cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 510 results. Next

A014442 Largest prime factor of n^2 + 1.

Original entry on oeis.org

2, 5, 5, 17, 13, 37, 5, 13, 41, 101, 61, 29, 17, 197, 113, 257, 29, 13, 181, 401, 17, 97, 53, 577, 313, 677, 73, 157, 421, 53, 37, 41, 109, 89, 613, 1297, 137, 17, 761, 1601, 29, 353, 37, 149, 1013, 73, 17, 461, 1201, 61, 1301, 541, 281, 2917, 89, 3137, 13, 673
Offset: 1

Views

Author

Glen Burch (gburch(AT)erols.com)

Keywords

Comments

All a(n) except for a(1) = 2 are the Pythagorean primes, i.e., primes of form 4k+1. Conjecture: every Pythagorean prime appears in a(n) at least once.
Problem 11831 [Ozols 2015] is to prove that lim inf a(n)/n is zero. - Michael Somos, May 11 2015
From Michael Kaltman, Jun 10 2015: (Start)
For all numbers k in A256011, a(k) < k.
Conjecture: every Pythagorean prime p appears exactly two times among the first p integers of the sequence. Further: if a(i) = a(j) = p and both i and j are less than p (and i is not equal to j), then i + j = p and ij == 1 (mod p). [If a(k) = p as well, then k > p; in fact, k is in A256011.] Two examples: a(2) = a(3) = 5, with 2+3 = 5 and 2*3 = 6 == 1 (mod 5); a(4) = a(13) = 17, with 4+13 = 17 and 4*13 = 52 == 1 (mod 17).
(End)
The conjecture is true. If p is a Pythagorean prime, -1 is a quadratic residue mod p. Then -1 has exactly two square roots mod p, i.e., there are exactly two integers x,y with 1 <= x,y <= p-1 such that x^2 == y^2 == -1 (mod p), i.e., p divides x^2+1 and y^2+1, and moreover y == -x (mod p) so x + y = p, and x*y == -x^2 == 1 (mod p). Any other prime factor q of x^2 + 1 must divide (x^2+1)/p, and since x^2+1 < p^2 we have q < p, so a(x) = p and similarly a(y) = p. - Robert Israel, Jun 11 2015
Conjecture: if n is even and a(n) > n, then n+a(n) is in A256011. Examples: 2+a(2) = 2+5 = 7, 4+a(4) = 4+17 = 21, 6+a(6) = 6+37 = 43, and so on. Note that 18+a(18) is NOT in A256011, but 18 itself is. - Michael Kaltman, Jun 13 2015
This is also true. Suppose A = a(n) > n. n^2+1 is odd so A is an odd prime; n^2 + 1 = A *B with B < A also odd. Then (A+n)^2 + 1 = A*(A+2*n+B) and A+2*n+B is even. The largest prime factor of A+2*n+B is thus at most (A+2*n+B)/2 < A + n, while A < A + n as well. - Robert Israel, Jun 17 2015
Størmer shows that a(n) tends to infinity with n. Chowla shows that a(n) >> log log n. Schinzel shows that lim inf a(n)/log log n >= 4 and, using lower bounds for linear forms of logarithms, this inequality can be generalized for general quadratic polynomials, with 2 replaced by 4/7 for irreducible ones and 2/7 for reducible ones. - Tomohiro Yamada, Apr 15 2017
According to Hooley, an unpublished manuscript of Chebyshev contains the result that a(n)/n is unbounded which was first published and fully proved by Markov. - Charles R Greathouse IV, Oct 27 2018
Note that a(n) is the largest prime p such that n^(p+1) == -1 (mod p). - Thomas Ordowski, Nov 08 2019

References

  • A. A. Markov, Über die Primteiler der Zahlen von der Form 1+4x^2, Bulletin de l'Académie impériale des sciences de St.-Pétersbourg 3 (1895), pp. 55-59.
  • H. Rademacher, Lectures on Elementary Number Theory, pp. 33-38.

Crossrefs

Includes primes from A002496.
Cf. A002144 (Pythagorean primes: primes of form 4n+1).
Cf. A256011.
Cf. A076605 (largest prime factor of n^2 - 1).

Programs

  • GAP
    List([1..60],n->Reversed(Factors(n^2+1))[1]); # Muniru A Asiru, Oct 27 2018
  • Magma
    [Maximum(PrimeDivisors(n^2+1)): n in [1..60]]; // Vincenzo Librandi, Jun 17 2015
    
  • Maple
    seq(max(numtheory:-factorset(n^2+1)),n=1..100) ; # Robert Israel, Jun 11 2015
  • Mathematica
    Table[FactorInteger[n^2+1,FactorComplete->True][[ -1,1]],{n,5!}] ..and/or.. Table[Last[Table[ #[[1]]]&/@FactorInteger[n^2+1]],{n,5!}] ..and/or.. PrimeFactors[n_]:=Flatten[Table[ #[[1]],{1}]&/@FactorInteger[n]]; Table[PrimeFactors[n^2+1][[ -1]],{n,5!}] (* Vladimir Joseph Stephan Orlovsky, Aug 12 2009 *)
    a[ n_] := If[ n < 1, 0, FactorInteger[n n + 1][[All, 1]] // Last]; (* Michael Somos, May 11 2015 *)
    Table[FactorInteger[n^2 + 1][[-1, 1]], {n, 80}] (* Vincenzo Librandi, Jun 17 2015 *)
  • PARI
    largeasqp1(m) = { for(a=1,m, y=a^2 + 1; f = factor(y); v = component(f,1); v1 = v[length(v)]; print1(v1",") ) } \\ Cino Hilliard, Jun 12 2004
    
  • PARI
    {a(n) = if( n<1, 0, Vecrev(factor(n*n + 1)[,1])[1])}; /* Michael Somos, May 11 2015 */
    

Formula

a(n) = A006530(1+n^2). - R. J. Mathar, Jan 28 2017

A027862 Primes of the form j^2 + (j+1)^2.

Original entry on oeis.org

5, 13, 41, 61, 113, 181, 313, 421, 613, 761, 1013, 1201, 1301, 1741, 1861, 2113, 2381, 2521, 3121, 3613, 4513, 5101, 7321, 8581, 9661, 9941, 10513, 12641, 13613, 14281, 14621, 15313, 16381, 19013, 19801, 20201, 21013, 21841, 23981, 24421, 26681
Offset: 1

Views

Author

Keywords

Comments

Also, primes of the form 4*k+1 which are the hypotenuse of one and only one right triangle with integral legs. - Cino Hilliard, Mar 16 2003
Centered square primes (i.e., prime terms of centered squares A001844). - Lekraj Beedassy, Jan 21 2005
Primes of the form 2*k*(k-1)+1. - Juri-Stepan Gerasimov, Apr 27 2010
Equivalently, primes of the form (m^2+1)/2 (take m=2*j+1). These primes a(n) have nontrivial solutions of x^2 == 1 (Modd a(n)) given by x=x(n)=A002731(n). For Modd n see a comment on A203571. See also A206549 for such solutions for primes of the form 4*k+1, given in A002144.
E.g., a(3)=41, A002731(3)=9, 9^2=81, floor(81/41)=1 (odd),
-81 = -2*41 + 1 == 1 (mod 2*41), hence 9^2 == 1 (Modd 41). - Wolfdieter Lang, Feb 24 2012
Also primes of the form 4*k+1 that are the smallest side length of one and only one integer Soddyian triangle (see A230812). - Frank M Jackson, Mar 13 2014
Also, primes of the form (m^2+1)/2. - Zak Seidov, May 01 2014
Note that ((2n+1)^2 + 1)/2 = n^2 + (n+1)^2. - Thomas Ordowski, May 25 2015
Primes p such that 2p-1 is a square. - Thomas Ordowski, Aug 27 2016
Primes in the main diagonal of A000027 when represented as an array read by antidiagonals. - Clark Kimberling, Mar 12 2023
The diophantine equation x^2 + ... + (x + r)^2 = p may be rewritten to A*x^2 + B*x + C = p, where A = (r + 1), B = r*(r + 1), C = r*(r + 1)*(2*r + 1)/6. If gcd(A, B, C) > 1 no solution for a prime p exists. The gcd(A, B, C) = 1 holds only for r = 1, 2, 5 (gcd is the greatest common divisor). For r = 1 we have x^2 + (x + 1)^2 = p, thus for x from A027861 we calculate primes p from A027862. For r = 2 we have x^2 + (x + 1)^2 + (x + 2)^2 = p, thus for x from A027863 we calculate primes p from A027864. For r = 5 we have x^2 + ... + (x + 5)^2 = p, thus for x from A027866 we calculate primes p from A027867. - Ctibor O. Zizka, Oct 04 2023

Examples

			13 is in the sequence because it is prime and 13 = 2^2 + 3^2. - _Michael B. Porter_, Aug 27 2016
		

References

  • D. M. Burton, Elementary Number Theory, Allyn and Bacon Inc. Boston, MA, 1976, p. 271.
  • Morris Kline, Mathematical Thought from Ancient to Modern Times, 1972. pp. 275.

Crossrefs

Primes p such that A079887(p) = 1.
Cf. A002731 (m values), A027861 (j values), A091277 (prime indices).
Subsequence of A002144 (p=4k+1).
Cf. A001844 (centered squares), A027863, A027864, A027866, A027867, A203571, A206549, A230812.

Programs

  • Magma
    [ a: n in [0..150] | IsPrime(a) where a is n^2+(n+1)^2 ]; // Vincenzo Librandi, Dec 18 2010
  • Mathematica
    Select[Table[n^2+(n+1)^2,{n,200}],PrimeQ] (* Harvey P. Dale, Aug 22 2012 *)
    Select[Total/@Partition[Range[200]^2,2,1],PrimeQ] (* Harvey P. Dale, Apr 20 2016 *)
  • PARI
    je=[]; for(n=1,500, if(isprime(n^2+(n+1)^2),je=concat(je,n^2+(n+1)^2))); je
    
  • PARI
    fermat(n) = { for(x=1,n, y=2*x*(x+1)+1; if(isprime(y),print1(y" ")) ) }
    

Formula

a(n) = ((A002731(n)^2 - 1)/2) + 1. - Torlach Rush, Mar 14 2014
a(n) = (A002731(n)^2 + 1)/2. - Zak Seidov, May 01 2014

Extensions

More terms from Cino Hilliard, Mar 16 2003

A004613 Numbers that are divisible only by primes congruent to 1 mod 4.

Original entry on oeis.org

1, 5, 13, 17, 25, 29, 37, 41, 53, 61, 65, 73, 85, 89, 97, 101, 109, 113, 125, 137, 145, 149, 157, 169, 173, 181, 185, 193, 197, 205, 221, 229, 233, 241, 257, 265, 269, 277, 281, 289, 293, 305, 313, 317, 325, 337, 349, 353, 365, 373, 377, 389, 397, 401, 409, 421
Offset: 1

Views

Author

Keywords

Comments

Also gives solutions z to x^2+y^2=z^4 with gcd(x,y,z)=1 and x,y,z positive. - John Sillcox (johnsillcox(AT)hotmail.com), Feb 20 2004
A065338(a(n)) = 1. - Reinhard Zumkeller, Jul 10 2010
Product_{k=1..A001221(a(n))} A079260(A027748(a(n),k)) = 1. - Reinhard Zumkeller, Jan 07 2013
A062327(a(n)) = A000005(a(n))^2. (These are the only numbers that satisfy this equation.) - Benedikt Otten, May 22 2013
Numbers that are positive integer divisors of 1 + 4*x^2 where x is a positive integer. - Michael Somos, Jul 26 2013
Numbers k such that there is a "knight's move" of Euclidean distance sqrt(k) which allows the whole of the 2D lattice to be reached. For example, a knight which travels 4 units in any direction and then 1 unit at right angles to the first direction moves a distance sqrt(17) for each move. This knight can reach every square of an infinite chessboard.
Also 1/7 of the area of the n-th largest octagon with angles 3*Pi/4, along the perimeter of which there are only 8 nodes of the square lattice - at its vertices. - Alexander M. Domashenko, Feb 21 2024
Sequence closed under multiplication. Odd values of A031396 and their powers. These are the only numbers m that satisfy the Pell equation (k*x)^2 - D*(m*y)^2 = -1. - Klaus Purath, May 12 2025

References

  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.

Crossrefs

Subsequence of A000404; A002144 is a subsequence. Essentially same as A008846.
Cf. A004614.

Programs

  • Haskell
    a004613 n = a004613_list !! (n-1)
    a004613_list = filter (all (== 1) . map a079260 . a027748_row) [1..]
    -- Reinhard Zumkeller, Jan 07 2013
  • Magma
    [n: n in [1..500] | forall{d: d in PrimeDivisors(n) | d mod 4 eq 1}]; // Vincenzo Librandi, Aug 21 2012
    
  • Maple
    isA004613 := proc(n)
        local p;
        for p in numtheory[factorset](n) do
            if modp(p,4) <> 1 then
                return false;
            end if;
        end do:
        true;
    end proc:
    for n from 1 to 200 do
        if isA004613(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Nov 17 2014
    # second Maple program:
    q:= n-> andmap(i-> irem(i[1], 4)=1, ifactors(n)[2]):
    select(q, [$1..500])[];  # Alois P. Heinz, Jan 13 2024
  • Mathematica
    ok[1] = True; ok[n_] := And @@ (Mod[#, 4] == 1 &) /@ FactorInteger[n][[All, 1]]; Select[Range[421], ok] (* Jean-François Alcover, May 05 2011 *)
    Select[Range[500],Union[Mod[#,4]&/@(FactorInteger[#][[All,1]])]=={1}&] (* Harvey P. Dale, Mar 08 2017 *)
  • PARI
    for(n=1,1000,if(sumdiv(n,d,isprime(d)*if((d-1)%4,1,0))==0,print1(n,",")))
    
  • PARI
    is(n)=n%4==1 && factorback(factor(n)[,1]%4)==1 \\ Charles R Greathouse IV, Sep 19 2016
    

Formula

Numbers of the form x^2 + y^2 where x is even, y is odd and gcd(x, y) = 1.

A051222 Numbers k such that Bernoulli number B_{k} has denominator 6.

Original entry on oeis.org

2, 14, 26, 34, 38, 62, 74, 86, 94, 98, 118, 122, 134, 142, 146, 158, 182, 194, 202, 206, 214, 218, 254, 266, 274, 278, 298, 302, 314, 326, 334, 338, 362, 386, 394, 398, 422, 434, 446, 454, 458, 482, 494, 514, 518, 526, 538, 542, 554, 566, 578
Offset: 1

Views

Author

Keywords

Comments

Alternative definition: let D(m) = set of divisors of m; sequence gives n such that the set 1 + D(n) contains only two primes, 2 and 3. E.g., n=98: D(98)={1,2,7,15,49,98}, 1+D = {2,3,8,16,50,99} of which only 2 terms are prime numbers: {2,3}. Observation by Labos Elemer, Jun 24 2002. This is a consequence of the von Staudt-Clausen theorem. - N. J. A. Sloane, Jan 04 2004
The fraction of Bernoulli numbers with denominator 6 is roughly 1/6, see Erdős-Wagstaff. But calculations by H. Cohen and G. Tenenbaum suggest that the fraction is closer to 1/7 (posting to Number Theory List around Dec 20 2005).
Simon Plouffe reports (Feb 13 2007) that at B_{9083002} the proportion is 0.151848915149418661363281... and still decreasing very slowly.
In his PhD thesis at the University of Illinois (see reference), Richard Sunseri proved that a higher proportion of Bernoulli denominators equal 6 than any other value.
Rado showed that for a given Bernoulli number B_n there exist infinitely many Bernoulli numbers B_m having the same denominator. As a special case, if n = 2p where p is an odd prime p == 1 (mod 3), then the denominator of the Bernoulli number B_n equals 6. - Bernd C. Kellner, Mar 21 2018
Conjecture: When the expression (p+q^b)/2 is required to be prime, p is prime, and q is a prime >=5, then all p values are prime congruent to 1 (mod 12) (A068228), if and only if the exponent b is a member of this set. - Richard R. Forberg, Apr 07 2025
There are additional exponential expressions conjectured for generating each of several known prime subsequences (e.g., Pythagorean primes, A002144) where the sequence is invariant to the exponent, if and only if the exponent is a member of this set. See Forberg link. - Richard R. Forberg, Apr 25 2025

References

  • B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 75.
  • C. J. Moreno and S. S. Wagstaff, Sums of Squares of Integers, CRC Press, 2005, Sect. 3.9.
  • H. Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1, p. 10.

Crossrefs

Except for 2, all terms are even nontotient numbers. Proper subset of A005277: e.g., 50 and 90 are not here. - Labos Elemer
A112772 is a subsequence. - Bernd C. Kellner, Mar 21 2018

Programs

  • Mathematica
    di[x_] := Divisors[x]
    dp[x_] := Part[di[x], Flatten[Position[PrimeQ[1+di[x]], True]]]+1
    Do[s=Length[dp[n]]; If[Equal[s, 2], Print[n]], {n, 1, 10000}] (* Labos Elemer *)
    Do[s=Denominator[BernoulliB[n]]; If[Equal[s, 6], Print[n]], {n, 1, 1000}] (* Labos Elemer *)
    Do[s=1+Divisors[n];s1=Flatten[Position[PrimeQ[s], True]]; (*analogous [suitably modified] pairs of programs yield A051225-A051230*) s2=Part[s, s1];If[Equal[s2, {2, 3}], Print[n]], {n, 1, 100}] (* Labos Elemer *)
    Select[Range[600],Denominator[BernoulliB[#]]==6&] (* Harvey P. Dale, Dec 08 2011 *)
  • PARI
    for(n=1,10^3,if(denominator(bernfrac(n))==6,print1(n,", "))); \\ Joerg Arndt, Oct 28 2014
    
  • PARI
    is(n)=if(n%2,return(0)); fordiv(n/2,d,if(isprime(2*d+1)&&d>1, return(0))); 1 \\ Charles R Greathouse IV, Oct 28 2014

Extensions

Additional comments and references from Sam Wagstaff, Dec 20 2005

A084645 Hypotenuses for which there exists a unique integer-sided right triangle.

Original entry on oeis.org

5, 10, 13, 15, 17, 20, 26, 29, 30, 34, 35, 37, 39, 40, 41, 45, 51, 52, 53, 55, 58, 60, 61, 68, 70, 73, 74, 78, 80, 82, 87, 89, 90, 91, 95, 97, 101, 102, 104, 105, 106, 109, 110, 111, 113, 115, 116, 117, 119, 120, 122, 123, 135, 136, 137, 140, 143, 146, 148, 149
Offset: 1

Views

Author

Eric W. Weisstein, Jun 01 2003

Keywords

Comments

Numbers whose square is uniquely decomposable into the sum of two nonzero squares: these are those numbers with exactly one prime divisor of the form 4k+1 with multiplicity one. - Jean-Christophe Hervé, Nov 11 2013

Crossrefs

Cf. A004144 (0), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).

Programs

  • Mathematica
    r[a_] := {b, c} /. {ToRules[ Reduce[0 < b < c && a^2 == b^2 + c^2, {b, c}, Integers]]}; Select[ Range[150], Length[r[#]] == 1 &] (* Jean-François Alcover, Oct 22 2012 *)
  • PARI
    is_a084645(n) = #qfbsolve(Qfb(1,0,1),n^2,3)==3 \\ Hugo Pfoertner, Sep 28 2024

Formula

Terms are obtained by the products A004144(k)*A002144(p) for k, p > 0, ordered by increasing values. - Jean-Christophe Hervé, Nov 12 2013
A046080(a(n)) = 1, A046109(a(n)) = 12. - Jean-Christophe Hervé, Dec 01 2013

A002330 Value of y in the solution to p = x^2 + y^2, x <= y, with prime p = A002313(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 5, 7, 6, 8, 8, 9, 10, 10, 8, 11, 10, 11, 13, 10, 12, 14, 15, 13, 15, 16, 13, 14, 16, 17, 13, 14, 16, 18, 17, 18, 17, 19, 20, 20, 15, 17, 20, 21, 19, 22, 20, 21, 19, 20, 24, 23, 24, 18, 19, 25, 22, 25, 23, 26, 26, 22, 27, 26, 20, 25, 22, 26, 28, 25
Offset: 1

Views

Author

Keywords

Examples

			The following table shows the relationship between several closely related sequences:
Here p = A002144 = primes == 1 (mod 4), p = a^2+b^2 with a < b;
a = A002331, b = A002330, t_1 = ab/2 = A070151;
p^2 = c^2+d^2 with c < d; c = A002366, d = A002365,
t_2 = 2ab = A145046, t_3 = b^2-a^2 = A070079,
with {c,d} = {t_2, t_3}, t_4 = cd/2 = ab(b^2-a^2).
---------------------------------
.p..a..b..t_1..c...d.t_2.t_3..t_4
---------------------------------
.5..1..2...1...3...4...4...3....6
13..2..3...3...5..12..12...5...30
17..1..4...2...8..15...8..15...60
29..2..5...5..20..21..20..21..210
37..1..6...3..12..35..12..35..210
41..4..5..10...9..40..40...9..180
53..2..7...7..28..45..28..45..630
.................................
		

References

  • A. J. C. Cunningham, Quadratic Partitions. Hodgson, London, 1904, p. 1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    a := []; for x from 0 to 50 do for y from x to 50 do p := x^2+y^2; if isprime(p) then a := [op(a),[p,x,y]]; fi; od: od: writeto(trans); for i from 1 to 158 do lprint(a[i]); od: # then sort the triples in "trans"
  • Mathematica
    Flatten[#, 1]&[Table[PowersRepresentations[Prime[k], 2, 2], {k, 1, 142}]][[All, 2]] (* Jean-François Alcover, Jul 05 2011 *)
  • PARI
    f(p)=my(s=lift(sqrt(Mod(-1,p))),x=p,t);if(s>p/2,s=p-s); while(s^2>p, t=s;s=x%s;x=t);s
    forprime(p=2,1e3,if(p%4-3,print1(f(p)", "))) \\ Charles R Greathouse IV, Apr 24 2012
    
  • PARI
    do(p)=qfbsolve(Qfb(1,0,1),p)[1]
    forprime(p=2,1e3,if(p%4-3,print1(do(p)", "))) \\ Charles R Greathouse IV, Sep 26 2013
    
  • PARI
    print1(1); forprimestep(p=5,1e3,4, print1(", "qfbcornacchia(1,p)[1])) \\ Charles R Greathouse IV, Sep 15 2021

Formula

a(n) = A096029(n) + A096030(n) + 1, for n>1. - Lekraj Beedassy, Jul 21 2004
a(n+1) = Max(A002972(n), 2*A002973(n)). - Reinhard Zumkeller, Feb 16 2010

A005098 Numbers k such that 4k + 1 is prime.

Original entry on oeis.org

1, 3, 4, 7, 9, 10, 13, 15, 18, 22, 24, 25, 27, 28, 34, 37, 39, 43, 45, 48, 49, 57, 58, 60, 64, 67, 69, 70, 73, 78, 79, 84, 87, 88, 93, 97, 99, 100, 102, 105, 108, 112, 114, 115, 127, 130, 135, 139, 142, 144, 148, 150, 153, 154, 160, 163, 165, 168, 169, 175, 177, 183
Offset: 1

Views

Author

Keywords

Comments

Sum of i-th and j-th triangular numbers, where i=A096029(n), j=A096030(n); i.e., a(n) = A000217(A096029(n)) + A000217(A096030(n)). - Lekraj Beedassy, Jun 16 2004
For every k in the sequence, there is exactly 1 square number that can be subtracted to leave a pronic (A002378). E.g., 27 - 25 = 2, 99 - 9 = 90. - Jon Perry, Nov 06 2010
See A208295 for details concerning the preceding Jon Perry comment. - Wolfdieter Lang, Mar 29 2012
a(k) appears in the o.g.f. for floor(A002144(k)*j^2/4), j >= 0, for k >= 1: x*(a(k)*(1 + x^2) + b(k)*x)/((1 - x)^3*(1 + x)), together with b(k) = (A002144(k) + 1)/2 = A119681(k). - Wolfdieter Lang, Aug 07 2013

Crossrefs

See A002144 for the actual primes.

Programs

  • Haskell
    a005098 = (`div` 4) . (subtract 1) . a002144
    -- Reinhard Zumkeller, Mar 17 2013
  • Magma
    [k: k in [0..10000] | IsPrime(4*k+1)] // Vincenzo Librandi, Nov 18 2010
    
  • Maple
    a := []; for k from 1 to 500 do if isprime(4*k+1) then a := [op(a), k]; fi; od: A005098 := k->a[k];
  • Mathematica
    Select[Range[200], PrimeQ[4# + 1] &] (* Harvey P. Dale, Apr 20 2011 *)
  • PARI
    is(k)=isprime(4*k+1) \\ Charles R Greathouse IV, Nov 20 2012
    

Formula

a(n) = (A002144(n)-1)/4.

Extensions

More terms from Ray Chandler, Jun 26 2004
Edited by Charles R Greathouse IV, Mar 17 2010

A053176 Primes p such that 2p+1 is composite.

Original entry on oeis.org

7, 13, 17, 19, 31, 37, 43, 47, 59, 61, 67, 71, 73, 79, 97, 101, 103, 107, 109, 127, 137, 139, 149, 151, 157, 163, 167, 181, 193, 197, 199, 211, 223, 227, 229, 241, 257, 263, 269, 271, 277, 283, 307, 311, 313, 317, 331, 337, 347, 349, 353, 367, 373, 379, 383
Offset: 1

Views

Author

Enoch Haga, Feb 29 2000

Keywords

Comments

Primes not in A005384 = non-Sophie Germain primes.
Also, numbers n such that odd part of A005277(n) is prime. Proof by John Renze, Sep 30 2004
Sequence gives primes p such that B(2p) has denominator 6, where B(2n) are the Bernoulli numbers. - Benoit Cloitre, Feb 06 2002
Sequence gives all n such that the equation phi(x)=2n has no solution. - Benoit Cloitre, Apr 07 2002
A010051(a(n))*(1-A156660(a(n))) = 1; subsequence of A138887. - Reinhard Zumkeller, Feb 18 2009
Mersenne prime exponents > 3 must be in the union of this sequence and (A002144). - Roderick MacPhee, Jan 12 2017

Examples

			17 is a term because 2*17 + 1 = 35 is composite.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(12200) | not IsPrime(2*p+1)]; // Vincenzo Librandi, Jun 18 2015
  • Mathematica
    Select[Prime[Range[1000]], ! PrimeQ[2 # + 1] &] (* Vincenzo Librandi, Jun 18 2015 *)
  • PARI
    list(lim)=select(p->!isprime(2*p+1),primes(primepi(lim))) \\ Charles R Greathouse IV, Jul 25 2011
    

Formula

a(n) ~ n log n. - Charles R Greathouse IV, Feb 20 2012

A055025 Norms of Gaussian primes.

Original entry on oeis.org

2, 5, 9, 13, 17, 29, 37, 41, 49, 53, 61, 73, 89, 97, 101, 109, 113, 121, 137, 149, 157, 173, 181, 193, 197, 229, 233, 241, 257, 269, 277, 281, 293, 313, 317, 337, 349, 353, 361, 373, 389, 397, 401, 409, 421, 433, 449, 457, 461, 509, 521, 529, 541, 557, 569
Offset: 1

Views

Author

N. J. A. Sloane, Jun 09 2000

Keywords

Comments

This is the range of the norm a^2 + b^2 of Gaussian primes a + b i. A239621 lists for each norm value a(n) one of the Gaussian primes as a, b with a >= b >= 0. In A239397, any of these (a, b) is followed by (b, a), except for a = b = 1. - Wolfdieter Lang, Mar 24 2014, edited by M. F. Hasler, Mar 09 2018
From Jean-Christophe Hervé, May 01 2013: (Start)
The present sequence is related to the square lattice, and to its division in square sublattices. Let's say that an integer n divides a lattice if there exists a sublattice of index n. Example: 2, 4, 5 divide the square lattice. Then A001481 (norms of Gaussian integers) is the sequence of divisors of the square lattice. Say that n is a "prime divisor" if the index-n sublattice is not contained in any other sublattice except the original lattice itself. The present sequence gives the "prime divisors" of the square lattice.
Similarly, A055664 (Norms of Eisenstein-Jacobi primes) is the sequence of "prime divisors" of the hexagonal lattice. (End)
The sequence is formed of 2, the prime numbers of form 4k+1, and the square of other primes (of form 4k+3). These are the primitive elements of A001481. With 0 and 1, they are the numbers that are uniquely decomposable in the sum of two squares. - Jean-Christophe Hervé, Nov 17 2013

Examples

			There are 8 Gaussian primes of norm 5, +-1+-2i and +-2+-i, but only two inequivalent ones (2+-i). In A239621 2+i is listed as 2, 1.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, A16.
  • L. W. Reid, The Elements of the Theory of Algebraic Numbers, MacMillan, NY, 1910, see Chap. V.

Crossrefs

Cf. A239397, A239621 (Gaussian primes).

Programs

  • Mathematica
    Union[(#*Conjugate[#] & )[ Select[Flatten[Table[a + b*I, {a, 0, 23}, {b, 0, 23}]], PrimeQ[#, GaussianIntegers -> True] & ]]][[1 ;; 55]] (* Jean-François Alcover, Apr 08 2011 *)
    (* Or, from formula: *) maxNorm = 569; s1 = Select[Range[1, maxNorm, 4], PrimeQ]; s3 = Select[Range[3, Sqrt[maxNorm], 4], PrimeQ]^2; Union[{2}, s1, s3]  (* Jean-François Alcover, Dec 07 2012 *)
  • PARI
    list(lim)=my(v=List()); if(lim>=2, listput(v,2)); forprime(p=3,sqrtint(lim\1), if(p%4==3, listput(v,p^2))); forprime(p=5,lim, if(p%4==1, listput(v,p))); Set(v) \\ Charles R Greathouse IV, Feb 06 2017
    
  • PARI
    isA055025(n)=(isprime(n) && n%4<3) || (issquare(n, &n) && isprime(n) && n%4==3) \\ Jianing Song, Aug 15 2023, based on Charles R Greathouse IV's program for A055664

Formula

Consists of 2; rational primes = 1 (mod 4) [A002144]; and squares of rational primes = 3 (mod 4) [A002145^2].
a(n) ~ 2n log n. - Charles R Greathouse IV, Feb 06 2017

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Oct 03 2000

A003658 Fundamental discriminants of real quadratic fields; indices of primitive positive Dirichlet L-series.

Original entry on oeis.org

1, 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40, 41, 44, 53, 56, 57, 60, 61, 65, 69, 73, 76, 77, 85, 88, 89, 92, 93, 97, 101, 104, 105, 109, 113, 120, 124, 129, 133, 136, 137, 140, 141, 145, 149, 152, 156, 157, 161, 165, 168, 172, 173, 177, 181, 184, 185, 188, 193, 197
Offset: 1

Views

Author

Keywords

Comments

All the prime numbers in the set of positive fundamental discriminants are Pythagorean primes (A002144). - Paul Muljadi, Mar 28 2008
Record numbers of prime divisors (with multiplicity) are 1, 5, and 4*A002110(n) for n > 0. - Charles R Greathouse IV, Jan 21 2022

References

  • Henri Cohen, A Course in Computational Algebraic Number Theory, Springer, 1993, pp. 515-519.
  • M. Pohst and Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge Univ. Press, 1989, page 432.
  • Paulo Ribenboim, Algebraic Numbers, Wiley, NY, 1972, p. 97.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Union of A039955 and 4*A230375.

Programs

  • Mathematica
    fundamentalDiscriminantQ[d_] := Module[{m, mod = Mod[d, 4]}, If[mod > 1, Return[False]]; If[mod == 1, Return[SquareFreeQ[d] && d != 1]]; m = d/4; Return[SquareFreeQ[m] && Mod[m, 4] > 1]; ]; Join[{1}, Select[Range[200], fundamentalDiscriminantQ]] (* Jean-François Alcover, Nov 02 2011, after Eric W. Weisstein *)
    Select[Range[200], NumberFieldDiscriminant@Sqrt[#] == # &]  (* Alonso del Arte, Apr 02 2014, based on Arkadiusz Wesolowski's program for A094612 *)
    max = 200; Drop[Select[Union[Table[Abs[MoebiusMu[n]] * n * 4^Boole[Not[Mod[n, 4] == 1]], {n, max}]], # < max &], 1] (* Alonso del Arte, Apr 02 2014 *)
  • PARI
    v=[]; for(n=1,500,if(isfundamental(n),v=concat(v,n))); v
    
  • PARI
    list(lim)=my(v=List()); forsquarefree(n=1,lim\4, listput(v, if(n[1]%4==1, n[1], 4*n[1]))); forsquarefree(n=lim\4+1, lim\1, if(n[1]%4==1, listput(v,n[1]))); Set(v) \\ Charles R Greathouse IV, Jan 21 2022
    
  • Sage
    def is_fundamental(d):
        r = d % 4
        if r > 1 : return False
        if r == 1: return (d != 1) and is_squarefree(d)
        q = d // 4
        return is_squarefree(q) and (q % 4 > 1)
    [1] + [n for n in (1..200) if is_fundamental(n)] # Peter Luschny, Oct 15 2018

Formula

Squarefree numbers (multiplied by 4 if not == 1 (mod 4)).
a(n) ~ (Pi^2/3)*n. There are (3/Pi^2)*x + O(sqrt(x)) terms up to x. - Charles R Greathouse IV, Jan 21 2022

Extensions

More terms from Eric W. Weisstein and Jason Earls, Jun 19 2001
Previous Showing 91-100 of 510 results. Next