cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 79 results. Next

A064200 a(n) = 12*n*(n-1).

Original entry on oeis.org

0, 0, 24, 72, 144, 240, 360, 504, 672, 864, 1080, 1320, 1584, 1872, 2184, 2520, 2880, 3264, 3672, 4104, 4560, 5040, 5544, 6072, 6624, 7200, 7800, 8424, 9072, 9744, 10440, 11160, 11904, 12672, 13464, 14280, 15120, 15984, 16872, 17784, 18720, 19680, 20664, 21672
Offset: 0

Views

Author

Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr), Sep 22 2001

Keywords

References

  • Luigi Berzolari, Allgemeine Theorie der Höheren Ebenen Algebraischen Kurven, Encyclopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, Band III_2, Heft 3, Leipzig: B. G. Teubner, 1906, p. 341.

Crossrefs

Programs

Formula

a(n) = 24*(n-1) + a(n-1) for n>0, with a(0)=0. - Vincenzo Librandi, Aug 07 2010
a(0)=0, a(1)=0, a(2)=24, a(n)=3*a(n-1)-3*a(n-2)+a(n-3). - Harvey P. Dale, Jul 22 2015
G.f.: -(24*x^2)/(x-1)^3. - Harvey P. Dale, Jul 22 2015
a(n) = 2*A003154(n) - 2. See Twin Stars illustration. - Leo Tavares, Aug 23 2021
From Amiram Eldar, Feb 22 2023: (Start)
Sum_{n>=2} 1/a(n) = 1/12.
Sum_{n>=2} (-1)^n/a(n) = (2*log(2) - 1)/12.
Product_{n>=2} (1 - 1/a(n)) = -(12/Pi)*cos(Pi/sqrt(3)).
Product_{n>=2} (1 + 1/a(n)) = (12/Pi)*cos(Pi/sqrt(6)). (End)

A103115 a(n) = 6*n*(n-1) - 1.

Original entry on oeis.org

-1, -1, 11, 35, 71, 119, 179, 251, 335, 431, 539, 659, 791, 935, 1091, 1259, 1439, 1631, 1835, 2051, 2279, 2519, 2771, 3035, 3311, 3599, 3899, 4211, 4535, 4871, 5219, 5579, 5951, 6335, 6731, 7139, 7559, 7991, 8435, 8891, 9359, 9839, 10331, 10835, 11351, 11879, 12419
Offset: 0

Views

Author

Jacob Landon (jacoblandon(AT)aol.com), May 09 2009

Keywords

Comments

Star numbers A003154 minus 2.
What A163433 does for a triangle, this sequence is doing for a square but giving one-half the results. Take a square with vertices n, n+1, n+2, and n+3 and find the sum of the four products of each four vertices times the sum of the other three; at n you have n((n+1)+(n+2)+(n+3)) and so on for the other three vertices. The result of all four is 12*n^2 + 36*n + 22; half this is 6*n^2 + 18*n + 11 and gives the numbers in this sequence starting with n = 0. - J. M. Bergot, May 23 2012
Multiplying a(n) by 16 gives the sum of the convolution with itself of each of the 24 permutations of four consecutive numbers. - J. M. Bergot, May 15 2017

Crossrefs

Programs

  • Magma
    [6*n*(n-1)-1: n in [0..50]]; // Vincenzo Librandi, May 16 2017
    
  • Mathematica
    Table[6n(n-1)-1,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{-1,-1,11},50] (* Harvey P. Dale, Nov 14 2011 *)
    CoefficientList[Series[(1 - 2 x - 11 x^2) / (x - 1)^3, {x, 0, 50}], x] (* Vincenzo Librandi, May 16 2017 *)
  • PARI
    a(n)=6*n*(n-1)-1 \\ Charles R Greathouse IV, Jun 16 2017

Formula

a(n) = A003154(n) - 2.
G.f.: (1-2*x-11*x^2)/(x-1)^3. - R. J. Mathar, May 11 2009 (adapted by Vincenzo Librandi, May 16 2017).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), with a(0)=-1, a(1)=-1, a(2)=11. - Harvey P. Dale, Nov 14 2011
a(n) = (n-2)*(n-1 + n + n+1) + (n-1)*(n + n+1) + n*(n+1), which is applying A000914 to four consecutive numbers. - J. M. Bergot, May 15 2017
Sum_{n>=1} 1/a(n) = tan(sqrt(5/3)*Pi/2)*Pi/(2*sqrt(15)). Amiram Eldar, Aug 20 2022
E.g.f.: exp(x)*(6*x^2 - 1). - Elmo R. Oliveira, Jan 16 2025

Extensions

Edited and extended by R. J. Mathar, May 11 2009
Entries rechecked by N. J. A. Sloane, Jul 18 2009

A331952 a(n) = (-7 + (-1)^(1+n) + 6*n^2) / 8.

Original entry on oeis.org

-1, 0, 2, 6, 11, 18, 26, 36, 47, 60, 74, 90, 107, 126, 146, 168, 191, 216, 242, 270, 299, 330, 362, 396, 431, 468, 506, 546, 587, 630, 674, 720, 767, 816, 866, 918, 971, 1026, 1082, 1140, 1199, 1260, 1322, 1386, 1451, 1518, 1586, 1656, 1727, 1800, 1874, 1950, 2027
Offset: 0

Views

Author

Paul Curtz, Feb 02 2020

Keywords

Comments

a(n+1) is once in the hexagonal spiral in A330707. a(n+2) is twice in the same spiral.
a(n) has one odd followed by three evens.
Difference table:
-1, 0, 2, 6, 11, 18, 26, 36, ... = a(n)
1, 2, 4, 5, 7, 8, 10, 11, ... = A001651(n+1)
1, 2, 1, 2, 1, 2, 1, 2, ... = A000034.

Examples

			G.f. = -1 + 2*x^2 + 6*x^3 + 11*x^4 + 18*x^5 + 26*x^6 + 36*x^7 + 47*x^8 + ... - _Michael Somos_, Sep 08 2023
		

Crossrefs

Equals 2 less than A084684, 1 less than A077043, and 1 more than A276382(n-1). - Greg Dresden, Feb 22 2020

Programs

  • Magma
    a:=[-1,0,2,6]; [n le 4 select a[n] else 2*Self(n-1)-2*Self(n-3)+Self(n-4): n in [1..45]]; // Marius A. Burtea, Feb 02 2020
    
  • Mathematica
    LinearRecurrence[{2, 0, -2, 1}, {-1, 0, 2, 6}, 100] (* Amiram Eldar, Feb 02 2020 *)
    a[n_] := Floor[(n^2 - 1)*3/4]; (* Michael Somos, Sep 08 2023 *)
  • PARI
    Vec(-(1 - 2*x - 2*x^2) / ((1 - x)^3*(1 + x)) + O(x^40)) \\ Colin Barker, Feb 03 2020
    
  • PARI
    {a(n) = (n^2 - 1)*3\4}; /* Michael Somos, Sep 08 2023 */

Formula

a(-n) = a(n).
a(20+n) - a(n) = 30*(10+n).
a(2+n) = a(n) + 3*(1+n), a(0)=-1 and a(1)=0.
a(4*n) = 12*n^2 - 1, a(1+4*n) = 6*n*(1+2*n), a(2+4*n) = 2 + 12*n*(1+n), a(3+4*n) = 6*(1+n)*(1+2*n) for n>= 0.
From Colin Barker, Feb 02 2020: (Start)
G.f.: -(1 - 2*x - 2*x^2) / ((1 - x)^3*(1 + x)).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>3.
a(n) = (-7 + (-1)^(1+n) + 6*n^2) / 8.
(End)
E.g.f.: (1/8)*(exp(x)*(6*x^2 + 6*x - 7) - exp(-x)). - Stefano Spezia, Feb 02 2020 after Colin Barker
a(n) = floor((n^2 - 1)*3/4). - Michael Somos, Sep 09 2023

Extensions

a(42)-a(52) from Stefano Spezia, Feb 02 2020

A006060 Triangular star numbers.

Original entry on oeis.org

1, 253, 49141, 9533161, 1849384153, 358770992581, 69599723176621, 13501987525271953, 2619315980179582321, 508133798167313698381, 98575337528478677903653, 19123107346726696199610361
Offset: 1

Views

Author

Keywords

References

  • M. Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 20.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A006060:=-(1+58*z+z**2)/(z-1)/(z**2-194*z+1); # conjectured (correctly) by Simon Plouffe in his 1992 dissertation
    a:= n-> (Matrix([[253,1,1]]). Matrix([[195,1,0], [ -195,0,1], [1,0,0]])^n)[1,3]: seq(a(n), n=1..20); # Alois P. Heinz, Aug 14 2008
  • Mathematica
    a006060 = {}; Do[
    If[Length[a006060] < 2, AppendTo[a006060, 1],
      AppendTo[a006060, 194*a006060[[-1]] + 60 - a006060[[-2]]]],  {n,
      20}]; TableForm[Transpose[List[Range[Length[a006060]], a006060]]] (* Michael De Vlieger *)
    LinearRecurrence[{195,-195,1},{1,253,49141},20] (* Harvey P. Dale, Jan 12 2017 *)

Formula

G.f.: (1 + 58x + x^2)/((x-1)(1 - 194x + x^2)). - Ralf Stephan, Apr 23 2004
From Bruno Berselli, Jul 07 2010: (Start)
a(n) = 194*a(n-1) - a(n-2) + 60 (n>2).
a(n) = (3*((7 + 4*sqrt(3))^(2*n-1) + (7 - 4*sqrt(3))^(2*n-1)) - 10)/32 (n>0).
(End)

Extensions

Extended by Eric W. Weisstein, Mar 01 2002

A063436 Write 1, 2, 3, 4, ... counterclockwise in a hexagonal spiral around 0 starting left down, then a(n) is the sequence found by reading from 0 in the vertical upward direction.

Original entry on oeis.org

0, 15, 54, 117, 204, 315, 450, 609, 792, 999, 1230, 1485, 1764, 2067, 2394, 2745, 3120, 3519, 3942, 4389, 4860, 5355, 5874, 6417, 6984, 7575, 8190, 8829, 9492, 10179, 10890, 11625, 12384, 13167, 13974, 14805, 15660, 16539, 17442, 18369, 19320, 20295, 21294, 22317
Offset: 0

Views

Author

Floor van Lamoen, Jul 21 2001

Keywords

Comments

Related to parity of Beatty sequences for exp(-(1/2)/n). Let f(k,n)=-sum(i=1,n,sum(j=1,i,(-1)^floor(j*exp(-(1/2)/n)))), then a(n)=Max{f(k,n) : 1<=k<=4*a(n)-2} and for 0<=i<=4*a(n)-3, f(i,n)=f(4*a(n)-2-i,n). - Benoit Cloitre, May 26 2004
Or, sum of multiples of 2 and 3 from 0 to 6*n. - Zak Seidov, Aug 06 2016

Examples

			The spiral begins:
.
        16--15--14
        /         \
      17   5---4  13
      /   /     \   \
    18   6   0   3  12
    /   /   /   /   /
  19   7   1---2  11  26
    \   \         /   /
    20   8---9--10  25
      \             /
      21--22--23--24
		

Crossrefs

Programs

  • Mathematica
    a[n_] := 3*n*(4*n + 1); Array[a, 40, 0] (* Amiram Eldar, Mar 27 2022 *)
  • PARI
    { for (n=0, 1000, write("b063436.txt", n, " ", n*(12*n + 3)) ) } \\ Harry J. Smith, Aug 21 2009

Formula

a(n) = 3*n*(4*n+1) = 3*A007742(n).
a(n) = 24*n + a(n-1) - 9 (with a(0)=0). - Vincenzo Librandi, Aug 07 2010
From Colin Barker, Jul 07 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: 3*x*(5 + 3*x)/(1-x)^3. (End)
a(n) = A272399(n+1) - A003154(n+1). - Leo Tavares, Mar 24 2022
From Amiram Eldar, Mar 27 2022: (Start)
Sum_{n>=1} 1/a(n) = 4/3 - Pi/6 - log(2).
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(3*sqrt(2)) + log(2)/3 + sqrt(2)*log(sqrt(2)+1)/3 - 4/3. (End)
E.g.f.: 3*x*(5 + 4*x)*exp(x). - Elmo R. Oliveira, Oct 31 2024

A094421 a(n) = n * (6*n^2 + 6*n + 1).

Original entry on oeis.org

13, 74, 219, 484, 905, 1518, 2359, 3464, 4869, 6610, 8723, 11244, 14209, 17654, 21615, 26128, 31229, 36954, 43339, 50420, 58233, 66814, 76199, 86424, 97525, 109538, 122499, 136444, 151409, 167430, 184543, 202784, 222189, 242794
Offset: 1

Views

Author

Ralf Stephan, May 02 2004

Keywords

Comments

Third column of array A094416.

Programs

Formula

Equals n * A003154(n) (star numbers).
G.f.: x*(13 + 22*x + x^2)/(1-x)^4. - Colin Barker, Aug 02 2012
E.g.f.: x*(13 + 24*x + 6*x^2)*exp(x). - G. C. Greubel, Oct 30 2019

A162245 Triangle T(n,m) = 6*m*n + 3*m + 3*n + 1 read by rows.

Original entry on oeis.org

13, 22, 37, 31, 52, 73, 40, 67, 94, 121, 49, 82, 115, 148, 181, 58, 97, 136, 175, 214, 253, 67, 112, 157, 202, 247, 292, 337, 76, 127, 178, 229, 280, 331, 382, 433, 85, 142, 199, 256, 313, 370, 427, 484, 541, 94, 157, 220, 283, 346, 409, 472, 535, 598, 661
Offset: 1

Views

Author

Vincenzo Librandi, Jun 28 2009

Keywords

Comments

If h belongs to the main diagonal of the triangle then 6*h+3 is a square since T(n,n) = (3/2)*(2*n+1)^2-1/2 and 6*T(n,n)+3 = 9*(2*n+1)^2. Also, the first column is A017209 (after 4). - Vincenzo Librandi, Nov 20 2012

Examples

			Triangle begins:
13;
22, 37;
31, 52,  73;
40, 67,  94,  121;
49, 82,  115, 148, 181;
58, 97,  136, 175, 214, 253;
67, 112, 157, 202, 247, 292, 337;
76, 127, 178, 229, 280, 331, 382, 433; etc.
		

Crossrefs

Programs

  • Magma
    [6*n*k + 3*n + 3*k + 1:  k in [1..n],  n in [1..11]]; // Vincenzo Librandi, Nov 20 2012
  • Mathematica
    Flatten@Table[6*m*n + 3*m + 3*n + 1, {n, 20}, {m, n}] (* Vincenzo Librandi, Mar 03 2012 *)

Formula

Row sums: Sum_{m=1..n} T(n,m) = n*(5+6*n^2+15*n)/2. - R. J. Mathar, Jul 26 2009
T(n,m) = 3*A083487(n,m)+1. - R. J. Mathar, Jul 26 2009
T(k,k) = A003154(k+1) and T(k+1,k) = A163433(k+2). - Avi Friedlich, May 22 2015

Extensions

Edited by R. J. Mathar, Jul 26 2009

A181475 a(n) = 3*n^4 + 6*n^3 - 3*n + 1.

Original entry on oeis.org

1, 7, 91, 397, 1141, 2611, 5167, 9241, 15337, 24031, 35971, 51877, 72541, 98827, 131671, 172081, 221137, 279991, 349867, 432061, 527941, 638947, 766591, 912457, 1078201, 1265551, 1476307, 1712341, 1975597, 2268091, 2591911, 2949217, 3342241, 3773287, 4244731
Offset: 0

Views

Author

Bruno Berselli, Oct 25 2010 - Oct 29 2010

Keywords

Comments

If gcd(n,7) = gcd(n+1,7) = gcd(2*n+1,7) = 1 then a(n) == 0 (mod 7) (E. Picutti, see References).

References

  • Ettore Picutti, Sul numero e la sua storia, Feltrinelli Economica, 1977, p. 208.

Crossrefs

Subsequence of A003215.

Programs

  • Magma
    [3*n^4+6*n^3-3*n+1: n in [0..31]];
  • Mathematica
    Table[3 n^4 + 6 n^3 - 3 n + 1, {n, 0, 40}] (* Vincenzo Librandi, Mar 26 2013 *)
    LinearRecurrence[{5,-10,10,-5,1},{1,7,91,397,1141},40] (* Harvey P. Dale, Jul 12 2022 *)

Formula

G.f.: (1 + 2*x + 66*x^2 + 2*x^3 + x^4)/(1-x)^5.
a(n) = a(-n-1) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + 6*12.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 6*A008594(n-1).
a(n) = 2*a(n-1) - a(n-2) + 6*A003154(n).
a(n) = a(n-1) + 6*A007588(n).
a(n) = 1 + 6*A062392(n).
a(n) = 7*A000540(n)/A000330(n) = A154105(A000096(n-1)) for n > 0.
Sum_{i=0..n} a(i) = (3*n^5 + 15*n^4 + 20*n^3 - 3*n + 5)/5.
a(n) = 7*(3*n^2 + 3*n - 1)*(Sum_{k=1..n} k^6)/(5*Sum_{k=1..n} k^4), n > 0. - Gary Detlefs, Oct 18 2011

Extensions

Formula, program and crossref added by Bruno Berselli, Aug 22 2011

A184899 n such that the n-th centered 12-gonal number is prime. Indices of prime star numbers.

Original entry on oeis.org

2, 3, 4, 6, 8, 9, 10, 11, 13, 14, 19, 20, 21, 23, 24, 31, 32, 33, 34, 36, 37, 39, 42, 43, 44, 46, 47, 48, 52, 56, 59, 61, 66, 68, 74, 75, 78, 79, 85, 87, 89, 94, 96, 98, 101, 102, 105, 107, 108, 110, 113, 118, 121, 124, 125, 127, 130, 131, 133, 135, 136, 138
Offset: 1

Views

Author

Jonathan Vos Post, Feb 01 2011

Keywords

Comments

For n > 3, A003154(a(n)) = A057199(2*a(n)-2). - Chai Wah Wu, Sep 17 2019

Examples

			98 is in the sequence because 6*98^2 - 6*98 + 1 = 57037 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[140],PrimeQ[6#^2-6#+1]&]  (* Harvey P. Dale, Feb 16 2011 *)

Formula

{n: 6*n^2 - 6*n + 1 is prime} = {n: A003154(n) is in A000040}.

A277978 a(n) = 3*n*(n+3).

Original entry on oeis.org

0, 12, 30, 54, 84, 120, 162, 210, 264, 324, 390, 462, 540, 624, 714, 810, 912, 1020, 1134, 1254, 1380, 1512, 1650, 1794, 1944, 2100, 2262, 2430, 2604, 2784, 2970, 3162, 3360, 3564, 3774, 3990, 4212, 4440, 4674, 4914, 5160, 5412, 5670, 5934, 6204, 6480
Offset: 0

Views

Author

Emeric Deutsch, Nov 08 2016

Keywords

Comments

For n>= 3, a(n) is the second Zagreb index of the wheel graph with n+1 vertices. The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of g.

Examples

			a(3) = 54. Indeed, the wheel graph with 4 vertices consists of 6 edges, each connecting two vertices of degree 3. Then, the second Zagreb index is 6*3*3 = 54.
		

Crossrefs

Programs

Formula

a(n) = 2 * A140091(n) = 3 * A028552(n) = 6 * A000096(n).
G.f.: 6*x*(2-x)/(1-x)^3
a(n) = A003154(n+1) - A003215(n-1). See Hexagonal Stars illustration. - Leo Tavares, Aug 20 2021
Previous Showing 61-70 of 79 results. Next