cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 88 results. Next

A262177 Decimal expansion of Q_5 = zeta(5) / (Sum_{k>=1} (-1)^(k+1) / (k^5 * binomial(2k, k))), a conjecturally irrational constant defined by an Apéry-like formula.

Original entry on oeis.org

2, 0, 9, 4, 8, 6, 8, 6, 2, 2, 0, 1, 0, 0, 3, 6, 9, 9, 3, 8, 5, 0, 2, 4, 9, 2, 9, 3, 7, 3, 2, 9, 4, 1, 6, 3, 0, 2, 9, 6, 7, 5, 8, 7, 4, 8, 5, 6, 7, 7, 8, 1, 8, 2, 7, 4, 0, 1, 2, 7, 5, 8, 7, 8, 3, 7, 4, 3, 8, 0, 0, 7, 8, 7, 6, 8, 4, 6, 8, 1, 5, 6, 3, 2, 0, 6, 0, 4, 4, 2, 3, 2, 0, 9, 0, 4, 3, 1, 3, 6, 9, 3, 1
Offset: 1

Views

Author

Jean-François Alcover, Sep 14 2015

Keywords

Comments

The similar constant Q_3 = zeta(3) / (Sum_{k>=1} (-1)^(k+1) / (k^3 * binomial(2k, k))) evaluates to 5/2.

Examples

			2.09486862201003699385024929373294163029675874856778182740127587837438...
		

Crossrefs

Cf. A013663.
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Programs

  • Mathematica
    Q5 = Zeta[5]/Sum[(-1)^(k+1)/(k^5*Binomial[2k, k]), {k, 1, Infinity}]; RealDigits[Q5, 10, 103] // First
  • PARI
    zeta(5)/suminf(k=1, (-1)^(k+1)/(k^5*binomial(2*k,k))) \\ Michel Marcus, Sep 14 2015

Formula

Equals 2*zeta(5)/6F5(1,1,1,1,1,1; 3/2,2,2,2,2; -1/4).

A002896 Number of 2n-step polygons on cubic lattice.

Original entry on oeis.org

1, 6, 90, 1860, 44730, 1172556, 32496156, 936369720, 27770358330, 842090474940, 25989269017140, 813689707488840, 25780447171287900, 825043888527957000, 26630804377937061000, 865978374333905289360, 28342398385058078078010, 932905175625150142902300
Offset: 0

Views

Author

Keywords

Comments

Number of walks with 2n steps on the cubic lattice Z^3 beginning and ending at (0,0,0).
If A is a random matrix in USp(6) (6 X 6 complex matrices that are unitary and symplectic) then a(n) is the 2n-th moment of tr(A^k) for all k >= 7. - Andrew V. Sutherland, Mar 24 2008
Diagonal of the rational function R(x,y,z,w) = 1/(1 - (w*x*y + w*x*z + w*y + x*z + y + z)). - Gheorghe Coserea, Jul 14 2016
Constant term in the expansion of (x + 1/x + y + 1/y + z + 1/z)^(2n). - Harry Richman, Apr 29 2020

Examples

			1 + 6*x + 90*x^2 + 1860*x^3 + 44730*x^4 + 1172556*x^5 + 32496156*x^6 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

C(2n, n) times A002893.
Related to diagonal of rational functions: A268545-A268555.
Row k=3 of A287318.

Programs

  • Maple
    a := proc(n) local k; binomial(2*n,n)*add(binomial(n,k)^2 *binomial(2*k,k), k=0..n); end;
    # second Maple program
    a:= proc(n) option remember; `if`(n<2, 5*n+1,
          (2*(2*n-1)*(10*n^2-10*n+3) *a(n-1)
           -36*(n-1)*(2*n-1)*(2*n-3) *a(n-2)) /n^3)
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Nov 02 2012
    A002896 := n -> binomial(2*n,n)*hypergeom([1/2, -n, -n], [1, 1], 4):
    seq(simplify(A002896(n)), n=0..16); # Peter Luschny, May 23 2017
  • Mathematica
    Table[Binomial[2n,n] Sum[Binomial[n,k]^2 Binomial[2k,k],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Jan 24 2012 *)
    a[ n_] := If[ n < 0, 0, HypergeometricPFQ[ {-n, -n, 1/2}, {1, 1}, 4] Binomial[ 2 n, n]] (* Michael Somos, May 21 2013 *)
  • PARI
    a(n)=binomial(2*n,n)*sum(k=0,n,binomial(n, k)^2*binomial(2*k, k)) \\ Charles R Greathouse IV, Oct 31 2011
    
  • Sage
    def A002896():
        x, y, n = 1, 6, 1
        while True:
            yield x
            n += 1
            x, y = y, ((4*n-2)*((10*(n-1)*n+3)*y-18*(n-1)*(2*n-3)*x))//n^3
    a = A002896()
    [next(a) for i in range(17)]  # Peter Luschny, Oct 09 2013

Formula

a(n) = C(2*n, n)*Sum_{k=0..n} C(n, k)^2*C(2*k, k).
a(n) = (4^n*p(1/2, n)/n!)*hypergeom([-n, -n, 1/2], [1, 1], 4), where p(a, k) = Product_{i=0..k-1} (a+i).
E.g.f.: Sum_{n>=0} a(n)*x^(2*n)/(2*n)! = BesselI(0, 2*x)^3. - Corrected by Christopher J. Smyth, Oct 29 2012
D-finite with recurrence: n^3*a(n) = 2*(2*n-1)*(10*n^2-10*n+3)*a(n-1) - 36*(n-1)*(2*n-1)*(2*n-3)*a(n-2). - Vladeta Jovovic, Jul 16 2004
An asymptotic formula follows immediately from an observation of Bruce Richmond and me in SIAM Review - 31 (1989, 122-125). We use Hayman's method to find the asymptotic behavior of the sum of squares of the multinomial coefficients multi(n, k_1, k_2, ..., k_m) with m fixed. From this one gets a_n ~ (3/4)*sqrt(3)*6^(2*n)/(Pi*n)^(3/2). - Cecil C Rousseau (ccrousse(AT)memphis.edu), Mar 14 2006
G.f.: (1/sqrt(1+12*z)) * hypergeom([1/8,3/8],[1],64/81*z*(1+sqrt(1-36*z))^2*(2+sqrt(1-36*z))^4/(1+12*z)^4) * hypergeom([1/8, 3/8],[1],64/81*z*(1-sqrt(1-36*z))^2*(2-sqrt(1-36*z))^4/(1+12*z)^4). - Sergey Perepechko, Jan 26 2011
a(n) = binomial(2*n,n)*A002893(n). - Mark van Hoeij, Oct 29 2011
G.f.: (1/2)*(10-72*x-6*(144*x^2-40*x+1)^(1/2))^(1/2)*hypergeom([1/6, 1/3],[1],54*x*(108*x^2-27*x+1+(9*x-1)*(144*x^2-40*x+1)^(1/2)))^2. - Mark van Hoeij, Nov 12 2011
PSUM transform is A174516. - Michael Somos, May 21 2013
0 = (-x^2+40*x^3-144*x^4)*y''' + (-3*x+180*x^2-864*x^3)*y'' + (-1+132*x-972*x^2)*y' + (6-108*x)*y, where y is the g.f. - Gheorghe Coserea, Jul 14 2016
a(n) = [(x y z)^0] (x + 1/x + y + 1/y + z + 1/z)^(2*n). - Christopher J. Smyth, Sep 25 2018
a(n) = (1/Pi)^3*Integral_{0 <= x, y, z <= Pi} (2*cos(x) + 2*cos(y) + 2*cos(z))^(2*n) dx dy dz. - Peter Bala, Feb 10 2022
a(n) = Sum_{i+j+k=n, 0<=i,j,k<=n} multinomial(2n [i,i,j,j,k,k]). - Shel Kaphan, Jan 16 2023
Sum_{k>=0} a(k)/36^k = A086231 = (sqrt(3)-1) * (Gamma(1/24) * Gamma(11/24))^2 / (32*Pi^3). - Vaclav Kotesovec, Apr 23 2023
G.f.: HeunG(1/9,1/12,1/4,3/4,1,1/2,4*x)^2 (see Hassani et al.). - Stefano Spezia, Feb 16 2025

A002898 Number of n-step closed paths on hexagonal lattice.

Original entry on oeis.org

1, 0, 6, 12, 90, 360, 2040, 10080, 54810, 290640, 1588356, 8676360, 47977776, 266378112, 1488801600, 8355739392, 47104393050, 266482019232, 1512589408044, 8610448069080, 49144928795820, 281164160225520, 1612061452900080, 9261029179733760, 53299490722049520
Offset: 0

Views

Author

Keywords

Comments

Also, number of closed paths of length n on the honeycomb tiling.
The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.
From David Callan, Aug 25 2009: (Start)
a(n) = number of 2 X n matrices, entries from {1,2,3}, second row a (multiset) permutation of the first, with no constant columns. For example, a(2)=6 counts the matrices
1 2 1 3 2 1 2 3 3 1 3 2
2 1 3 1 1 2 3 2 1 3 2 3. (End)
Also, a(n) is the constant coefficient in the expansion of (x + 1/x + y + 1/y + x/y + y/x)^n. - Christopher J. Smyth, Sep 25 2018
a(n) is the constant term in the expansion of (-2 + (1 + x) * (1 + y) + (1 + 1/x) * (1 + 1/y))^n. - Seiichi Manyama, Oct 27 2019
a(n) is the number of paths from (0,0,0) to (n,n,n) using the six permutations of (0,1,2) as steps, i.e., the steps (0,1,2), (0,2,1), (1,0,2), (1,2,0), (2,0,1), and (2,1,0). - William J. Wang, Dec 07 2020

Examples

			O.g.f.: 1 + 6*x^2 + 12*x^3 + 90*x^4 + 360*x^5 + 2040*x^6 + ...
O.g.f.: 1 + 6*x^2*(1+2*x) + 90*x^4*(1+2*x)^2 + 1680*x^6*(1+2*x)^3 + 34650*x^8*(1+2*x)^4 + ... + A006480(n)*x^(2*n)*(1+2*x)^n + .... - _Paul D. Hanna_, Feb 26 2012
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000172, A006480, A337905-A337907, A094060, A002894 (returns square lattice), A002893 (honeycomb net).

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, [1, 0, 6][n+1], ((n-1)*
          n*a(n-1) +24*(n-1)^2*a(n-2) +36*(n-1)*(n-2)*a(n-3))/n^2)
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Dec 08 2020
  • Mathematica
    a[n_] := Sum[(-2)^(n-i)*Binomial[i, j]^3*Binomial[n, i], {i, 0, n}, {j, 0, i}]; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Dec 21 2011, after Vasu Tewari *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n, (3*m)!/m!^3*x^(2*m)*(1+2*x+x*O(x^n))^m),n)} /* Paul D. Hanna, Feb 26 2012 */

Formula

D-finite with recurrence a(0) = 1, a(1) = 0, a(2) = 6, 36*(n+2)*(n+1)*a(n) +24*(n+2)^2*a(n+1) +(n+3)*(n+2)*a(n+2) -(n+3)^2*a(n+3) = 0.
E.g.f.: (BesselI(0,2*x))^3 + 2*Sum_{k>=1} (BesselI(k,2*x))^3. - Karol A. Penson Aug 18 2006
a(n) = Sum_{i=0..n} (-2)^(n-i)*binomial(n, i)*(Sum_{j=0..i} binomial(i, j)^3). - Vasu Tewari (vasu(AT)math.ubc.ca), Aug 04 2010
O.g.f.: (4/Pi)*EllipticK( 8*sqrt(z^3*(1+3*z))/(1-12*z^2+sqrt((1-6*z)*(1+2*z)^3)) ) / sqrt(2 - 24*z^2 + 2*sqrt((1-6*z)*(1+2*z)^3)). - Sergey Perepechko, Feb 08 2011
O.g.f.: Sum_{n>=0} (3*n)!/n!^3 * x^(2*n)*(1+2*x)^n. - Paul D. Hanna, Feb 26 2012
a(n) ~ sqrt(3)*6^n/(2*Pi*n). - Vaclav Kotesovec, Aug 13 2013
O.g.f.: 2F1(1/3,2/3; 1; 27*x^2*(1+2*x)). - R. J. Mathar, Sep 29 2020

Extensions

More terms from David Bloom, Mar 1997
Formula and further terms from Cyril Banderier, Oct 12 2000

A260793 Primes p such that p does not divide any term of the Apéry-like sequence A000172 (also known as Type I primes).

Original entry on oeis.org

3, 11, 17, 19, 43, 83, 89, 97, 113, 137, 139, 163, 193, 211, 233, 241, 283, 307, 313, 331, 347, 353, 379, 401, 409, 419, 433, 443, 491, 499, 523, 547, 569, 587, 601, 617, 619, 641, 643, 673, 811, 827, 859, 881, 929, 947, 953, 977, 1009, 1019, 1033, 1049, 1051
Offset: 1

Views

Author

N. J. A. Sloane, Aug 05 2015

Keywords

Comments

See Schulte et al. (2014) for the precise definition of Type I primes.

Crossrefs

For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see this sequence, A291275-A291284 and A133370 respectively.

Programs

  • Mathematica
    maxPrime = 1051;
    maxPi = PrimePi @ maxPrime;
    okQ[p_] := AllTrue[Range[3 maxPi (* coeff 3 is empirical *)], GCD[HypergeometricPFQ[{-#, -#, -#}, {1, 1}, -1], p] == 1&];
    Select[Prime[Range[maxPi]], okQ] (* Jean-François Alcover, Jan 13 2020 *)

Extensions

Edited by N. J. A. Sloane, Aug 22 2017

A133370 Primes p such that p does not divide any term of the Apery sequence A005259 .

Original entry on oeis.org

2, 3, 7, 13, 23, 29, 43, 47, 53, 67, 71, 79, 83, 89, 101, 103, 107, 109, 113, 127, 131, 137, 149, 157, 167, 173, 199, 223, 229, 239, 263, 269, 277, 281, 311, 313, 317, 337, 349, 353, 359, 373, 383, 389, 397, 401, 409, 421, 449, 457, 461, 467, 479, 487, 491
Offset: 1

Views

Author

Philippe Deléham, Oct 27 2007

Keywords

Comments

Malik and Straub give arguments suggesting that this sequence is infinite. - N. J. A. Sloane, Aug 06 2017

Crossrefs

For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

Programs

  • Mathematica
    NeverDividesLucasSeqQ[a_, p_] := And @@ Table[Mod[a[n], p]>0, {n, 0, p-1}];
    A3[a_, b_, c_, n_ /; n < 0] = 0;
    A3[a_, b_, c_, 0] = 1;
    A3[a_, b_, c_, n_] := A3[a, b, c, n] = (((2n - 1)(a (n-1)^2 + a (n-1) + b)) A3[a, b, c, n-1] - c (n-1)^3 A3[a, b, c, n-2])/n^3;
    A3[a_, b_, c_, d_, n_ /; n < 0] = 0;
    Agamma[n_] := A3[17, 5, 1, n];
    Select[Range[1000], PrimeQ[#] && NeverDividesLucasSeqQ[Agamma, #]&] (* Jean-François Alcover, Aug 05 2018, copied from Amita Malik's notebook *)

Extensions

Terms a(16) onwards computed by Amita Malik - N. J. A. Sloane, Aug 21 2017

A291275 Primes p such that p does not divide any term of the Apéry-like sequence A005258.

Original entry on oeis.org

2, 5, 13, 17, 29, 37, 41, 61, 73, 89, 101, 109, 137, 149, 173, 181, 197, 229, 233, 269, 277, 313, 337, 349, 353, 373, 397, 401, 409, 433, 457, 461, 541, 557, 601, 613, 641, 661, 673, 677, 701, 709, 733, 761, 769, 797, 821, 829, 853, 857, 877, 929, 941, 977
Offset: 1

Views

Author

N. J. A. Sloane, Aug 21 2017

Keywords

Crossrefs

For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

Programs

  • Mathematica
    maxPrime = 977;
    maxPi = PrimePi @ maxPrime;
    okQ[p_] := AllTrue[Range[3 maxPi (* coeff 3 is empirical *)], GCD[HypergeometricPFQ[{# + 1, -#, -#}, {1, 1}, 1], p] == 1&];
    Select[Prime[Range[maxPi]], okQ] (* Jean-François Alcover, Jan 13 2020 *)

A291284 Primes p such that p does not divide any term of the Apery-like sequence A290576.

Original entry on oeis.org

2, 5, 7, 13, 17, 19, 29, 37, 43, 47, 59, 61, 67, 71, 83, 89, 101, 109, 127, 139, 149, 167, 173, 191, 211, 233, 239, 241, 251, 257, 271, 277, 281, 307, 311, 313, 331, 337, 347, 349, 353, 359, 373, 379, 383, 409, 419, 421, 431, 433, 443
Offset: 1

Views

Author

N. J. A. Sloane, Aug 21 2017

Keywords

Crossrefs

For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

A064037 Number of walks of length 2n on cubic lattice, starting and finishing at origin and staying in first (nonnegative) octant.

Original entry on oeis.org

1, 3, 24, 285, 4242, 73206, 1403028, 29082339, 640672890, 14818136190, 356665411440, 8874875097270, 227135946200940, 5955171596514900, 159439898653636320, 4347741997166750235, 120493374240909299130, 3387806231071627372590, 96488484001399878973200
Offset: 0

Views

Author

Henry Bottomley, Aug 23 2001

Keywords

Examples

			a(1)=3 and a(2)=24 since if the possible steps are Right, Left, Up, Down, Forwards and Backwards, then the two-step paths are FB, RL and UD, while the four-step paths are FBFB, FBRL, FBUD, FFBB, FRBL, FRLB, FUBD, FUDB, RFBL, RFLB, RLFB, RLRL, RLUD, RRLL, RUDL, RULD, UDFB, UDRL, UDUD, UFBD, UFDB, URDL, URLD, UUDD.
		

Crossrefs

Cf. A064036. The two- and one-dimensional equivalents are A005568 and A000108.

Programs

  • Maple
    f := -3*x+(1+sqrt(1-40*x+144*x^2))/4;
    H := (1-2*f)*f*hypergeom([1/6,1/3],[1],27*(1-2*f)*f^2)^2/sqrt(1+6*f);
    r2 := (1-4*x)*(36*x-1)*(1920*x^2+166*x+1)*x^2;
    r1 := -(138240*x^4+7776*x^3+200*x^2-92*x-1)*x;
    r0 := 19800*x^3+764*x^2-86*x-1;
    ogf := (r2*diff(H,x,x)+r1*diff(H,x)+r0*H)/(5760*x^4) + 1/(2*x);
    series(ogf, x=0, 30); # Mark van Hoeij, Apr 19 2013
    # second Maple program:
    a:= proc(n) option remember; `if`(n<2, 2*n+1, ((8*n-4)*(5*n^2+10*n+3)
           *a(n-1)-36*(2*n-1)*(2*n-3)*(n-1)*a(n-2))/((n+1)*(n+2)*(n+3)))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 29 2019
  • Mathematica
    Table[Sum[Binomial[2*n, 2*j] * CatalanNumber[j] * CatalanNumber[j+1] * CatalanNumber[n-j], {j, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 09 2019 *)
  • PARI
    C(n,k) = binomial(n,k);
    c(n) = binomial(2*n,n)/(n+1);
    a(n) = sum(j=0,n, C(2*n, 2*j)*c(j)*c(j+1)*c(n-j));
    /* Joerg Arndt, Apr 19 2013 */

Formula

a(n) = Sum_{j=0..n} C(2n, 2j)*c(j)*c(j+1)*c(n-j) where c(k)=A000108(k).
G.f. is a large expression in terms of hypergeometric functions and sqrt's, see Maple program. - Mark van Hoeij, Apr 19 2013
a(n) = binomial(2*n,n)*((7*n+11)*A002893(n+1)-(9*n+9)*A002893(n))/(2*(n+1)*(n+2)^2*(n+3)). - Mark van Hoeij, Apr 19 2013
a(n) ~ 2^(2*n - 2) * 3^(2*n + 9/2) / (Pi^(3/2) * n^(9/2)). - Vaclav Kotesovec, Jun 09 2019
D-finite with recurrence: (n+3)*(n+2)*(n+1)*a(n) -4*(2*n-1)*(5*n^2+10*n+3)*a(n-1) +36*(n-1)*(2*n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Feb 20 2020

Extensions

Added more terms, Joerg Arndt, Apr 19 2013

A287316 Square array A(n,k) = (n!)^2 [x^n] BesselI(0, 2*sqrt(x))^k read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 6, 1, 0, 1, 4, 15, 20, 1, 0, 1, 5, 28, 93, 70, 1, 0, 1, 6, 45, 256, 639, 252, 1, 0, 1, 7, 66, 545, 2716, 4653, 924, 1, 0, 1, 8, 91, 996, 7885, 31504, 35169, 3432, 1, 0, 1, 9, 120, 1645, 18306, 127905, 387136, 272835, 12870, 1, 0
Offset: 0

Views

Author

Peter Luschny, May 23 2017

Keywords

Comments

A287314 provide polynomials and A287315 rational functions generating the columns of the array.

Examples

			Arrays start:
k\n| 0  1    2      3         4        5          6           7
---|----------------------------------------------------------------
k=0| 1, 0,   0,      0,       0,       0,         0,          0, ... A000007
k=1| 1, 1,   1,      1,       1,       1,         1,          1, ... A000012
k=2| 1, 2,   6,     20,      70,     252,       924,       3432, ... A000984
k=3| 1, 3,  15,     93,     639,    4653,     35169,     272835, ... A002893
k=4| 1, 4,  28,    256,    2716,   31504,    387136,    4951552, ... A002895
k=5| 1, 5,  45,    545,    7885,  127905,   2241225,   41467725, ... A169714
k=6| 1, 6,  66,    996,   18306,  384156,   8848236,  218040696, ... A169715
k=7| 1, 7,  91,   1645,   36715,  948157,  27210169,  844691407, ...
k=8| 1, 8, 120,   2528,   66424, 2039808,  70283424, 2643158400, ... A385286
k=9| 1, 9, 153,   3681,  111321, 3965409, 159700401, 7071121017, ...
       A000384,A169711, A169712, A169713,                            A033935
		

Crossrefs

Rows: A000007 (k=0), A000012 (k=1), A000984 (k=2), A002893 (k=3), A002895 (k=4), A169714 (k=5), A169715 (k=6), A385286 (k=8).
Columns: A001477(n=1), A000384 (n=2), A169711 (n=3), A169712 (n=4), A169713 (n=5).
Cf. A033935 (diagonal), A287314, A287315, A287318.

Programs

  • Maple
    A287316_row := proc(k, len) local b, ser;
    b := k -> BesselI(0, 2*sqrt(x))^k: ser := series(b(k), x, len);
    seq((i!)^2*coeff(ser,x,i), i=0..len-1) end:
    for k from 0 to 6 do A287316_row(k, 9) od;
    A287316_col := proc(n, len) local k, x;
    sum(z^k/k!^2, k = 0..infinity); series(%^x, z=0, n+1):
    unapply(n!^2*coeff(%, z, n), x); seq(%(j), j=0..len) end:
    for n from 0 to 7 do A287316_col(n, 9) od;
  • Mathematica
    Table[Table[SeriesCoefficient[BesselI[0, 2 Sqrt[x]]^k, {x, 0, n}] (n!)^2, {n, 0, 6}], {k, 0,9}]
  • PARI
    A287316_row(K, N) = {
      my(x='x + O('x^(2*N-1)));
      Vec(serlaplace(serlaplace(substpol(besseli(0,2*x)^K, 'x^2, 'x))));
    };
    N=8; concat([vector(N, n, n==1)], vector(9, k, A287316_row(k, N))) \\ Gheorghe Coserea, Jan 12 2018
    
  • PARI
    {A(n, k) = if(n<0 || k<0, 0, n!^2 * polcoeff(besseli(0, 2*x + x*O(x^(2*n)))^k, 2*n))}; /* Michael Somos, Dec 30 2021 */
    
  • PARI
    A(k, n) = my(x='x+O('x^(n+1))); n!^2*polcoeff(hypergeom([], [1], x)^k, n); \\ Peter Luschny, Jun 24 2025
    
  • Python
    from math import comb
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A(n,k):
        if k <= 0: return 0**n
        return sum(A(i,k-1)*comb(n,i)**2 for i in range(n+1))
    for k in range(10): print([A(n, k) for n in range(8)])
    # Jeremy Tan, Dec 10 2021

Formula

A(n,k) = A287318(n,k) / binomial(2*n,n).
If a+b=k then A(n,k) = Sum_{i=0..n} A(i,a)*A(n-i,b)*binomial(n,i)^2 (Richmond and Shallit). In particular A(n,k) = Sum_{i=0..n} A(i,k-1)*binomial(n,i)^2. - Jeremy Tan, Dec 10 2021

A108304 Number of set partitions of {1, ..., n} that avoid 3-crossings.

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 202, 859, 3930, 19095, 97566, 520257, 2877834, 16434105, 96505490, 580864901, 3573876308, 22426075431, 143242527870, 929759705415, 6123822269373, 40877248201308, 276229252359846, 1887840181793185, 13037523684646810, 90913254352507057
Offset: 0

Views

Author

Keywords

Comments

There is also a sum-formula for a(n). See Bousquet-Mélou and Xin.
Also partitions avoiding a certain pattern (see J. Bloom and S. Elizalde). - N. J. A. Sloane, Jan 02 2013

Examples

			There are 203 partitions of 6 elements, but a(6)=202 because the partition (1,4)(2,5)(3,6) has a 3-crossing.
G.f. = 1 + x + 2*x^2 + 5*x^3 + 15*x^4 + 52*x^5 + 202*x^6 + 859*x^7 + ...
		

Programs

  • Mathematica
    a[0] = a[1] = 1; a[n_] := a[n] = (2*(5*n^2 + 12*n - 2)*a[n-1] + 9*(-n^2 + n + 2)*a[n-2])/((n+4)*(n+5)); Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 30 2015 *)
  • PARI
    v = vector(66,n,n);
    for (n=1, #v-2, v[n+2] = ((10*n^2+64*n+84)*v[n+1]-(9*n^2+27*n)*v[n]) / (n^2+13*n+42) );
    vector(#v+1,n, if(n==1,1,v[n-1])) \\ Joerg Arndt, Sep 01 2012

Formula

Recurrence: (9*n^2+27*n) * a(n) + (-10*n^2-64*n-84) * a(n+1) + (n^2+13*n+42) * a(n+2) = 0.
a(n) = (-18*(n+1)*(4*n^5+73*n^4+530*n^3+1928*n^2+3654*n+2916)*A002893(n)+(8*n^6+17156*n^2+6084*n^3+17496+27612*n+1358*n^4+162*n^5) *A002893(n+1))/ (3*n*(n+2)^2*(n+3)^2*(n+4)^2*(n+5)). - Mark van Hoeij, Nov 05 2011
G.f.: (1+7*x-20*x^2+30*x^3-18*x^4-(3*x+1)^2*(x-1)^2*hypergeom([-2/3, -1/3],[2],27*x*(x-1)^2/(3*x+1)^3))/(6*x^4). - Mark van Hoeij, Nov 05 2011
a(n) ~ 5 * sqrt(3) * 3^(2*n+9) / (32*Pi*n^7), Bousquet-Mélou and Xin, 2006. - Vaclav Kotesovec, Aug 23 2014

Extensions

More terms added by Joerg Arndt, Sep 01 2012
Previous Showing 41-50 of 88 results. Next