cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 167 results. Next

A164300 a(n) = ((1+4*sqrt(2))*(4+sqrt(2))^n + (1-4*sqrt(2))*(4-sqrt(2))^n)/2.

Original entry on oeis.org

1, 12, 82, 488, 2756, 15216, 83144, 452128, 2453008, 13294272, 72012064, 389976704, 2111644736, 11433484032, 61904845952, 335169991168, 1814692086016, 9825156811776, 53195565289984, 288012326955008
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Aug 12 2009

Keywords

Comments

Binomial transform of A164299. Fourth binomial transform of A164587. Inverse binomial transform of A164301.
This sequence is part of a class of sequences defined by the recurrence a(n,m) = 2*(m+1)*a(n-1,m) - ((m+1)^2 -2)*a(n-2,m) with a(0) = 1 and a(1) = m+9. The generating function is Sum_{n>=0} a(n,m)*x^n = (1 - (m-7)*x)/(1 - 2*(m+1)*x + ((m+1)^2 - 2)*x^2) and has a series expansion in terms of Pell-Lucas numbers defined by a(n, m) = (1/2)*Sum_{k=0..n} binomial(n,k)*m^(n-k)*(5*Q(k) + 4*Q(k-1)). - G. C. Greubel, Mar 12 2021

Crossrefs

Sequences in the class a(n, m): A164298 (m=1), A164299 (m=2), this sequence (m=3), A164301 (m=4), A164598 (m=5), A164599 (m=6), A081185 (m=7), A164600 (m=8).

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((1+4*r)*(4+r)^n+(1-4*r)*(4-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 17 2009
    
  • Mathematica
    LinearRecurrence[{8,-14},{1,12},30] (* Harvey P. Dale, Apr 13 2012 *)
  • PARI
    my(x='x+O('x^50)); Vec((1+4*x)/(1-8*x+14*x^2)) \\ G. C. Greubel, Sep 13 2017
    
  • Sage
    [( (1+4*x)/(1-8*x+14*x^2) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Mar 12 2021

Formula

a(n) = 8*a(n-1) - 14*a(n-2) for n > 1; a(0) = 1, a(1) = 12.
G.f.: (1+4*x)/(1-8*x+14*x^2).
E.g.f.: (4*sqrt(2)*sinh(sqrt(2)*x) + cosh(sqrt(2)*x))*exp(4*x). - Ilya Gutkovskiy, Jun 24 2016
From G. C. Greubel, Mar 12 2021: (Start)
a(n) = 2*A083879(n) + 8*A081180(n).
a(n) = (1/2)*Sum_{k=0..n} binomial(n,k)*3^(n-k)*(5*Q(k) + 4*Q(k-1)), where Q(n) = Pell-Lucas(n) = A002203(n). (End)

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Aug 17 2009

A164301 a(n) = ((1+4*sqrt(2))*(5+sqrt(2))^n + (1-4*sqrt(2))*(5-sqrt(2))^n)/2.

Original entry on oeis.org

1, 13, 107, 771, 5249, 34757, 226843, 1469019, 9472801, 60940573, 391531307, 2513679891, 16131578849, 103501150997, 663985196443, 4259325491499, 27321595396801, 175251467663533, 1124117982508907, 7210396068827811, 46249247090573249, 296653361322692837
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Aug 12 2009

Keywords

Comments

Binomial transform of A164300. Fifth binomial transform of A164587. Inverse binomial transform of A164598.
This sequence is part of a class of sequences defined by the recurrence a(n,m) = 2*(m+1)*a(n-1,m) - ((m+1)^2 - 2)*a(n-2,m) with a(0) = 1 and a(1) = m+9. The generating function is Sum_{n>=0} a(n,m)*x^n = (1 - (m-7)*x)/(1 - 2*(m+1)*x + ((m+1)^2 - 2)*x^2) and has a series expansion in terms of Pell-Lucas numbers defined by a(n, m) = (1/2)*Sum_{k=0..n} binomial(n,k)*m^(n-k)*(5*Q(k) + 4*Q(k-1)). - G. C. Greubel, Mar 12 2021

Crossrefs

Sequences in the class a(n, m): A164298 (m=1), A164299 (m=2), A164300 (m=3), this sequence (m=4), A164598 (m=5), A164599 (m=6), A081185 (m=7), A164600 (m=8).

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((1+4*r)*(5+r)^n+(1-4*r)*(5-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 17 2009
    
  • Mathematica
    LinearRecurrence[{10,-23},{1,13},20] (* Harvey P. Dale, Oct 15 2015 *)
  • PARI
    my(x='x+O('x^50)); Vec((1+3*x)/(1-10*x+23*x^2)) \\ G. C. Greubel, Sep 13 2017
    
  • Sage
    [( (1+3*x)/(1-10*x+23*x^2) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Mar 12 2021

Formula

a(n) = 10*a(n-1) - 23*a(n-2) for n > 1; a(0) = 1, a(1) = 13.
G.f.: (1+3*x)/(1-10*x+23*x^2).
E.g.f.: ( cosh(sqrt(2)*x) + 4*sqrt(2)*sinh(sqrt(2)*x) )*exp(5*x). - G. C. Greubel, Sep 13 2017
From G. C. Greubel, Mar 12 2021: (Start)
a(n) = 2*A083880(n) + 8*A081182(n).
a(n) = (1/2)*Sum_{k=0..n} binomial(n,k)*4^(n-k)*(5*Q(k) + 4*Q(k-1)), where Q(n) = Pell-Lucas(n) = A002203(n). (End)

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Aug 17 2009

A164598 a(n) = 12*a(n-1) - 34*a(n-2), for n > 1, with a(0) = 1, a(1) = 14.

Original entry on oeis.org

1, 14, 134, 1132, 9028, 69848, 531224, 3999856, 29936656, 223244768, 1661090912, 12342768832, 91636134976, 679979479424, 5044125163904, 37410199666432, 277422140424448, 2057118896434688, 15253073982785024, 113094845314640896
Offset: 0

Views

Author

Klaus Brockhaus, Aug 17 2009

Keywords

Comments

Binomial transform of A164301. Sixth binomial transform of A164587. Inverse binomial transform of A164599.
This sequence is part of a class of sequences defined by the recurrence a(n,m) = 2*(m+1)*a(n-1,m) - ((m+1)^2 -2)*a(n-2,m) with a(0) = 1 and a(1) = m+9. The generating function is Sum_{n>=0} a(n,m)*x^n = (1 - (m-7)*x)/(1 - 2*(m+1)*x + ((m+1)^2 -2)*x^2) and have a series expansion in terms of Pell-Lucas numbers defined by a(n, m) = (1/2)*Sum_{k=0..n} binomial(n,k)*m^(n-k)*(5*Q(k) + 4*Q(k-1)). - G. C. Greubel, Mar 11 2021

Crossrefs

Sequences in the class a(n, m): A164298 (m=1), A164299 (m=2), A164300 (m=3), A164301 (m=4), this sequence (m=5), A164599 (m=6), A081185 (m=7), A164600 (m=8).

Programs

  • Magma
    [ n le 2 select 13*n-12 else 12*Self(n-1)-34*Self(n-2): n in [1..30] ];
    
  • Maple
    m:=30; S:=series( (1+2*x)/(1-12*x+34*x^2), x, m+1):
    seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Mar 11 2021
  • Mathematica
    LinearRecurrence[{12,-34}, {1,14}, 30] (* G. C. Greubel, Aug 11 2017 *)
  • PARI
    my(x='x+O('x^30)); Vec((1+2*x)/(1-12*x+34*x^2)) \\ G. C. Greubel, Aug 11 2017
    
  • Sage
    [( (1+2*x)/(1-12*x+34*x^2) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Mar 11 2021

Formula

a(n) = ((1+4*sqrt(2))*(6+sqrt(2))^n + (1-4*sqrt(2))*(6-sqrt(2))^n)/2.
G.f.: (1+2*x)/(1-12*x+34*x^2).
E.g.f.: exp(6*x)*(cosh(sqrt(2)*x) + 4*sqrt(2)*sinh(sqrt(2)*x)). - G. C. Greubel, Aug 11 2017
From G. C. Greubel, Mar 11 2021: (Start)
a(n) = A147957(n) + 8*A081183(n).
a(n) = (1/2)*Sum_{k=0..n} binomial(n,k)*5^(n-k)*(5*Q(k) + 4*Q(k-1)), where Q(n) = Pell-Lucas(n) = A002203(n). (End)

A164599 a(n) = 14*a(n-1) - 47*a(n-2), for n > 1, with a(0) = 1, a(1) = 15.

Original entry on oeis.org

1, 15, 163, 1577, 14417, 127719, 1110467, 9543745, 81420481, 691330719, 5851867459, 49433600633, 417032638289, 3515077706295, 29610553888547, 249339102243793, 2099051398651393, 17667781775661231, 148693529122641763
Offset: 0

Views

Author

Klaus Brockhaus, Aug 17 2009

Keywords

Comments

Binomial transform of A164598. Seventh binomial transform of A164587. Inverse binomial transform of A081185 without initial term 0.
This sequence is part of a class of sequences defined by the recurrence a(n,m) = 2*(m+1)*a(n-1,m) - ((m+1)^2 -2)*a(n-2,m) with a(0) = 1 and a(1) = m+9. The generating function is Sum_{n>=0} a(n,m)*x^n = (1 - (m-7)*x)/(1 - 2*(m+1)*x + ((m+1)^2 -2)*x^2) and have a series expansion in terms of Pell-Lucas numbers defined by a(n, m) = (1/2)*Sum_{k=0..n} binomial(n,k)*m^(n-k)*(5*Q(k) + 4*Q(k-1)). - G. C. Greubel, Mar 11 2021

Crossrefs

Sequences in the class a(n, m): A164298 (m=1), A164299 (m=2), A164300 (m=3), A164301 (m=4), A164598 (m=5), this sequence (m=6), A081185 (m=7), A164600 (m=8).

Programs

  • Magma
    [ n le 2 select 14*n-13 else 14*Self(n-1)-47*Self(n-2): n in [1..30] ];
    
  • Maple
    m:=30; S:=series( (1+x)/(1-14*x+47*x^2), x, m+1):
    seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Mar 11 2021
  • Mathematica
    LinearRecurrence[{14,-47}, {1,15}, 30] (* G. C. Greubel, Aug 11 2017 *)
  • PARI
    my(x='x+O('x^30)); Vec((1+x)/(1-14*x+47*x^2)) \\ G. C. Greubel, Aug 11 2017
    
  • Sage
    def A164599_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x)/(1-14*x+47*x^2) ).list()
    A164599_list(30) # G. C. Greubel, Mar 11 2021

Formula

a(n) = ((1+4*sqrt(2))*(7+sqrt(2))^n + (1-4*sqrt(2))*(7-sqrt(2))^n)/2.
G.f.: (1+x)/(1-14*x+47*x^2).
E.g.f.: exp(7*x)*(cosh(sqrt(2)*x) + 4*sqrt(2)*sinh(sqrt(2)*x)). - G. C. Greubel, Aug 11 2017
From G. C. Greubel, Mar 11 2021: (Start)
a(n) = A147958(n) + 8*A081184(n).
a(n) = (1/2)*Sum_{k=0..n} binomial(n,k)*6^(n-k)*(5*Q(k) + 4*Q(k-1)), where Q(n) = Pell-Lucas(n) = A002203(n). (End)

A054489 Expansion of (1+4*x)/(1-6*x+x^2).

Original entry on oeis.org

1, 10, 59, 344, 2005, 11686, 68111, 396980, 2313769, 13485634, 78600035, 458114576, 2670087421, 15562409950, 90704372279, 528663823724, 3081278570065, 17959007596666, 104672767009931, 610077594462920
Offset: 0

Views

Author

Barry E. Williams, May 04 2000

Keywords

Comments

Numbers n such that 8*n^2 + 41 is a square.
(x, y) = (a(n), a(n+1)) are solutions to x^2 + y^2 - 6*x*y = 41. - John O. Oladokun, Mar 17 2021

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N. Y., 1964, pp. 122-125, 194-196.

Crossrefs

Programs

  • GAP
    a:=[1,10];; for n in [3..30] do a[n]:=6*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 19 2020
  • Magma
    I:=[1,10]; [n le 2 select I[n] else 6*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 19 2020
    
  • Maple
    a[0]:=1: a[1]:=10: for n from 2 to 26 do a[n]:=6*a[n-1]-a[n-2] od: seq(a[n], n=0..19); # Zerinvary Lajos, Jul 26 2006
  • Mathematica
    Table[(LucasL[2*n+1, 2] + 3*Fibonacci[2*n, 2])/2, {n,0,30}] (* G. C. Greubel, Jan 19 2020 *)
    LinearRecurrence[{6,-1},{1,10},20] (* Harvey P. Dale, Jun 11 2024 *)
  • PARI
    vector(31, n, polchebyshev(n-1,2,3) +4*polchebyshev(n-2,2,3) ) \\ G. C. Greubel, Jan 19 2020
    
  • Sage
    [chebyshev_U(n,3) +4*chebyshev_U(n-1,3) for n in (0..30)] # G. C. Greubel, Jan 19 2020
    

Formula

a(n) = 6*a(n-1) - a(n-2), a(0)=1, a(1)=10.
a(n) = (10*((3+2*sqrt(2))^n - (3-2*sqrt(2))^n) - ((3+2*sqrt(2))^(n-1) - (3-2*sqrt(2))^(n-1)))/(4*sqrt(2)).
From G. C. Greubel, Jan 19 2020: (Start)
a(n) = ChebyshevU(n,3) + 4*ChebyshevU(n-1,3).
a(n) = (Pell(2*n+2) + 4*Pell(2*n))/2 = (Pell-Lucas(2*n+1) + 3*Pell(2*n))/2.
E.g.f.: exp(3*x)*( cosh(2*sqrt(2)*x) + 7*sinh(2*sqrt(2)*x)/(2*sqrt(2)) ). (End)

Extensions

More terms from James Sellers, May 05 2000

A084130 a(n) = 8*a(n-1) - 8*a(n-2), a(0)=1, a(1)=4.

Original entry on oeis.org

1, 4, 24, 160, 1088, 7424, 50688, 346112, 2363392, 16138240, 110198784, 752484352, 5138284544, 35086401536, 239584935936, 1635988275200, 11171226714112, 76281907511296, 520885446377472, 3556828310929408, 24287542916415488
Offset: 0

Views

Author

Paul Barry, May 16 2003

Keywords

Comments

Binomial transform of A001541.
Let A be the unit-primitive matrix (see [Jeffery]) A = A_(8,3) = [0,0,0,1; 0,0,2,0; 0,2,0,1; 2,0,2,0]. Then A084130(n) = (1/4)*Trace(A^(2*n)). (Cf. A006012, A001333.) - L. Edson Jeffery, Apr 04 2011
a(n) is also the rational part of the Q(sqrt(2)) integer giving the length L(n) of a variant of the Lévy C-curve, given by Kival Ngaokrajang, at iteration step n. See A057084. - Wolfdieter Lang, Dec 18 2014

Crossrefs

Programs

  • Magma
    [n le 2 select 4^(n-1) else 8*(Self(n-1) -Self(n-2)): n in [1..41]]; // G. C. Greubel, Oct 13 2022
    
  • Mathematica
    LinearRecurrence[{8,-8},{1,4},30] (* Harvey P. Dale, Sep 25 2014 *)
  • PARI
    {a(n)= if(n<0, 0, real((4+ 2*quadgen(8))^n))}
    
  • SageMath
    A084130=BinaryRecurrenceSequence(8,-8,1,4)
    [A084130(n) for n in range(41)] # G. C. Greubel, Oct 13 2022

Formula

a(n) = (4+sqrt(8))^n/2 + (4-sqrt(8))^n/2.
G.f.: (1-4*x)/(1-8*x+8*x^2).
E.g.f.: exp(4*x)*cosh(sqrt(8)*x).
a(n) = A057084(n) - 4*A057084(n-1). - R. J. Mathar, Nov 10 2013
From G. C. Greubel, Oct 13 2022: (Start)
a(2*n) = 2^(3*n-1)*A002203(2*n).
a(2*n+1) = 2^(3*n+2)*A000129(2*n+1). (End)

A102413 Triangle read by rows: T(n,k) is the number of k-matchings in the n-sunlet graph (0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 6, 6, 1, 1, 8, 16, 8, 1, 1, 10, 30, 30, 10, 1, 1, 12, 48, 76, 48, 12, 1, 1, 14, 70, 154, 154, 70, 14, 1, 1, 16, 96, 272, 384, 272, 96, 16, 1, 1, 18, 126, 438, 810, 810, 438, 126, 18, 1, 1, 20, 160, 660, 1520, 2004, 1520, 660, 160, 20, 1, 1, 22, 198, 946, 2618, 4334, 4334, 2618, 946, 198, 22, 1
Offset: 0

Views

Author

Emeric Deutsch, Jan 07 2005

Keywords

Comments

The n-sunlet graph is the corona C'(n) of the cycle graph C(n) and the complete graph K(1); in other words, C'(n) is the graph constructed from C(n) to which for each vertex v a new vertex v' and the edge vv' is added.
Row n contains n+1 terms. Row sums yield A099425. T(n,k) = T(n,n-k).
For n > 2: same recurrence as A008288 and A128966. - Reinhard Zumkeller, Apr 15 2014

Examples

			T(3,2) = 6 because in the graph with vertex set {A,B,C,a,b,c} and edge set {AB,AC,BC,Aa,Bb,Cc} we have the following six 2-matchings: {Aa,BC}, {Bb,AC}, {Cc,AB}, {Aa,Bb}, {Aa,Cc} and {Bb,Cc}.
The triangle starts:
  1;
  1, 1;
  1, 4,  1;
  1, 6,  6, 1;
  1, 8, 16, 8, 1;
From _Eric W. Weisstein_, Apr 03 2018: (Start)
Rows as polynomials:
  1
  1 +    x,
  1 +  4*x +    x^2,
  1 +  6*x +  6*x^2 +    x^3,
  1 +  8*x + 16*x^2 +  8*x^3 +    x^4,
  1 + 10*x + 30*x^2 + 30*x^3 + 10*x^4 + x^5,
  ... (End)
		

References

  • J. L. Gross and J. Yellen, Handbook of Graph Theory, CRC Press, Boca Raton, 2004, p. 894.
  • F. Harary, Graph Theory, Addison-Wesley, Reading, Mass., 1969, p. 167.

Crossrefs

Cf. A002203 or A099425 (row sums), A006318, A008288.
Cf. A241023 (central terms).

Programs

  • Haskell
    a102413 n k = a102413_tabl !! n !! k
    a102413_row n = a102413_tabl !! n
    a102413_tabl = [1] : [1,1] : f [2] [1,1] where
       f us vs = ws : f vs ws where
                 ws = zipWith3 (((+) .) . (+))
                      ([0] ++ us ++ [0]) ([0] ++ vs) (vs ++ [0])
    -- Reinhard Zumkeller, Apr 15 2014
  • Maple
    G:=(1+t*z^2)/(1-(1+t)*z-t*z^2): Gser:=simplify(series(G,z=0,38)): P[0]:=1: for n from 1 to 11 do P[n]:=coeff(Gser,z^n) od:for n from 0 to 11 do seq(coeff(t*P[n],t^k),k=1..n+1) od; # yields sequence in triangular form
  • Mathematica
    CoefficientList[Table[2^-n ((1 + x - Sqrt[1 + x (6 + x)])^n + (1 + x + Sqrt[1 + x (6 + x)])^n), {n, 10}], x] // Flatten (* Eric W. Weisstein, Apr 03 2018 *)
    LinearRecurrence[{1 + x, x}, {1, 1 + x, 1 + 4 x + x^2}, 10] // Flatten (* Eric W. Weisstein, Apr 03 2018 *)
    Join[{1}, CoefficientList[CoefficientList[Series[(-1 - x - 2 x z)/(-1 + z + x z + x z^2), {z, 0, 10}], z], x]] // Flatten (* Eric W. Weisstein, Apr 03 2018 *)

Formula

G.f.: G(t,z) = (1 + t*z^2) / (1 - (1+t)*z - t*z^2).
For n > 2: T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-2,k-1), 0 < k < n. - Reinhard Zumkeller, Apr 15 2014 (corrected by Andrew Woods, Dec 08 2014)
From Peter Bala, Jun 25 2015: (Start)
The n-th row polynomial R(n, t) = [z^n] F(z, t)^n, where F(z, t) = 1/2*( 1 + (1 + t)*z + sqrt(1 + 2*(1 + t)*z + (1 + 6*t + t^2)*z^2) ).
exp( Sum_{n >= 1} R(n, t)*z^n/n ) = 1 + (1 + t)*z + (1 + 3*t + t^2)*z^2 + (1 + 5*t + 5*t^2 + t^3)*z^3 + ... is the o.g.f for A008288 read as a triangular array. (End)
From Peter Bala, Aug 01 2024: (Start)
T(n, k) = A008288(n-k, k) + A008288(n-k-1, k-1) (Bihan et al., Proposition 6.6).
T(n, k) = 1 if n = 0 or k = n, else for 1 <= k <= n-1, T(n, k) = Sum_{j = 0..min(n-k, k)} (2^j)*(binomial(n-k, j)*binomial(k, j) + binomial(n-k-1, j)*binomial(k-1, j)).
Let S(x) = (1 - x - (1 - 6*x + x^2)^(1/2))/(2*x) denote the g.f. of the sequence of large Schröder numbers A006318. The signed n-th row polynomial R(n, -x) = 1/S(x)^n + (x*S(x))^n. (End)

Extensions

Row 0 in polynomials and Mathematica programs added by Georg Fischer, Apr 01 2019

A026933 Self-convolution of array T given by A008288.

Original entry on oeis.org

1, 2, 11, 52, 269, 1414, 7575, 41064, 224665, 1237898, 6859555, 38187164, 213408805, 1196524814, 6727323439, 37915058384, 214140178225, 1211694546194, 6867622511675, 38981807403268, 221562006394173, 1260814207833750, 7182599953332423, 40958645048598840, 233779564099963081
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[1/(1+x)/Sqrt[1-6*x+x^2],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 08 2012 *)
    a[ n_]:= Sum[ SeriesCoefficient[ SeriesCoefficient[1/(1-x-y-x*y) , {x,0,n-k}] , {y, 0, k}]^2, {k, 0, n}]; (* Michael Somos, Jun 27 2017 *)
    A026933[n_]:= Sum[(Binomial[n, k]*Hypergeometric2F1[-k,k-n,-n,-1])^2, {k,0,n}];
    Table[A026933[n], {n, 0, 40}] (* G. C. Greubel, May 25 2021 *)
  • PARI
    /* Sum of squares of Delannoy numbers: */
    {a(n)=sum(k=0,n,polcoeff(polcoeff(1/(1-x-y-x*y +x*O(x^n)+y*O(y^k)),n-k,x),k,y)^2)} \\ Paul D. Hanna, Jan 10 2012
    
  • PARI
    /* Involving squares of companion Pell numbers: */
    {A002203(n)=polcoeff(2*x*(1+x)/(1-2*x-x^2+x*O(x^n)),n)}
    {a(n)=polcoeff(exp(sum(k=1, n, A002203(k)^2/2*x^k/k)+x*O(x^n)), n)}
    \\ Paul D. Hanna, Jan 10 2012
    
  • PARI
    my(x='x+O('x^66)); Vec( 1/(1+x)/sqrt(1-6*x+x^2) ) \\ Joerg Arndt, May 04 2013
    
  • Sage
    def A026933_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/((1+x)*sqrt(1-6*x+x^2)) ).list()
    A026933_list(40) # G. C. Greubel, May 25 2021

Formula

a(n) = Sum_{k=0..n} D(n-k,k)^2 where D(n,k) = A008288(n,k) are the Delannoy numbers. - Paul D. Hanna, Jan 10 2012
G.f.: 1/((1+x)*sqrt(1-6*x+x^2)). - Vladeta Jovovic, May 13 2003
a(n) = (-1)^n*Sum_{k=0...n} (-1)^k*A001850(k). - Benoit Cloitre, Sep 28 2005
G.f.: exp( Sum_{n>=1} A002203(n)^2/2 * x^n/n ), where A002203 are the companion Pell numbers. - Paul D. Hanna, Jan 10 2012
Self-convolution yields A204062; self-convolution of A204061. - Paul D. Hanna, Jan 10 2012
From Vaclav Kotesovec, Oct 08 2012: (Start)
Recurrence: n*a(n) = (5*n-3)*a(n-1) + (5*n-2)*a(n-2) - (n-1)*a(n-3).
a(n) ~ sqrt(24+17*sqrt(2))*(3+2*sqrt(2))^n/(8*sqrt(Pi*n)). (End)
0 = +a(n)*(+a(n+1) -8*a(n+2) -7*a(n+3) +2*a(n+4)) +a(n+1)*(-2*a(n+1) +22*a(n+2) +20*a(n+3) -7*a(n+4)) +a(n+2)*(+30*a(n+2) +22*a(n+3) -8*a(n+4)) +a(n+3)*(-2*a(n+3) +a(n+4)) for all n in Z. - Michael Somos, Jun 27 2017

Extensions

More terms from Vladeta Jovovic, May 13 2003

A099425 Expansion of (1+x^2)/(1-2*x-x^2).

Original entry on oeis.org

1, 2, 6, 14, 34, 82, 198, 478, 1154, 2786, 6726, 16238, 39202, 94642, 228486, 551614, 1331714, 3215042, 7761798, 18738638, 45239074, 109216786, 263672646, 636562078, 1536796802, 3710155682, 8957108166, 21624372014, 52205852194, 126036076402, 304278004998
Offset: 0

Views

Author

Paul Barry, Oct 15 2004

Keywords

Comments

Binomial transform of A094024(n+1).
a(n) is the number of matchings of the corona C'(n) of the cycle graph C(n) and the complete graph K(1); in other words, C'(n) is the graph constructed from C(n) to which for each vertex v a new vertex v' and the edge vv' is added. Example: a(3)=14 because in the graph with vertex set {A,B,C,a,b,c} and edge set {AB,AC,BC,Aa,Bb,Cc} we have the following 14 matchings: the empty set, the six singletons containing one of the edges, {Aa,BC}, {Bb,AC}, {Cc,AB}, {Aa,Bb}, {Aa,Cc}, {Bb,Cc} and {Aa,Bb,Cc}. Row sums of A102413. - Emeric Deutsch, Jan 07 2005
Apart from first term, same as A002203. - Peter Shor, May 12 2005
Equals the INVERT transform of integers with repeats. Example: a(4) = 34 = (1, 1, 2, 6, 14) dot (5, 3, 3, 1, 1) = (5 + 3 + 6 + 6 + 14) = 34.

Crossrefs

Cf. A014176 (silver mean).

Programs

  • Haskell
    a099425 = sum . a102413_row  -- Reinhard Zumkeller, Apr 15 2014
  • Maple
    a:= n-> (<<0|1>, <1|2>>^n. <<2, 2>>)[1, 1]-0^n:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 26 2018
  • Mathematica
    CoefficientList[Series[(1+x^2)/(1-2x-x^2),{x,0,30}],x] (* or *) LinearRecurrence[{2,1},{1,2,6},40] (* Harvey P. Dale, Mar 23 2020 *)

Formula

a(n) = (1+sqrt(2))^n + (1-sqrt(2))^n - 0^n see silver mean (A014176).
a(n) = Sum_{k=0..n} A000129(n+1-k)*C(1, k/2)*(1+(-1)^k)/2.
a(n) = 2*A001333(n) - 0^n.
a(n) = round((1+sqrt(2))^n). - Bruno Berselli, Feb 04 2013
G.f.: G(0) - 1, where G(k) = 1 + 1/(1 - x*(2*k-1)/(x*(2*k+1) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jul 30 2013
a(n) = A000129(n+1) + A000129(n-1). - Vladimir Kruchinin, Apr 19 2024

A204274 G.f.: Sum_{n>=1} Pell(n^2)*x^(n^2).

Original entry on oeis.org

1, 0, 0, 12, 0, 0, 0, 0, 985, 0, 0, 0, 0, 0, 0, 470832, 0, 0, 0, 0, 0, 0, 0, 0, 1311738121, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21300003689580, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2015874949414289041, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Paul D. Hanna, Jan 14 2012

Keywords

Comments

Compare g.f. to the Lambert series identity: Sum_{n>=1} lambda(n)*x^n/(1-x^n) = Sum_{n>=1} x^(n^2); Liouville's function lambda(n) = (-1)^k, where k is number of primes dividing n (counted with multiplicity).

Examples

			G.f.: A(x) = x + 12*x^4 + 985*x^9 + 470832*x^16 + 1311738121*x^25 +...
where A(x) = x/(1-2*x-x^2) + (-1)*2*x^2/(1-6*x^2+x^4) + (-1)*5*x^3/(1-14*x^3-x^6) + (+1)*12*x^4/(1-34*x^4+x^8) + (-1)*29*x^5/(1-82*x^5-x^10) + (+1)*70*x^6/(1-198*x^6+x^12) +...+ lambda(n)*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) +...
		

Crossrefs

Programs

  • Maple
    pell:= gfun:-rectoproc({a(0)=0,a(1)=1,a(n)=2*a(n-1)+a(n-2)},a(n),remember):
    seq(`if`(issqr(n),pell(n),0), n=1..100); # Robert Israel, Nov 24 2015
  • Mathematica
    CoefficientList[Sum[Fibonacci[n^2, 2] x^n^2/x, {n, 1, 8}], x] (* Jean-François Alcover, Mar 25 2019 *)
  • PARI
    /* Subroutines used in PARI programs below: */
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)), n)}
    {A002203(n)=polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^n)), n)}
    
  • PARI
    {a(n)=issquare(n)*Pell(n)}
    
  • PARI
    {lambda(n)=local(F=factor(n));(-1)^sum(i=1,matsize(F)[1],F[i,2])}
    {a(n)=polcoeff(sum(m=1,n,lambda(m)*Pell(m)*x^m/(1-A002203(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))),n)}

Formula

G.f.: Sum_{n>=1} lambda(n)*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)), where lambda(n) = A008836(n), Pell(n) = A000129(n) and A002203 is the companion Pell numbers.
Previous Showing 71-80 of 167 results. Next