cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 90 results. Next

A055112 a(n) = n*(n+1)*(2*n+1).

Original entry on oeis.org

0, 6, 30, 84, 180, 330, 546, 840, 1224, 1710, 2310, 3036, 3900, 4914, 6090, 7440, 8976, 10710, 12654, 14820, 17220, 19866, 22770, 25944, 29400, 33150, 37206, 41580, 46284, 51330, 56730, 62496, 68640, 75174, 82110, 89460, 97236, 105450
Offset: 0

Views

Author

Henry Bottomley, Jun 15 2000

Keywords

Comments

Original name: Areas of Pythagorean triangles (X, Y, Z = Y + 1) with X^2 + Y^2 = Z^2.
a(n) is the set of possible y values for 4*x^3 + x^2 = y^2 with the x values being A002378(n). - Gary Detlefs, Feb 22 2010
This sequence is related to A028896 by a(n) = n*A028896(n) - Sum_{i = 0..n-1} A028896(i) and this is the case d = 3 in the identity n*(d*(d+1)*n*(n+1)/4) - Sum_{i = 0..n-1} d*(d+1)*i*(i+1)/4 = d*(d+1)*n*(n+1)*(2*n+1)/12. - Bruno Berselli, Mar 31 2012
Also sums of rows of natural numbers (cf. A001477) seen as triangle with an odd numbers of terms per row, see example. - Reinhard Zumkeller, Jan 24 2013
Without mentioning the connection to Pythagorean triangles, Bolker (1967) gives it as an exercise to prove that these numbers are always divisible by 6. This is easy to prove from the formula that he gives, n(n - 1)(2n - 1): obviously either n or (n - 1) must be even; then, if n is congruent to 2 mod 3 it means that (2n - 1) is a multiple of 3, otherwise either n or (n - 1) is a multiple of 3; thus both prime divisors of 6 are accounted for in a(n). - Alonso del Arte, Oct 13 2013
a(n) = n*(n+1)*(n+(n+1)) is the product of two consecutive integers multiplied by the sum of those two consecutive integers. - Charles Kusniec, Sep 04 2022

Examples

			.  n   A001477(n) as triangle with row lengths = 2*n+1   Row sums = a(n)
.  0                         0                                  0
.  1                      1  2  3                               6
.  2                   4  5  6  7  8                           30
.  3                9 10 11 12 13 14 15                        84
.  4            16 17 18 19 20 21 22 23 24                    180
.  5         25 26 27 28 29 30 31 32 33 34 35                 330
.  6      36 37 38 39 40 41 42 43 44 45 46 47 48              546
.  7   49 50 51 52 53 54 55 56 57 58 59 60 61 62 63           840 .
- _Reinhard Zumkeller_, Jan 24 2013
		

References

  • Ethan D. Bolker, Elementary Number Theory: An Algebraic Approach. Mineola, New York: Dover Publications (1969, reprinted 2007): p. 7, Problem 6.5.

Crossrefs

Cf. A005408 (X values), A046092 (Y values), A001844 (Z values), A002939 (perimeter), A033581.
Similar sequences are listed in A316224.

Programs

Formula

a(n) = n*(n+1)*(2*n+1).
G.f.: 6*x*(1+x)/(1-x)^4. - Bruno Berselli, Mar 31 2012
From Benoit Cloitre, Apr 30 2002: (Start)
a(n) = 6*A000330(n) = A007531(2*n)/4 = 3*A000292(2*n-1)/2 = A005408(n)*A046092(n)/2 = A005408(n)*(A001844(n)-1)/2.
Sum_{n > 0} 1/a(n) = 3 - 4*log(2). (End)
a(n) = Sum_{i = 1..n} A033581(i). - Jonathan Vos Post, Mar 15 2006
a(n) = A000217(2*n)*A000217(2*n+1)/(2*n+1). - Charlie Marion, Feb 17 2012
a(n) = Sum_{i = 1..2*n + 1} (n^2 + (i-1)). - Charlie Marion, Sep 14 2012
Sum_{n >= 1} (-1)^(n+1)/a(n) = Pi - 3, due to Nilakantha, circa 1500. See Roy p. 304. - Peter Bala, Feb 19 2015
a(n) = A002378(n) * (2n+1). - Bruce J. Nicholson, Aug 31 2017
a(n) = Sum_{k=n^2..(n+1)^2-1} k. - Darío Clavijo, Jan 31 2025
E.g.f.: exp(x)*x*(6 + 9*x + 2*x^2). - Stefano Spezia, Feb 02 2025
a(n) = A005898(n) - A005408(n) = A083374(n+1) - A083374(n). - J.S. Seneschal, Jul 08 2025

A033988 Write 0,1,2,... in a clockwise spiral on a square lattice, writing each digit at a separate lattice point, starting with 0 at the origin and 1 at x=0, y=-1; sequence gives the numbers on the positive y-axis.

Original entry on oeis.org

0, 5, 1, 4, 3, 7, 8, 0, 4, 7, 7, 1, 2, 6, 2, 1, 8, 7, 4, 2, 6, 1, 8, 9, 2, 7, 6, 0, 6, 5, 1, 2, 0, 4, 1, 5, 8, 5, 1, 8, 8, 8, 2, 1, 2, 3, 2, 4, 9, 0, 2, 8, 9, 9, 3, 3, 2, 0, 3, 7, 9, 3, 4, 2, 8, 8, 4, 7, 1, 5, 5, 3, 7, 4, 5, 9, 7, 5, 6, 5, 9, 8, 7, 1, 5, 3, 7, 8, 4, 0, 8, 5, 6, 9, 9, 3, 1, 0, 9, 8, 1, 1, 6, 9, 9
Offset: 0

Views

Author

Keywords

Comments

In other words, write 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 ... in a clockwise spiral, starting with the 0 and taking the first step south; the sequence is then picked out from the resulting spiral by starting at the origin and moving north.

Examples

			  1---3---1---4---1
  |               |
  2   4---5---6   5
  |   |       |   |
  1   3   0   7   1
  |   |   |   |   |
  1   2---1   8   6
  |           |   |
  1---0---1---9   1
.
We begin with the 0 and wrap the numbers 1 2 3 4 ... around it.
Then the sequence is obtained by reading vertically upwards, starting from the initial 0.
		

Crossrefs

Sequences based on the same spiral: A033953, A033989, A033990. Spiral without zero: A033952.
Other sequences from spirals: A001107, A002939, A007742, A033951, A033954, A033991, A002943, A033996.
Cf. A033307.

Programs

Formula

a(n) = A033307(4*n^2 + n - 1) for n > 0. - Andrew Woods, May 18 2012

Extensions

More terms from Andrew Gacek (andrew(AT)dgi.net)
Edited by Jon E. Schoenfield, Aug 12 2018

A033989 Write 0,1,2,... in a clockwise spiral on a square lattice, writing each digit at a separate lattice point, starting with 0 at the origin and 1 at x=0, y=-1; sequence gives the numbers on the negative x-axis.

Original entry on oeis.org

0, 3, 1, 1, 3, 2, 7, 9, 1, 1, 6, 9, 4, 7, 9, 1, 2, 1, 2, 1, 6, 7, 4, 3, 6, 1, 2, 9, 5, 1, 1, 0, 9, 3, 1, 3, 6, 6, 1, 8, 6, 9, 2, 5, 0, 2, 2, 4, 6, 6, 2, 5, 6, 0, 3, 8, 9, 5, 3, 3, 6, 9, 4, 0, 5, 4, 4, 9, 8, 0, 5, 0, 4, 5, 5, 3, 3, 1, 6, 8, 5, 8, 6, 5, 1, 4, 7, 4, 9, 1, 8, 5, 1, 9, 9, 8, 6, 6, 9, 1, 1, 6, 4, 8, 1
Offset: 0

Views

Author

Keywords

Examples

			  2---3---2---4---2---5---2
  |                       |
  2   1---3---1---4---1   6
  |   |               |   |
  2   2   4---5---6   5   2
  |   |   |       |   |   |
  1   1   3   0   7   1   7
  |   |   |   |   |   |   |
  2   1   2---1   8   6   2
  |   |           |   |   |
  0   1---0---1---9   1   8
  |                   |   |
  2---9---1---8---1---7   2
We begin with the 0 and wrap the numbers 1 2 3 4 ... around it. Then the sequence is obtained by reading leftwards, starting from the initial 0. - _Andrew Woods_, May 20 2012
		

Crossrefs

Sequences based on the same spiral: A033953, A033988, A033990. Spiral without zero: A033952.
Other sequences from spirals: A001107, A002939, A007742, A033951, A033954, A033991, A002943, A033996, A033988.

Programs

Formula

a(n) = A033307(4*n^2-n-1) for n > 0. - Andrew Woods, May 20 2012

Extensions

More terms from Andrew J. Gacek (andrew(AT)dgi.net)
Edited by Charles R Greathouse IV, Nov 01 2009

A115258 Isolated primes in Ulam's lattice (1, 2, ... in spiral).

Original entry on oeis.org

83, 101, 127, 137, 163, 199, 233, 311, 373, 443, 463, 491, 541, 587, 613, 631, 641, 659, 673, 683, 691, 733, 757, 797, 859, 881, 911, 919, 953, 971, 991, 1013, 1051, 1061, 1103, 1109, 1117, 1193, 1201, 1213, 1249, 1307, 1319, 1409, 1433, 1459, 1483, 1487
Offset: 1

Views

Author

Keywords

Comments

Isolated prime numbers have no adjacent primes in a lattice generated by writing consecutive integers starting from 1 in a spiral distribution. If n0 is the number of isolated primes and p the number of primes less than N, the ratio n0/p approaches 1 as N increases. If n1, n2, n3, n4 denote the number of primes with respectively 1, 2, 3, 4 adjacent primes in the lattice, the ratios n1/n0, n2/n1, n3/n2, n4/n3 approach 0 as N increases. The limits stand for any 2D lattice of integers generated by a priori criteria (i.e., not knowing distributions of primes) as Ulam's lattice.

Examples

			83 is an isolated prime as the adjacent numbers in lattice 50, 51, 81, 82, 84, 123, 124, 125 are not primes.
From _Michael De Vlieger_, Dec 22 2015: (Start)
Spiral including n <= 17^2 showing only primes, with the isolated primes in parentheses (redrawn by _Jon E. Schoenfield_, Aug 06 2017):
  257 .  .  .  .  . 251 .  .  .  .  .  .  .  .  . 241
   . 197 .  .  . 193 . 191 .  .  .  .  .  .  .  .  .
   .  .  .  .  .  .  .  . 139 .(137).  .  .  .  . 239
   .(199).(101).  .  . 97  .  .  .  .  .  .  . 181 .
   .  .  .  .  .  .  .  . 61  . 59  .  .  . 131 .  .
   .  .  . 103 . 37  .  .  .  .  . 31  . 89  . 179 .
  263 . 149 . 67  . 17  .  .  . 13  .  .  .  .  .  .
   .  .  .  .  .  .  .  5  .  3  . 29  .  .  .  .  .
   .  . 151 .  .  . 19  .  .  2 11  . 53  .(127).(233)
   .  .  . 107 . 41  .  7  .  .  .  .  .  .  .  .  .
   .  .  .  . 71  .  .  . 23  .  .  .  .  .  .  .  .
   .  .  . 109 . 43  .  .  . 47  .  .  .(83) . 173 .
  269 .  .  . 73  .  .  .  .  . 79  .  .  .  .  . 229
   .  .  .  .  . 113 .  .  .  .  .  .  .  .  .  .  .
  271 . 157 .  .  .  .  .(163).  .  . 167 .  .  . 227
   . 211 .  .  .  .  .  .  .  .  .  .  . 223 .  .  .
   .  .  .  . 277 .  .  . 281 . 283 .  .  .  .  .  .
(End)
		

References

  • G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008, p. 22.

Crossrefs

Cf. A113688 (isolated semiprimes in the semiprime spiral), A156859.

Programs

  • Maple
    # A is Ulam's lattice
    if (isprime(A[x,y])and(not(isprime(A[x+1,y]) or isprime(A[x-1,y])or isprime(A[x,y+1])or isprime(A[x,y-1])or isprime(A[x-1,y-1])or isprime(A[x+1,y+1])or isprime(A[x+1,y-1])or isprime(A[x-1,y+1])))) then print (A[x,y]) ; fi;
  • Mathematica
    spiral[n_] := Block[{o = 2 n - 1, t, w}, t = Table[0, {o}, {o}]; t = ReplacePart[t, {n, n} -> 1]; Do[w = Partition[Range[(2 (# - 1) - 1)^2 + 1, (2 # - 1)^2], 2 (# - 1)] &@ k; Do[t = ReplacePart[t, {(n + k) - (j + 1), n + (k - 1)} -> #[[1, j]]]; t = ReplacePart[t, {n - (k - 1), (n + k) - (j + 1)} -> #[[2, j]]]; t = ReplacePart[t, {(n - k) + (j + 1), n - (k - 1)} -> #[[3, j]]]; t = ReplacePart[t, {n + (k - 1), (n - k) + (j + 1)} -> #[[4, j]]], {j, 2 (k - 1)}] &@ w, {k, 2, n}]; t]; f[w_] := Block[{d = Dimensions@ w, t, g}, t = Reap[Do[Sow@ Take[#[[k]], {2, First@ d - 1}], {k, 2, Last@ d - 1}]][[-1, 1]] &@ w; g[n_] := If[n != 0, Total@ Join[Take[w[[Last@ # - 1]], {First@ # - 1, First@ # + 1}], {First@ #, Last@ #} &@ Take[w[[Last@ #]], {First@ # - 1, First@ # + 1}], Take[w[[Last@ # + 1]], {First@ # - 1, First@# + 1}]] &@(Reverse@ First@ Position[t, n] + {1, 1}) == 0, False]; Select[Union@ Flatten@ t, g@ # &]]; f[spiral@ 21 /. n_ /; CompositeQ@ n -> 0] (* Michael De Vlieger, Dec 22 2015, Version 10 *)

A125202 a(n) = 4*n^2 - 6*n + 1.

Original entry on oeis.org

-1, 5, 19, 41, 71, 109, 155, 209, 271, 341, 419, 505, 599, 701, 811, 929, 1055, 1189, 1331, 1481, 1639, 1805, 1979, 2161, 2351, 2549, 2755, 2969, 3191, 3421, 3659, 3905, 4159, 4421, 4691, 4969, 5255, 5549, 5851, 6161, 6479, 6805, 7139, 7481, 7831, 8189, 8555, 8929, 9311, 9701, 10099, 10505, 10919, 11341
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 24 2006

Keywords

Crossrefs

Programs

Formula

a(n) = A125199(n,n-1) for n>1.
A003415(a(n)) = A017089(n-1).
From Arkadiusz Wesolowski, Dec 25 2011: (Start)
a(1) = -1, a(n) = a(n-1) + 8*n - 10.
a(n) = 2*a(n-1) - a(n-2) + 8 with a(1) = -1 and a(2) = 5.
G.f.: (1 - 4*x + 11*x^2)/(1 - x)^3. (End)
a(n) = A002943(n-1) - 1. - Arkadiusz Wesolowski, Feb 15 2012
a(n) = A028387(2n-3), with A028387(-1) = -1. - Vincenzo Librandi, Oct 10 2013
E.g.f.: exp(x)*(1 - 2*x + 4*x^2). - Stefano Spezia, Oct 10 2022
Sum_{n>=1} 1/a(n) = sqrt(5)/10*(psi(1/4+sqrt(5)/4) - psi(1/4-sqrt(5)/4)) = -0.656213833... - R. J. Mathar, Apr 22 2024

A152746 Six times hexagonal numbers: 6*n*(2*n-1).

Original entry on oeis.org

0, 6, 36, 90, 168, 270, 396, 546, 720, 918, 1140, 1386, 1656, 1950, 2268, 2610, 2976, 3366, 3780, 4218, 4680, 5166, 5676, 6210, 6768, 7350, 7956, 8586, 9240, 9918, 10620, 11346, 12096, 12870, 13668, 14490, 15336, 16206, 17100
Offset: 0

Views

Author

Omar E. Pol, Dec 12 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 6, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - Omar E. Pol, Sep 18 2011
a(n) is the number of walks on a cubic lattice of n dimensions that return to the origin, not necessarily for the first time, after 4 steps. - Shel Kaphan, Mar 20 2023

Crossrefs

Programs

  • Magma
    [6*n*(2*n-1): n in [0..50]]; // G. C. Greubel, Sep 01 2018
  • Mathematica
    6*PolygonalNumber[6,Range[0,40]] (* The program uses the PolygonalNumber function from Mathematica version 10 *) (* Harvey P. Dale, Mar 04 2016 *)
    LinearRecurrence[{3,-3,1}, {0,6,36}, 50] (* or *) Table[6*n*(2*n-1), {n,0,50}] (* G. C. Greubel, Sep 01 2018 *)
  • PARI
    a(n)=6*n*(2*n-1) \\ Charles R Greathouse IV, Jun 17 2017
    

Formula

a(n) = 12*n^2 - 6*n = A000384(n)*6 = A002939(n)*3 = A094159(n)*2.
a(n) = a(n-1) + 24*n - 18 (with a(0)=0). - Vincenzo Librandi, Nov 26 2010
From G. C. Greubel, Sep 01 2018: (Start)
G.f.: 6*x*(1+3*x)/(1-x)^3.
E.g.f.: 6*x*(1+2*x)*exp(x). (End)
From Amiram Eldar, Mar 30 2023: (Start)
Sum_{n>=1} 1/a(n) = log(2)/3.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/12 - log(2)/6. (End)

A118729 Rectangular array where row r contains the 8 numbers 4*r^2 - 3*r, 4*r^2 - 2*r, ..., 4*r^2 + 4*r.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 42, 45, 48, 52, 56, 60, 64, 68, 72, 76, 80, 85, 90, 95, 100, 105, 110, 115, 120, 126, 132, 138, 144, 150, 156, 162, 168
Offset: 0

Views

Author

Stuart M. Ellerstein (ellerstein(AT)aol.com), May 21 2006

Keywords

Comments

The numbers in row r span the interval ]8*A000217(r-1), 8*A000217(r)].
The first difference between the entries in row r is r.
Partial sums of floor(n/8). - Philippe Deléham, Mar 26 2013
Apart from the initial zeros, the same as A008726. - Philippe Deléham, Mar 28 2013
a(n+7) is the number of key presses required to type a word of n letters, all different, on a keypad with 8 keys where 1 press of a key is some letter, 2 presses is some other letter, etc., and under an optimal mapping of letters to keys and presses (answering LeetCode problem 3014). - Christopher J. Thomas, Feb 16 2024

Examples

			The array starts, with row r=0, as
  r=0:   0  0  0  0  0  0  0  0;
  r=1:   1  2  3  4  5  6  7  8;
  r=2:  10 12 14 16 18 20 22 24;
  r=3:  27 30 33 36 39 42 45 48;
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[4r^2+r(Range[-3,4]),{r,0,6}]] (* or *) LinearRecurrence[ {2,-1,0,0,0,0,0,1,-2,1},{0,0,0,0,0,0,0,0,1,2},60] (* Harvey P. Dale, Nov 26 2015 *)

Formula

From Philippe Deléham, Mar 26 2013: (Start)
a(8k) = A001107(k).
a(8k+1) = A002939(k).
a(8k+2) = A033991(k).
a(8k+3) = A016742(k).
a(8k+4) = A007742(k).
a(8k+5) = A002943(k).
a(8k+6) = A033954(k).
a(8k+7) = A033996(k). (End)
G.f.: x^8/((1-x)^2*(1-x^8)). - Philippe Deléham, Mar 28 2013
a(n) = floor(n/8)*(n-3-4*floor(n/8)). - Ridouane Oudra, Jun 04 2019
a(n+7) = (1/2)*(n+(n mod 8))*(floor(n/8)+1). - Christopher J. Thomas, Feb 13 2024

Extensions

Redefined as a rectangular tabf array and description simplified by R. J. Mathar, Oct 20 2010

A228617 T(n,k) is the number of s in {1,...,n}^n having shortest run with the same value of length k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 2, 0, 24, 0, 3, 0, 240, 12, 0, 4, 0, 3080, 40, 0, 0, 5, 0, 46410, 210, 30, 0, 0, 6, 0, 822612, 840, 84, 0, 0, 0, 7, 0, 16771832, 5208, 112, 56, 0, 0, 0, 8, 0, 387395856, 23760, 720, 144, 0, 0, 0, 0, 9, 0, 9999848700, 148410, 2610, 180, 90, 0, 0, 0, 0, 10
Offset: 0

Views

Author

Alois P. Heinz, Aug 27 2013

Keywords

Comments

Sum_{k=0..n} k*T(n,k) = A228618(n).
Sum_{k=0..n} T(n,k) = A000312(n).
T(2*n,n) = A002939(n) for n>0.
T(2*n+1,n) = A033586(n) for n>1.
T(2*n+2,n) = A085250(n+1) for n>2.
T(2*n+3,n) = A033586(n+1) for n>3.

Examples

			T(3,1) = 24: [1,1,2], [1,1,3], [1,2,1], [1,2,2], [1,2,3], [1,3,1], [1,3,2], [1,3,3], [2,1,1], [2,1,2], [2,1,3], [2,2,1], [2,2,3], [2,3,1], [2,3,2], [2,3,3], [3,1,1], [3,1,2], [3,1,3], [3,2,1], [3,2,2], [3,2,3], [3,3,1], [3,3,2].
T(3,3) =  3: [1,1,1], [2,2,2], [3,3,3].
Triangle T(n,k) begins:
  1;
  0,        1;
  0,        2,    2;
  0,       24,    0,   3;
  0,      240,   12,   0,  4;
  0,     3080,   40,   0,  0,  5;
  0,    46410,  210,  30,  0,  0,  6;
  0,   822612,  840,  84,  0,  0,  0,  7;
  0, 16771832, 5208, 112, 56,  0,  0,  0,  8;
		

Crossrefs

Row sums give: A000312.
Main diagonal gives: A028310.

A033990 Write 0,1,2,... in a clockwise spiral on a square lattice, writing each digit at a separate lattice point, starting with 0 at the origin and 1 at x=0, y=-1; sequence gives the numbers on the negative y-axis.

Original entry on oeis.org

0, 1, 1, 8, 3, 7, 6, 2, 1, 5, 1, 1, 6, 2, 2, 1, 3, 4, 0, 4, 5, 3, 6, 7, 0, 8, 9, 1, 4, 6, 1, 2, 7, 1, 1, 4, 4, 8, 1, 7, 4, 7, 2, 0, 8, 8, 2, 4, 4, 1, 2, 8, 4, 6, 3, 2, 7, 3, 3, 7, 3, 2, 4, 1, 2, 3, 4, 7, 5, 6, 5, 2, 0, 1, 5, 8, 9, 8, 6, 4, 1, 7, 6, 1, 7, 8, 7, 7, 5, 1, 8, 4, 7, 6, 9, 2, 2, 3, 9, 0, 1, 0, 1, 6, 8
Offset: 0

Views

Author

Keywords

Comments

Consider array of digits 0_(1)23456789(1)0111213141516171(8)1920212223...; in this array add to n-th pointer 8*n+1 to get next pointer. E.g., n=1 so n+(8*1+1)=10 -> n=10 so n+(8*2+1)=27 -> n=27 so ... etc. - comment from Patrick De Geest.

Examples

			The spiral begins
                 2---3---2---4---2---5---2
                 |                       |
                 2   1---3---1---4---1   6
                 |   |               |   |
                 2   2   4---5---6   5   2
                 |   |   |       |   |   |
                 1   1   3   0   7   1   7
                 |   |   |   |   |   |   |
                 2   1   2---1   8   6   2
                 |   |           |   |   |
                 0   1---0---1---9   1   8
                 |                   |   |
                 2---9---1---8---1---7   2
                                         |
                             3---0---3---9
.
We begin with the 0 and wrap the numbers 1 2 3 4 ... around it. Then the sequence is obtained by reading downwards, starting from the initial 0. - _Andrew Woods_, May 20 2012
		

Crossrefs

Sequences based on the same spiral: A033953, A033988, A033989. Spiral without zero: A033952.
Other sequences from spirals: A001107, A002939, A007742, A033951, A033954, A033991, A002943, A033996, A033988.

Programs

Formula

a(n) = A033307(4*n^2-3*n-1) for n > 0. - Andrew Woods, May 20 2012

Extensions

More terms from Patrick De Geest, Oct 15 1999
Edited by Charles R Greathouse IV, Nov 01 2009

A152767 3 times 10-gonal (or decagonal) numbers: a(n) = 3*n*(4*n-3).

Original entry on oeis.org

0, 3, 30, 81, 156, 255, 378, 525, 696, 891, 1110, 1353, 1620, 1911, 2226, 2565, 2928, 3315, 3726, 4161, 4620, 5103, 5610, 6141, 6696, 7275, 7878, 8505, 9156, 9831, 10530, 11253, 12000, 12771, 13566, 14385, 15228, 16095, 16986, 17901, 18840, 19803, 20790, 21801
Offset: 0

Views

Author

Omar E. Pol, Dec 15 2008

Keywords

Comments

3*A172078(n) = n*a(n) - Sum_{k=0..n-1} a(k). - Bruno Berselli, Dec 12 2010

Examples

			For n=8, a(8) = (1*3 + 5*7 + 9*11 +..+ 29*31) - (2*4 + 6*8 + 10*12 +..+ 26*28) = 696 (see Problem 1052 in References). - _Bruno Berselli_, Dec 12 2010
		

References

  • "Supplemento al Periodico di Matematica", Raffaello Giusti Editore (Livorno), Jan. 1910 p. 47 (Problem 1052).

Crossrefs

Cf. numbers of the form n*(n*k - k + 6)/2, this sequence is the case k=24: see Comments lines of A226492.

Programs

Formula

a(n) = 12*n^2 - 9*n = 3*A001107(n).
a(n) = a(n-1) + 24*n - 21, n > 0. - Vincenzo Librandi, Nov 26 2010
a(n) = Sum_{k=0..n-1} A001539(k) - Sum_{k=0..n-1} 4*A002939(k) if n > 0 (see References, Problem 1052). - Bruno Berselli, Dec 08 2010 - Jan 21 2011
G.f.: -3*x*(1+7*x)/(x-1)^3.
a(0)=0, a(1)=3, a(2)=30, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, May 26 2012
From Elmo R. Oliveira, Dec 15 2024: (Start)
E.g.f.: 3*exp(x)*x*(1 + 4*x).
a(n) = A153794(n) - n. (End)
Previous Showing 41-50 of 90 results. Next