cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 529 results. Next

A052847 G.f.: 1 / Product_{k>=1} (1-x^k)^(k-1).

Original entry on oeis.org

1, 0, 1, 2, 4, 6, 12, 18, 33, 52, 88, 138, 229, 354, 568, 880, 1378, 2110, 3260, 4942, 7527, 11320, 17031, 25394, 37842, 55956, 82630, 121300, 177677, 258980, 376626, 545352, 787784, 1133764, 1627657, 2329020, 3324559, 4731396, 6717774, 9512060
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Euler transform of sequence [0,1,2,3,...]. - Michael Somos, Jul 02 2004
Number of partitions of n objects of 2 colors, where each part must contain at least one of each color. - Franklin T. Adams-Watters, Jan 23 2006
Number of partitions of n without 1s, one kind of 2s, two kinds of 3s, etc. - Joerg Arndt, Jul 31 2011
From Vaclav Kotesovec, Oct 17 2015: (Start)
In general, if v>=0 and g.f. = Product_{k>=1} 1/(1-x^(k+v))^k, then a(n) ~ d1(v) * n^(v^2/6 - 25/36) * exp(-Pi^4 * v^2 / (432*Zeta(3)) + 3*Zeta(3)^(1/3) * n^(2/3)/2^(2/3) - v * Pi^2 * n^(1/3) / (3 * 2^(4/3) * Zeta(3)^(1/3))) / (sqrt(3*Pi) * 2^(v^2/6 + 11/36) * Zeta(3)^(v^2/6 - 7/36)), where Zeta(3) = A002117.
d1(v) = exp(Integral_{x=0..infinity} (1/(x*exp((v-1)*x) * (exp(x)-1)^2) - (6*v^2-1) / (12*x*exp(x)) + v/x^2 - 1/x^3) dx).
d1(v) = (exp(Zeta'(-1) - v*Zeta'(0))) / Product_{j=0..v-1} j!, where Zeta'(0) = -A075700, Zeta'(-1) = A084448 and Product_{j=0..v-1} j! = A000178(v-1).
d1(v) = exp(1/12) * (2*Pi)^(v/2) / (A * G(v+1)), where A = A074962 is the Glaisher-Kinkelin constant and G is the Barnes G-function.
(End)

Examples

			1 + x^2 + 2*x^3 + 4*x^4 + 6*x^5 + 12*x^6 + 18*x^7 + 33*x^8 + 52*x^9 + ...
From _Gus Wiseman_, Jan 22 2019: (Start)
The partitions described in Franklin T. Adams-Watters's comment are (n = 2 through 6):
  {{12}}  {{112}}  {{1112}}    {{11112}}    {{111112}}
          {{122}}  {{1122}}    {{11122}}    {{111122}}
                   {{1222}}    {{11222}}    {{111222}}
                   {{12}{12}}  {{12222}}    {{112222}}
                               {{12}{112}}  {{122222}}
                               {{12}{122}}  {{112}{112}}
                                            {{112}{122}}
                                            {{12}{1112}}
                                            {{12}{1122}}
                                            {{12}{1222}}
                                            {{122}{122}}
                                            {{12}{12}{12}}
(End)
		

Crossrefs

Cf. A000219 (v=0), A052847 (v=1), A263358 (v=2), A263359 (v=3), A263360 (v=4), A263361 (v=5), A263362 (v=6), A263363 (v=7), A263364 (v=8).

Programs

  • Maple
    spec := [S,{B=Sequence(Z,1 <= card),C=Prod(B,B),S= Set(C)},unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:=etr(n-> n-1): seq(a(n), n=0..50); # Vaclav Kotesovec, Mar 04 2015 after Alois P. Heinz
  • Mathematica
    Clear[a]; a[n_]:= a[n] = 1/n*Sum[(DivisorSigma[2,k]-DivisorSigma[1,k])*a[n-k],{k,1,n}]; a[0]=1; Table[a[n],{n,0,100}] (* Vaclav Kotesovec, Mar 04 2015 *)
    nmax = 40; CoefficientList[Series[Product[1/(1-x^(k+1))^k, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 16 2015 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / prod(k=1, n, (1 - x^k + x*O(x^n))^(k-1)), n))}

Formula

a(n) = 1/n*Sum_{k=1..n} (sigma[2](k)-sigma[1](k))*a(n-k).
G.f.: exp( Sum_{k>0} ( x^k / (1 - x^k) )^2 / k ).
G.f.: exp( sum(n>=0, (sigma[2](n)-sigma[1](n)) *x^n/n ) ). - Joerg Arndt, Jul 31 2011
a(n) ~ 2^(1/36) * Zeta(3)^(1/36) * exp(1/12 - Pi^4/(432*Zeta(3)) - Pi^2 * n^(1/3) / (3 * 2^(4/3) * Zeta(3)^(1/3)) + 3 * Zeta(3)^(1/3) * n^(2/3) / 2^(2/3)) / (A * 3^(1/2) * n^(19/36)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Mar 07 2015

Extensions

Edited by Vladeta Jovovic, Sep 10 2002

A093602 Decimal expansion of Pi/sqrt(3) = sqrt(2*zeta(2)).

Original entry on oeis.org

1, 8, 1, 3, 7, 9, 9, 3, 6, 4, 2, 3, 4, 2, 1, 7, 8, 5, 0, 5, 9, 4, 0, 7, 8, 2, 5, 7, 6, 4, 2, 1, 5, 5, 7, 3, 2, 2, 8, 4, 0, 6, 6, 2, 4, 8, 0, 9, 2, 7, 4, 0, 5, 7, 5, 5, 6, 9, 8, 8, 4, 9, 3, 5, 3, 8, 8, 1, 2, 3, 1, 8, 1, 1, 2, 6, 3, 5, 3, 8, 8, 3, 6, 8, 4, 1, 2, 4, 9, 8, 8, 2, 1, 2, 0, 6, 0, 1, 6, 8, 8, 5, 6, 2, 2
Offset: 1

Views

Author

Lekraj Beedassy, May 14 2004

Keywords

Comments

Volume of a cube with edge length 1 rotated about a space diagonal. See MathWorld Cube page. - Francis Wolinski, Mar 10 2019
Volume of a cone with unit radius and 60-degree opening angle, and so height sqrt(3). Equivalently, the volume of the cone formed by rotating a 30-60-90 degree triangle with unit short leg about the long leg. - Christoph B. Kassir, Sep 17 2022

Examples

			Pi/sqrt(3) = 1.8137993642342178505940782576421557322840662480927405755...
		

Crossrefs

Continued fraction expansion is A132116. - Jonathan Vos Post, Aug 10 2007
Equals twice A093766.
Cf. A343235 (using the reciprocal), A248682.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Pi(R)/Sqrt(3); // G. C. Greubel, Mar 10 2019
    
  • Mathematica
    RealDigits[Pi/Sqrt[3],10,120][[1]] (* Harvey P. Dale, Mar 04 2012 *)
  • PARI
    default(realprecision, 20080); x=Pi*sqrt(3)/3; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b093602.txt", n, " ", d)); \\ Harry J. Smith, Jun 19 2009
    
  • Sage
    numerical_approx(pi/sqrt(3), digits=100) # G. C. Greubel, Mar 10 2019

Formula

Equals Integral_{x=0..oo} x^(1/3)/(1+x^2) dx. - Jean-François Alcover, May 24 2013
Equals (3/2)*Integral_{x=0..oo} 1/(1+x+x^2) dx. - Bruno Berselli, Jul 23 2013
Equals Sum_{n >= 0} (1/(6*n+1) - 4/(6*n+2) - 5/(6*n+3) - 1/(6*n+4) + 4/(6*n+5) + 5/(6*n+6)). - Mats Granvik, Sep 23 2013
Equals (1/2) * Sum_{n >= 0} (14*n + 11)*(-1/3)^n/((4*n + 1)*(4*n + 3)*binomial(4*n,2*n)). For more series representations of this type see the Bala link. - Peter Bala, Feb 04 2015
From Peter Bala, Nov 02 2019: (Start)
Equals 3*Sum_{n >= 1} 1/( (3*n - 1)*(3*n - 2) ).
Equals 2 - 6*Sum_{n >= 1} 1/( (3*n - 1)*(3*n + 1)*(3*n + 2) ).
Equals 5!*Sum_{n >= 1} 1/( (3*n - 1)*(3*n - 2)*(3*n + 2)*(3*n + 4) ).
Equals 3*( 1 - 2*Sum_{n >= 1} 1/(9*n^2 - 1) ).
Equals 1 + Sum_{n >=1 } (-1)^(n+1)*(6*n + 1)/(n*(n + 1)*(3*n + 1)*(3*n - 2)).
Equals (27/2)*Sum_{n >= 1} (2*n + 1)/( (3*n - 1)*(3*n + 1)*(3*n + 2)*(3*n + 4) ).
Equals 3*Integral_{x = 0..1} 1/(1 + x + x^2) dx.
Equals 3*Integral_{x = 0..1} (1 + x)/(1 - x + x^2) dx.
Equals 3*Integral_{x = 0..oo} cosh(x)/cosh(3*x) dx. (End)
Equals Integral_{x = 0..oo} log(1+x^3)/x^3 dx. - Amiram Eldar, Aug 20 2020
Equals (27*S - 36)/24, where S = A248682. - Peter Luschny, Jul 22 2022
From Peter Bala, Nov 09 2023: (Start)
For any integer k, Pi/sqrt(3) = Sum_{n >= 0} (1/(n + k + 1/3) - 1/(n - k + 2/3)) = (1/3)*Sum_{n >= 0} (1/(n - k + 1/6) - 1/(n + k + 5/6)).
Equals (3/2)*Sum_{n >= 0} 1/((2*n + 1)*binomial(2*n, n)). (End)

A243262 Decimal expansion of the generalized Glaisher-Kinkelin constant A(2).

Original entry on oeis.org

1, 0, 3, 0, 9, 1, 6, 7, 5, 2, 1, 9, 7, 3, 9, 2, 1, 1, 4, 1, 9, 3, 3, 1, 3, 0, 9, 6, 4, 6, 6, 9, 4, 2, 2, 9, 0, 6, 3, 3, 1, 9, 4, 3, 0, 6, 4, 0, 3, 4, 8, 7, 0, 6, 0, 2, 2, 7, 2, 6, 1, 7, 4, 1, 1, 4, 5, 1, 6, 6, 0, 6, 6, 9, 7, 8, 2, 9, 0, 4, 0, 5, 2, 9, 2, 9, 3, 1, 3, 6, 2, 5, 5, 4, 8, 0, 8, 8, 5
Offset: 1

Views

Author

Jean-François Alcover, Jun 02 2014

Keywords

Comments

Also known as the second Bendersky constant.
This is likely the same as the constant B considered in section 3 of the Choi and Srivastava link. - R. J. Mathar, Oct 03 2016

Examples

			1.03091675219739211419331309646694229...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin constant, p. 137.

Crossrefs

Programs

  • Mathematica
    RealDigits[Exp[Zeta[3]/(4*Pi^2)], 10, 99] // First
    RealDigits[Exp[N[(BernoulliB[2]/4)*(Zeta[3]/Zeta[2]), 200]]]//First (* G. C. Greubel, Dec 31 2015 *)
  • PARI
    exp(zeta(3)/(4*Pi^2)) \\ Felix Fröhlich, Jun 27 2019

Formula

A(k) = exp(B(k+1)/(k+1)*H(k)-zeta'(-k)), where B(k) is the k-th Bernoulli number and H(k) the k-th harmonic number.
A(0) = sqrt(2*Pi) (A019727),
A(1) = A = Glaisher-Kinkelin constant (A074962),
A(2) = exp(-zeta'(-2)) = exp(zeta(3)/(4*Pi^2)).
Equals exp(-A240966). - Vaclav Kotesovec, Feb 22 2015

A023871 Expansion of Product_{k>=1} (1 - x^k)^(-k^2).

Original entry on oeis.org

1, 1, 5, 14, 40, 101, 266, 649, 1593, 3765, 8813, 20168, 45649, 101591, 223654, 486046, 1045541, 2225167, 4692421, 9804734, 20318249, 41766843, 85218989, 172628766, 347338117, 694330731, 1379437080, 2724353422, 5350185097, 10449901555, 20304465729, 39254599832
Offset: 0

Views

Author

Keywords

Comments

In general, if g.f. = Product_{k>=1} 1/(1 - x^k)^(c2*k^2 + c1*k + c0) and c2 > 0, then a(n) ~ exp(4*Pi * c2^(1/4) * n^(3/4) / (3*15^(1/4)) + c1*Zeta(3) / Pi^2 * sqrt(15*n/c2) + (Pi * 5^(1/4) * c0 / (2*3^(3/4) * c2^(1/4)) - 15^(5/4) * c1^2 * Zeta(3)^2 / (2*c2^(5/4) * Pi^5)) * n^(1/4) + c1/12 + 75 * c1^3 * Zeta(3)^3 / (c2^2 * Pi^8) - 5*c0 * c1 * Zeta(3) / (4*c2 * Pi^2) - c2*Zeta(3) / (4*Pi^2)) * Pi^(c1/12) * (c2/15)^(1/8 + c0/8 + c1/48) / (A^c1 * 2^((c0 + 3)/2) * n^(5/8 + c0/8 + c1/48)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Nov 08 2017
Let A(x) = Product_{k >= 1} (1 - x^k)^(-k^2). The sequence defined by u(n) := [x^n] A(x)^n is conjectured to satisfy the supercongruences u(n*p^r) == u(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 7 and all positive integers n and r. See A380290. - Peter Bala, Feb 02 2025
a(n) is the number of partitions of n where there are k^2 sorts of part k. - Joerg Arndt, Feb 02 2025

Crossrefs

Euler transform of squares (A000290).
Column k=2 of A144048. - Alois P. Heinz, Nov 02 2012

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-x^k)^k^2: k in [1..m]]) )); // G. C. Greubel, Oct 29 2018
    
  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1,
          add(add(d*d^2, d=divisors(j)) *a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..35); # Alois P. Heinz, Nov 02 2012
  • Mathematica
    max = 31; Series[ Product[ 1/(1-x^k)^k^2, {k, 1, max}], {x, 0, max}] // CoefficientList[#, x]& (* Jean-François Alcover, Mar 05 2013 *)
  • PARI
    m=40; x='x+O('x^m); Vec(prod(k=1, m, 1/(1-x^k)^k^2)) \\ G. C. Greubel, Oct 29 2018
    
  • SageMath
    # uses[EulerTransform from A166861]
    b = EulerTransform(lambda n: n^2)
    print([b(n) for n in range(32)]) # Peter Luschny, Nov 11 2020

Formula

a(n) = 1/n * Sum_{k=1..n} a(n-k)*sigma_3(k), n > 0, a(0)=1, where sigma_3(n) = A001158(n) = sum of cubes of divisors of n. - Vladeta Jovovic, Jan 20 2002
G.f.: Prod_{n>=1} exp(sigma_3(n)*x^n/n), where sigma_3(n) is the sum of cubes of divisors of n (=A001158(n)). - N-E. Fahssi, Mar 28 2010
G.f. (conjectured): 1/Product_{n>=1} E(x^n)^J2(n) where E(x) = Product_{n>=1} 1-x^n and J2(n) = A007434(n) [follows from the identity Sum_{d|n} J2(d) = n^2 - Peter Bala, Feb 02 2025]. - Joerg Arndt, Jan 25 2011
a(n) ~ exp(4 * Pi * n^(3/4) / (3^(5/4) * 5^(1/4)) - Zeta(3) / (4*Pi^2)) / (2^(3/2) * 15^(1/8) * n^(5/8)), where Zeta(3) = A002117 = 1.2020569031595942853997... . - Vaclav Kotesovec, Feb 27 2015

Extensions

Definition corrected by Franklin T. Adams-Watters and R. J. Mathar, Dec 04 2006

A088453 Decimal expansion of 1/zeta(3).

Original entry on oeis.org

8, 3, 1, 9, 0, 7, 3, 7, 2, 5, 8, 0, 7, 0, 7, 4, 6, 8, 6, 8, 3, 1, 2, 6, 2, 7, 8, 8, 2, 1, 5, 3, 0, 7, 3, 4, 4, 1, 7, 0, 5, 6, 3, 9, 7, 7, 3, 3, 7, 2, 8, 0, 7, 9, 2, 7, 9, 6, 7, 0, 3, 3, 2, 8, 6, 4, 4, 5, 7, 8, 7, 9, 1, 7, 2, 3, 4, 7, 9, 8, 8, 8, 2, 1, 3, 6, 5, 6, 6, 8, 9, 8, 9, 9, 6, 5, 3, 0, 4, 0, 9, 8
Offset: 0

Views

Author

Eric W. Weisstein, Sep 30 2003

Keywords

Comments

This is the probability that three randomly chosen integers are relatively prime (see A018805). - Gary McGuire, Dec 13 2004
This is also the probability that a random integer is cubefree. - Eugene Salamin, Dec 13 2004
On the other hand, the probability that three randomly-chosen integers are pairwise relatively prime is given by A065473. - Charles R Greathouse IV, Nov 14 2011
This is also the 'probability' that a random algebraic number's denominator is equal to its leading coefficient, see Arno, Robinson, & Wheeler. - Charles R Greathouse IV, Nov 12 2014
This is the probability that a random point on a cubic lattice is visible from the origin, i.e., there is no other lattice point that lies on the line segment between this point and the origin. - Amiram Eldar, Jul 08 2020

Examples

			0.831907372580707468683126278821530734417...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6, p. 41.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 29.

Crossrefs

Programs

Formula

Equals 1/A002117.
From Amiram Eldar, Aug 20 2020: (Start)
Equals Sum_{k>=1} mu(k)/k^3, where mu is the Möbius function (A008683).
Equals Product_{p prime} (1 - 1/p^3). (End)

Extensions

Entry revised by N. J. A. Sloane, Dec 16 2004

A255528 G.f.: Product_{k>=1} 1/(1+x^k)^k.

Original entry on oeis.org

1, -1, -1, -2, 1, 0, 4, 2, 8, -2, 4, -11, -1, -25, -5, -35, 13, -26, 49, -6, 110, 6, 159, -23, 182, -141, 129, -358, 62, -640, 39, -897, 237, -1013, 771, -914, 1793, -664, 3143, -565, 4635, -1157, 5727, -3119, 6121, -7041, 5642, -13088, 5097, -20758, 5879
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 24 2015

Keywords

Comments

In general, if m >= 1 and g.f. = Product_{k>=1} 1/(1 + x^k)^(m*k), then a(n, m) ~ (-1)^n * exp(-m/12 + 3 * 2^(-5/3) * m^(1/3) * Zeta(3)^(1/3) * n^(2/3)) * 2^(m/18 - 5/6) * A^m * m^(1/6 - m/36) * Zeta(3)^(1/6 - m/36) * n^(m/36 - 2/3) / sqrt(3*Pi), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Apr 13 2017

Crossrefs

Cf. A278710 (m=2), A279031 (m=3), A279411 (m=4), A279932 (m=5).

Programs

  • Maple
    with(numtheory): A000219:=proc(n) option remember; if n = 0 then 1 else add(sigma[2](k)*A000219(n-k), k = 1..n)/n fi: end: A073592:=proc(n) option remember; if n = 0 then 1 else -add(sigma[2](k)*A073592(n-k), k = 1..n)/n fi: end: a:=proc(n); add(A073592(n-2*m)*A000219(m), m = 0..floor(n/2)): end: seq(a(n), n = 0..50); # Vaclav Kotesovec, Mar 09 2015
  • Mathematica
    nmax=100; CoefficientList[Series[Product[1/(1+x^k)^k,{k,1,nmax}],{x,0,nmax}],x]
  • PARI
    {a(n) = if(n<0, 0, polcoeff(exp(sum(k=1, n, (-1)^k * x^k / (1-x^k)^2 / k, x*O(x^n))), n))}
    for(n=0, 100, print1(a(n), ", "))

Formula

a(n) ~ (-1)^n * A * Zeta(3)^(5/36) * exp(3*Zeta(3)^(1/3)*n^(2/3)/2^(5/3) - 1/12) / (2^(7/9) * sqrt(3*Pi) * n^(23/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Sep 29 2015
a(0) = 1, a(n) = -(1/n)*Sum_{k=1..n} A078306(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 06 2017

A152648 Decimal expansion of 2*zeta(3).

Original entry on oeis.org

2, 4, 0, 4, 1, 1, 3, 8, 0, 6, 3, 1, 9, 1, 8, 8, 5, 7, 0, 7, 9, 9, 4, 7, 6, 3, 2, 3, 0, 2, 2, 8, 9, 9, 9, 8, 1, 5, 2, 9, 9, 7, 2, 5, 8, 4, 6, 8, 0, 9, 9, 7, 7, 6, 3, 5, 8, 4, 5, 4, 3, 1, 1, 0, 6, 8, 3, 6, 7, 6, 4, 1, 1, 5, 7, 2, 6, 2, 6, 1, 8, 0, 3, 7, 2, 9, 1, 1, 7, 4, 7, 2, 1, 8, 6, 7, 0, 5, 1, 6, 2, 9, 2, 3, 9
Offset: 1

Views

Author

R. J. Mathar, Dec 10 2008

Keywords

Comments

A division by 2 is missing in Mezo's penultimate formula on page 4.
This constant is irrational but not known to be transcendental. - Charles R Greathouse IV, Sep 02 2024

Examples

			Equals 2.4041138063191885707994...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.3, p. 43.

Crossrefs

Cf. A060804 (continued fraction).

Programs

  • Mathematica
    RealDigits[2*Zeta[3],10,120][[1]] (* Harvey P. Dale, Dec 02 2011 *)
  • PARI
    default(realprecision, 20080); x=2*zeta(3); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b152648.txt", n, " ", d));  \\ Harry J. Smith, Jul 12 2009

Formula

Equals 2*A002117 = Sum_{j>=1} H(j)/j^2 where H(j) = A001008(j)/A002805(j).
Equals Integral_{x>=0} x^2/(exp(x)-1). - Jean-François Alcover, Nov 12 2013
Equals Sum_{m>=1} Sum_{n>=1} 1/(m*n*(m + n)). - Jean-François Alcover, Jun 17 2020
Equals Integral_{x=0..1} log(x)^2/(1-x) dx. - Amiram Eldar, Aug 03 2020
Equals the absolute value of psi''(1) = -2.404..., the 2nd derivative of the digamma function at 1. - R. J. Mathar, Aug 29 2023

A306633 Decimal expansion of zeta(2)/zeta(3).

Original entry on oeis.org

1, 3, 6, 8, 4, 3, 2, 7, 7, 7, 6, 2, 0, 2, 0, 5, 8, 7, 5, 7, 3, 6, 7, 6, 5, 8, 5, 3, 9, 8, 4, 7, 9, 1, 9, 4, 1, 1, 3, 0, 8, 1, 3, 9, 1, 4, 6, 5, 2, 4, 1, 3, 9, 2, 2, 0, 7, 7, 3, 5, 3, 1, 9, 2, 7, 6, 8, 3, 4, 4, 9, 7, 9, 7, 8, 7, 6, 0, 1, 9, 4, 2, 2, 8, 2, 2, 0
Offset: 1

Views

Author

Amiram Eldar, Mar 02 2019

Keywords

Comments

Equals the asymptotic mean of the unitary abundancy index, lim_{n->oo} (1/n) * Sum{k=1..n} usigma(k)/k, where usigma(k) is the sum of the unitary divisors of k (A034448).
From Amiram Eldar, May 12 2023: (Start)
Equals the asymptotic mean of the abundancy index of the squarefree numbers (A005117).
In general, the asymptotic mean of the abundancy index of the k-free numbers (numbers that are not divisible by a k-th power other than 1) is zeta(2)/zeta(k+1) (Jakimczuk and Lalín, 2022). (End)

Examples

			1.3684327776202058757367658539847919411308139146524...
		

Crossrefs

Cf. A000010, A001615, A002117, A005117, A013661 (asymptotic mean of sigma(k)/k), A034448, A065463, A253905, A322887.

Programs

  • Mathematica
    RealDigits[Zeta[2]/Zeta[3],10, 100][[1]]
  • PARI
    zeta(2)/zeta(3) \\ Michel Marcus, Mar 04 2019

Formula

Equals A013661/A002117 = 1/A253905.
Equals Sum_{k>=1} phi(k)/k^3, where phi is the Euler totient function (A000010). - Amiram Eldar, Jun 23 2020
Equals Product_{p prime} (1 + 1/(p*(p+1))). - Amiram Eldar, Aug 10 2020
Equals Sum_{k>=1} mu(k)^2/(k*psi(k)) (the sum of reciprocals of the squarefree numbers multiplied by their Dedekind psi function values, A001615). - Amiram Eldar, Aug 18 2020

A055462 Superduperfactorials: product of first n superfactorials.

Original entry on oeis.org

1, 1, 2, 24, 6912, 238878720, 5944066965504000, 745453331864786829312000000, 3769447945987085350501386572267520000000000, 6916686207999802072984424331678589933649915805696000000000000000
Offset: 0

Views

Author

Henry Bottomley, Jun 26 2000

Keywords

Comments

Next term has 92 digits and is too large to display.
Starting with offset 1, a(n) is a 'Matryoshka doll' sequence with alpha=1, the multiplicative counterpart to the additive A000332. The sequence for m with alpha<=m<=L is then computed as Prod_{n=alpha..m}(Prod_{k=alpha..n}(Prod_{i=alpha..k}(i))). - Peter Luschny, Jul 14 2009

Examples

			a(4) = 1!2!3!4!*1!2!3!*1!2!*1! = 288*12*2*1 = 6912.
		

Crossrefs

Programs

  • Magma
    [n eq 0 select 1 else (&*[j^Binomial(n-j+2,2): j in [1..n]]): n in [0..10]]; // G. C. Greubel, Jan 31 2024
    
  • Maple
    seq(mul(mul(mul(i, i=alpha..k), k=alpha..n), n=alpha..m), m=alpha..10); # Peter Luschny, Jul 14 2009
  • Mathematica
    Table[Product[BarnesG[j], {j, k + 1}], {k, 10}] (* Jan Mangaldan, Mar 21 2013 *)
    Table[Round[Exp[(n+2)*(n+3)*(2*n+5)/8] * Exp[PolyGamma[-3, n+3]] * BarnesG[n+3]^(n+3/2) / (Glaisher^(n+3) * (2*Pi)^((n+3)^2/4) * Gamma[n+3]^((n+2)^2/2))], {n, 0, 10}] (* Vaclav Kotesovec, Feb 20 2015 after Jan Mangaldan *)
    Nest[FoldList[Times,#]&,Range[0,15]!,2]  (* Harvey P. Dale, Jul 14 2023 *)
  • PARI
    a(n)=my(t=1);prod(k=2,n,t*=k!) \\ Charles R Greathouse IV, Jul 28 2011
    
  • SageMath
    [product(j^binomial(n-j+2,2) for j in range(1,n+1)) for n in range(11)] # G. C. Greubel, Jan 31 2024

Formula

a(n) = a(n-1)*A000178(n) = Product_{i=1..n} (i!)^(n-i+1) = Product_{i=1..n} i^((n-i+1)*(n-i+2)/2).
log a(n) = (1/6) n^3 log n - (11/36) n^3 + O(n^2 log n). - Charles R Greathouse IV, Jan 13 2012
a(n) = exp((6 + 13 n + 9 n^2 + 2 n^3 - 8*(n + 2)*log(A)-2*(n + 2)^2*log(2*Pi) + 4*(2 n + 1)*logG(n + 2) - 4*(n + 1)^2*logGamma(n + 2) + 8*psi(-3, n + 2))/8) where A is the Glaisher-Kinkelin constant, logG(z) is the logarithm of the Barnes G function (A000178), and psi(-3, z) is a polygamma function of negative order (i.e., the second iterated integral of logGamma(z)). - Jan Mangaldan, Mar 21 2013
a(n) ~ exp(Zeta(3)/(8*Pi^2) - (2*n+3)*(11*n^2 + 24*n - 3)/72) * n^((2*n+3)*(2*n^2 + 6*n + 3)/24) * (2*Pi)^((n+1)*(n+2)/4) / A^(n+3/2), where A = A074962 = 1.28242712910062263687... is the Glaisher-Kinkelin constant and Zeta(3) = A002117 = 1.2020569031595942853997... . - Vaclav Kotesovec, Feb 20 2015

Extensions

a(9) from N. J. A. Sloane, Dec 15 2008

A033431 a(n) = 2*n^3.

Original entry on oeis.org

0, 2, 16, 54, 128, 250, 432, 686, 1024, 1458, 2000, 2662, 3456, 4394, 5488, 6750, 8192, 9826, 11664, 13718, 16000, 18522, 21296, 24334, 27648, 31250, 35152, 39366, 43904, 48778, 54000, 59582, 65536, 71874, 78608, 85750, 93312, 101306, 109744, 118638, 128000, 137842
Offset: 0

Views

Author

Keywords

Comments

Also the largest determinant of a 3 X 3 matrix with entries from {0..n}. - Jud McCranie, Aug 12 2001
4*a(n) is a perfect cube.
The positive terms comprise the principal diagonal of the convolution array A213821. - Clark Kimberling, Jul 04 2012
Volume of a pyramid (square base) with side n and height 6*n. - Wesley Ivan Hurt, Aug 25 2014

Crossrefs

Programs

Formula

G.f.: 2*x*(1 + 4*x + x^2) / (1 - x)^4. - R. J. Mathar, Feb 04 2011
a(n) = 2*A000578(n). - Omar E. Pol, May 14 2008
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Wesley Ivan Hurt, Aug 25 2014
a(n) = A002378(n)^2 - A002378(n^2). - Bruno Berselli, Oct 20 2016
E.g.f.: 2*x*(1 + 3*x + x^2)*exp(x). - G. C. Greubel, Jul 15 2017
From Amiram Eldar, Jan 10 2023: (Start)
Sum_{n>=1} 1/a(n) = zeta(3)/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*zeta(3)/8. (End)
Previous Showing 31-40 of 529 results. Next