cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 130 results. Next

A038874 Primes p such that 3 is a square mod p.

Original entry on oeis.org

2, 3, 11, 13, 23, 37, 47, 59, 61, 71, 73, 83, 97, 107, 109, 131, 157, 167, 179, 181, 191, 193, 227, 229, 239, 241, 251, 263, 277, 311, 313, 337, 347, 349, 359, 373, 383, 397, 409, 419, 421, 431, 433, 443, 457, 467, 479, 491, 503, 541, 563, 577, 587, 599, 601
Offset: 1

Views

Author

Keywords

Comments

Also primes congruent to {1, 2, 3, 11} mod 12.
The subsequence p = 1 (mod 4) corresponds to A068228 and only these entries of a(n) are squares mod 3 (from the quadratic reciprocity law). - Lekraj Beedassy, Jul 21 2004
Largest prime factors of n^2 - 3. - Vladimir Joseph Stephan Orlovsky, Aug 12 2009
Aside from 2 and 3, primes p such that Legendre(3, p) = 1. Bolker asserts there are infinitely many of these primes. - Alonso del Arte, Nov 25 2015
The associated bases of the squares are 1, 0, 5, 4, 7, 15, 12, 11, 8, 28, 21, 13...: 1^2 = 3 -1*2, 0^2 = 3-1*3, 5^2 = 3+ 2*11, 4^2 = 3+1*13, 7^2 = 3+2*23, 15^2 = 3+6*37, 12^2 = 3+3*47,... - R. J. Mathar, Feb 23 2017

Examples

			11 is in the sequence since the equation x^2 - 11y = 3 has solutions, such as x = 5, y = 2.
13 is in the sequence since the equation x^2 - 13y = 3 has solutions, such as x = 4, y = 1.
17 is not in the sequence because x^2 - 17y = 3 has no solutions in integers; Legendre(3, 17) = -1.
		

References

  • Ethan D. Bolker, Elementary Number Theory: An Algebraic Approach. Mineola, New York: Dover Publications (1969, reprinted 2007): p. 74, Theorem 25.3.

Crossrefs

If the first two terms are omitted we get A097933. A040101 is another sequence.

Programs

  • Magma
    [p: p in PrimesUpTo(1200) | p mod 12 in [1, 2, 3, 11]]; // Vincenzo Librandi, Aug 08 2012
    
  • Maple
    select(isprime, [2,3, seq(seq(6+s+12*i, s=[-5,5]),i=0..1000)]); # Robert Israel, Dec 23 2015
  • Mathematica
    Select[Prime[Range[250]], MemberQ[{1, 2, 3, 11}, Mod[#, 12]] &] (* Vincenzo Librandi, Aug 08 2012 *)
    Select[Flatten[Join[{2, 3}, Table[{12n - 1, 12n + 1}, {n, 50}]]], PrimeQ] (* Alonso del Arte, Nov 25 2015 *)
  • PARI
    forprime(p=2, 1e3, if(issquare(Mod(3, p)), print1(p , ", "))) \\ Altug Alkan, Dec 04 2015

Formula

a(n) ~ 2n log n. - Charles R Greathouse IV, Nov 29 2016

Extensions

More terms from Henry Bottomley, Aug 10 2000

A120304 Catalan numbers minus 2.

Original entry on oeis.org

-1, -1, 0, 3, 12, 40, 130, 427, 1428, 4860, 16794, 58784, 208010, 742898, 2674438, 9694843, 35357668, 129644788, 477638698, 1767263188, 6564120418, 24466267018, 91482563638, 343059613648, 1289904147322, 4861946401450, 18367353072150, 69533550916002, 263747951750358
Offset: 0

Views

Author

Alexander Adamchuk, Jul 13 2006

Keywords

Comments

Prime p divides a(p). Prime p divides a(p+1) for p > 2. Prime p divides a((p-1)/2) for p = 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, ... = A002144(n) except 5. Pythagorean primes: primes of form 4n+1. Also A002313(n) except 2, 5. Primes congruent to 1 or 2 modulo 4; or, primes of form x^2+y^2; or, -1 is a square mod p. p^2 divides a(p^2) and a(p^2+1) for all prime p.
For n >= 2, number of Dyck paths of semilength n such that all four consecutive step patterns of length 2 occur at least once; a(3)=3: UDUUDD, UUDDUD, UUDUDD. For each n two paths do not satisfy the condition: U^{n}D^{n} and (UD)^n. - Alois P. Heinz, Jun 13 2014

Crossrefs

Programs

  • Maple
    a:= n-> binomial(2*n, n)/(n+1) -2:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jun 13 2014
  • Mathematica
    Table[(2n)!/n!/(n+1)!-2,{n,0,30}]
    CatalanNumber[Range[0,30]]-2 (* Harvey P. Dale, May 03 2019 *)
  • MuPAD
    combinat::dyckWords::count(n)-2 $ n = 0..38; // Zerinvary Lajos, May 08 2008
    
  • PARI
    a(n) = binomial(2*n, n)/(n+1)-2; \\ Altug Alkan, Dec 17 2017

Formula

a(n) = A000108(n) - 2.
a(n) = (2n)!/(n!*(n+1)!) - 2.
(n+1)*a(n) + 2*(-3*n+1)*a(n-1) + (9*n-13)*a(n-2) + 2*(-2*n+5)*a(n-3) = 0. - R. J. Mathar, May 30 2014

A248527 Numbers n such that the smallest prime divisor of n^2+1 is 13.

Original entry on oeis.org

34, 44, 60, 70, 86, 96, 164, 174, 190, 200, 216, 226, 294, 304, 320, 330, 346, 356, 424, 434, 450, 460, 476, 486, 554, 564, 580, 590, 606, 616, 684, 694, 710, 720, 736, 746, 814, 824, 840, 850, 866, 876, 944, 954, 970, 980, 996, 1006, 1074, 1084, 1100, 1110
Offset: 1

Views

Author

Michel Lagneau, Oct 08 2014

Keywords

Comments

Or numbers n such that the smallest prime divisor of A002522(n) is A002313(3).
a(n) == 8 (mod 26) if n is odd and a(n) == 18 (mod 26) if n is even.
It is interesting to observe that a(n) is given by a linear formula (see the formula below).

Examples

			34 is in the sequence because 34^2+1= 13*89.
		

Crossrefs

Programs

  • Magma
    [n: n in [2..3000] | PrimeDivisors(n^2+1)[1] eq 13]; // Bruno Berselli, Oct 08 2014
  • Maple
    * first program *
    with(numtheory):p:=13:
       for n from 1 to 1000 do:
        if factorset(n^2+1)[1] = p then printf(`%d, `, n):
        else
        fi:
       od:
    * second program using the formula*
    for n from 0 to 100 by 5 do:
       for k from 1 to 3 do:
         x:=8+(k+n)*26:y:=18+(k+n)*26:
         printf(`%d, `,x):printf(`%d, `,y):
       od:
      od:
  • Mathematica
    lst={};Do[If[FactorInteger[n^2+1][[1,1]]==13,AppendTo[lst,n]],{n,2,2000}];lst
    p = 13; ps = Select[Range[p - 1], Mod[#, 4] != 3 && PrimeQ[#] &]; Select[Range[1200], Divisible[(nn = #^2 + 1), p] && ! Or @@ Divisible[nn, ps] &] (* Amiram Eldar, Aug 16 2019 *)
  • PARI
    isok(n) = factor(n^2+1)[1,1] == 13; \\ Michel Marcus, Oct 08 2014
    

Formula

{a(n)} = {8+(k + m)*26} union {18+(k + m)*26} for m = 0, 5, 10,...,5p,... and k = 1, 2, 3 (values in increasing order).

A005529 Primitive prime factors of the sequence k^2 + 1 (A002522) in the order that they are found.

Original entry on oeis.org

2, 5, 17, 13, 37, 41, 101, 61, 29, 197, 113, 257, 181, 401, 97, 53, 577, 313, 677, 73, 157, 421, 109, 89, 613, 1297, 137, 761, 1601, 353, 149, 1013, 461, 1201, 1301, 541, 281, 2917, 3137, 673, 1741, 277, 1861, 769, 397, 241, 2113, 4357, 449, 2381, 2521, 5477
Offset: 1

Views

Author

Keywords

Comments

Primes associated with Stormer numbers.
See A002313 for the sorted list of primes. It can be shown that k^2 + 1 has at most one primitive prime factor; the other prime factors divide m^2 + 1 for some m < k. When k^2 + 1 has a primitive prime factor, k is a Stormer number (A005528), otherwise a non-Stormer number (A002312).

References

  • John H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, p. 246.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. Todd, Table of Arctangents. National Bureau of Standards, Washington, DC, 1951, p. vi.

Crossrefs

Cf. A002312, A002313 (primes of the form 4k+1), A002522, A005528.

Programs

  • Magma
    V:=[]; for n in [1..75] do p:=Max([ x[1]: x in Factorization(n^2+1) ]); if not p in V then Append(~V, p); end if; end for; V; // Klaus Brockhaus, Oct 29 2008
    
  • Mathematica
    prms={}; Do[f=First/@FactorInteger[k^2+1]; p=Complement[f, prms]; prms=Join[prms, p], {k, 100}]; prms
  • PARI
    do(n)=my(v=List(),g=1,m,t,f); for(k=1,n, m=k^2+1; t=gcd(m,g); while(t>1, m/=t; t=gcd(m,t)); f=factor(m)[,1]; if(#f, listput(v,f[1]); g*=f[1])); Vec(v) \\ Charles R Greathouse IV, Jun 11 2017

Extensions

Edited by T. D. Noe, Oct 02 2003

A031439 a(0) = 1, a(n) is the greatest prime factor of a(n-1)^2+1 for n > 0.

Original entry on oeis.org

1, 2, 5, 13, 17, 29, 421, 401, 53, 281, 3037, 70949, 1713329, 1467748131121, 37142837524296348426149, 101591133424866642486477019709, 1650979973845742266714536305651329, 78343914631785958284737, 4029445531112797145738746391569, 350080544438648120162733678636001, 26208090024628793745288451837610346882122253572537, 4717815978577117335515270825550279551117660519482308365269206484133871485221
Offset: 0

Views

Author

Keywords

Comments

Does this sequence grow indefinitely, or does it cycle? - Franklin T. Adams-Watters, Oct 02 2006
All a(n) except a(0) = 1 belong to A014442(n) = {2, 5, 5, 17, 13, 37, 5, 13, 41, 101, ...} Largest prime factor of n^2 + 1. All a(n) except a(0) = 1 belong to A002313(n) = {2, 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, ...} Primes congruent to 1 or 2 modulo 4; or, primes of form x^2+y^2; or, -1 is a square mod p. All a(n) except a(0) = 1 and a(1) = 2 are the Pythagorean primes A002144(n) = {5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, ...} Primes of form 4n+1. - Alexander Adamchuk, Nov 05 2006
Essentially the same as A072268; A072268(n) = A031439(n-1)^2 + 1. - Charles R Greathouse IV, May 08 2009

Examples

			a(16)=A006530(a(15)^2+1)=
A006530(101591133424866642486477019709^2+1)=
A006530(10320758390549056348725939119133160378521185060950774444682)=
A006530(2*29*23201*4645528280970018601*1650979973845742266714536305651329)=
1650979973845742266714536305651329, factorization of A006530(a(15)^2+1) by Dario A. Alpern's program (see link).
		

Crossrefs

Cf. A002144 - Pythagorean primes: primes of form 4n+1; A002313 - Primes congruent to 1 or 2 modulo 4; A014442 - Largest prime factor of n^2 + 1.

Programs

  • Mathematica
    gpf[n_] := FactorInteger[n][[-1, 1]]; a[0] = 1; a[n_] := a[n] = gpf[a[n - 1]^2 + 1]; Table[an = a[n]; Print[an]; an, {n, 0, 21}] (* Jean-François Alcover, Nov 04 2011 *)
    NestList[FactorInteger[#^2+1][[-1,1]]&,1,21] (* Harvey P. Dale, Jul 04 2013 *)
  • PARI
    gpf(n)=local(pf);pf=factor(n);pf[matsize(pf)[1],1] vector(20,i,r=if(i==1,1,gpf(r^2+1)))

Extensions

One more term from Vladeta Jovovic, Nov 26 2001
a(16) from Reinhard Zumkeller, Aug 07 2004
a(17)-a(21) from Richard FitzHugh (fitzhughrichard(AT)hotmail.com), Aug 12 2004

A185086 Fouvry-Iwaniec primes: Primes of the form k^2 + p^2 where p is a prime.

Original entry on oeis.org

5, 13, 29, 41, 53, 61, 73, 89, 109, 113, 137, 149, 157, 173, 193, 229, 233, 269, 281, 293, 313, 317, 349, 353, 373, 389, 397, 409, 433, 449, 461, 509, 521, 557, 569, 593, 601, 613, 617, 653, 673, 701, 733, 761, 773, 797, 809, 853, 857, 877, 929, 937, 941, 953
Offset: 1

Views

Author

Keywords

Comments

Sequence is infinite, see Fouvry & Iwaniec.
Its intersection with A028916 is A262340, by the uniqueness part of Fermat's two-squares theorem. - Jonathan Sondow, Oct 05 2015
Named after the French mathematician Étienne Fouvry (b. 1953) and the Polish-American mathematician Henryk Iwaniec (b. 1947). - Amiram Eldar, Jun 20 2021

Crossrefs

Subsequence of A002144 and hence of A002313.
The positive terms of A240130 form a subsequence.

Programs

  • Haskell
    a185086 n = a185086_list !! (n-1)
    a185086_list = filter (\p -> any ((== 1) . a010052) $
                   map (p -) $ takeWhile (<= p) a001248_list) a000040_list
    -- Reinhard Zumkeller, Mar 17 2013
  • Mathematica
    nn = 1000; Union[Reap[Do[n = k^2 + p^2; If[n <= nn && PrimeQ[n], Sow[n]], {k, Sqrt[nn]}, {p, Prime[Range[PrimePi[Sqrt[nn]]]]}]][[2, 1]]]
  • PARI
    is(n)=forprime(p=2,sqrtint(n),if(issquare(n-p^2),return(isprime(n))));0
    
  • PARI
    list(lim)=my(v=List(),N,t);forprime(p=2,sqrt(lim), N=p^2; for(n=1,sqrt(lim-N), if(ispseudoprime(t=N+n^2), listput(v,t)))); v=vecsort(Vec(v),,8); v
    

A145299 Smallest k such that k^2+1 is divisible by A002144(n)^6.

Original entry on oeis.org

1068, 1999509, 390112, 253879357, 756360062, 2363588163, 5041394261, 9435321777, 41865466758, 102666405913, 197177418061, 316411915250, 171829799914, 625667121807, 182312430890, 1095001339019, 6390289199260
Offset: 1

Views

Author

Klaus Brockhaus, Oct 17 2008

Keywords

Examples

			a(1) = 1068 since A002144(1) = 5, 1068^2+1 = 1140625 = 5^6*73 and for no k < 1068 does 5^6 divide k^2+1. a(11) = 197177418061 since A002144(11) = 97, 197177418061^2+1 = 38878934193202368999722 = 2*97^6*23337479509 and for no k < 197177418061 does 97^6 divide k^2+1.
		

Crossrefs

Cf. A002144 (primes of form 4n+1), A002313 (-1 is a square mod p), A059321, A145296, A145297, A145298.

Programs

  • PARI
    { e=6; forprime(p=2, 1000, if(p%4==1, k=lift(sqrt(-1+O(p^e))); if(k>p^e/2,k=p^e-k); print1(k, ", "))) }
    
  • Python
    from itertools import islice
    from sympy import nextprime, sqrt_mod_iter
    def A145299_gen(): # generator of terms
        p = 1
        while (p:=nextprime(p)):
            if p&3==1:
                yield min(sqrt_mod_iter(-1,p**6))
    A145299_list = list(islice(A145299_gen(),20)) # Chai Wah Wu, May 04 2024

Extensions

More terms and efficient PARI program from. - Max Alekseyev, Oct 28 2008

A084161 Primes that are the sum of two squares and which set a record for the gap to the next prime of that form.

Original entry on oeis.org

2, 5, 17, 73, 113, 197, 461, 1493, 1801, 9533, 15661, 16741, 33181, 39581, 50593, 180797, 183089, 1561829, 1637813, 2243909, 4468889, 4874717, 7856441, 10087201, 12021029, 12213913, 18226661, 148363637, 292182097, 320262253, 468213937
Offset: 0

Views

Author

Sven Simon, May 17 2003

Keywords

Comments

Real primes 2, 5, 13, 17, 29, 37, ... (A002313) have a unique representation as sum of two squares. Values larger than 2 are the primes p with p = 1 mod 4. If p = x^2 + y^2, the corresponding complex prime is x + y * i, where i is the imaginary unit.
The length of the gap can be found in A084162.

Examples

			a(3) = 73: There are no primes p = 1 mod 4 between 73 and 89, this gap is the largest up to 89, the length is 16. Note that 73 = (8 - 3i)(8 + 3i) and 89 = (8 - 5i)(8 + 5i). The primes 79 and 83 are inert in Z[i].
		

References

  • Ervand Kogbetliantz and Alice Krikorian, Handbook of First Complex Prime Numbers, Parts 1 and 2, Gordon and Breach, 1971.

Crossrefs

Cf. A002313, A084160, A084162 (gap sizes), A268963 (end-of-gap primes).

Programs

  • Mathematica
    Reap[Print[2]; Sow[2]; r = 0; p = 5; For[q = 7, q < 10^7, q = NextPrime[q], If[Mod[q, 4] == 3, Continue[]]; g = q - p; If[g > r, r = g; Print[p] Sow[p]]; p = q]][[2, 1]] (* Jean-François Alcover, Feb 20 2019, from PARI *)
  • PARI
    print1(2);r=0;p=5;forprime(q=7,1e7,if(q%4==3,next);g=q-p;if(g>r,r=g;print1(", "p));p=q) \\ Charles R Greathouse IV, Apr 29 2014

A111635 Smallest prime of the form x^(2^n) + y^(2^n) where x,y are distinct integers.

Original entry on oeis.org

2, 5, 17, 257, 65537, 3512911982806776822251393039617, 4457915690803004131256192897205630962697827851093882159977969339137, 1638935311392320153195136107636665419978585455388636669548298482694235538906271958706896595665141002450684974003603106305516970574177405212679151205373697500164072550932748470956551681
Offset: 0

Views

Author

Max Alekseyev, Aug 09 2005

Keywords

Comments

Is this sequence defined for all n?
From Jeppe Stig Nielsen, Sep 16 2015: (Start)
Numbers of this form are sometimes called extended generalized Fermat numbers.
If we restrict ourselves to the case y=1, we get instead the sequence A123599, therefore a(n) <= A123599(n) for all n. Can this be an equality for some n > 4?
The formula x^(2^m) + y^(2^m) also gives the decreasing chain {A000040, A002313, A002645, A006686, A100266, A100267, ...} of subsets of the prime numbers if we drop the requirement that x != y and take all primes (not just the smallest one) with m greater than some lower bound.
(End)
For more terms (the values of max(x,y)), see A291944. - Jeppe Stig Nielsen, Dec 28 2019

Crossrefs

A145296 Smallest k such that k^2 + 1 is divisible by A002144(n)^3.

Original entry on oeis.org

57, 239, 1985, 10133, 9466, 11389, 27590, 51412, 153765, 344464, 107551, 296344, 172078, 432436, 931837, 753090, 676541, 2321221, 2027724, 3394758, 1706203, 4841182, 1438398, 2947125, 398366, 5657795, 4942017, 9400802, 11906503
Offset: 1

Views

Author

Klaus Brockhaus, Oct 08 2008

Keywords

Examples

			a(3) = 1985 since A002144(3) = 17, 1985^2 + 1 = 3940226 = 2*17^3*401 and for no k < 1985 does 17^3 divide k^2+1.
		

Crossrefs

Cf. A002144 (primes of form 4n+1), A002313 (-1 is a square mod p), A059321, A145297, A145298, A145299.

Programs

  • PARI
    {m=12000000; pmax=300; z=70; v=vector(z); for(n=1, m, fac=factor(n^2+1); for(j=1, #fac[, 1], if(fac[j, 2]>=3&&fac[j, 1]<=pmax, q=primepi(fac[j, 1]); if(q<=z&&v[q]==0, v[q]=n)))); t=1; j=0; while(t&&j
    				
  • PARI
    {e=3; forprime(p=2, 300, if(p%4==1, q=p^e; m=q; while(!ispower(m-1,2,&n), m=m+q); print1(n, ",")))} \\ Klaus Brockhaus, Oct 09 2008
    
  • Python
    from itertools import islice
    from sympy import nextprime, sqrt_mod_iter
    def A145296_gen(): # generator of terms
        p = 1
        while (p:=nextprime(p)):
            if p&3==1:
                yield min(sqrt_mod_iter(-1,p**3))
    A145296_list = list(islice(A145296_gen(),20)) # Chai Wah Wu, May 04 2024
Previous Showing 41-50 of 130 results. Next