
2     _  | | | |   2+1+1+1
1      | | | | |   1+1+1+1+1
.
		

Crossrefs

Programs

  • Python
    def A228366(n): return sum(((m:=(i>>1)+1)&-m).bit_length() if i&1 else (m:=i>>1)&-m for i in range(1,2*n+1)) # Chai Wah Wu, Jul 15 2022

Formula

a(n) = sum_{k=1..n} (A001511(k) + A006519(k)), n >= 1.
a(n) = A005187(n) + A065120(n-1), n >= 1.
a(n) = A228370(2n).
Previous Showing 61-70 of 215 results. Next