cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 293 results. Next

A132469 a(n) = (2^(5*n) - 1)/31.

Original entry on oeis.org

0, 1, 33, 1057, 33825, 1082401, 34636833, 1108378657, 35468117025, 1134979744801, 36319351833633, 1162219258676257, 37191016277640225, 1190112520884487201, 38083600668303590433, 1218675221385714893857, 38997607084342876603425, 1247923426698972051309601
Offset: 0

Views

Author

A.K. Devaraj, Aug 22 2007

Keywords

Comments

Partial sums of powers of 32 (A009976), a.k.a. q-numbers for q=32. - M. F. Hasler, Nov 05 2012

References

  • A. K. Devaraj, "Minimum Universal Exponent Generalisation of Fermat's Theorem", in ISSN #1550-3747, Proceedings of Hawaii Intl Conference on Statistics, Mathematics & Related Fields, 2004.

Crossrefs

Programs

Formula

a(n) = (32^n - 1)/31 = floor(32^n/31) = Sum_{k=0..n} 32^k. - M. F. Hasler, Nov 05 2012
G.f.: x/((1 - x)*(1 - 32*x)). - Bruno Berselli, Nov 06 2012
E.g.f.: exp(x)*(exp(31*x) - 1)/31. - Stefano Spezia, Mar 23 2023

Extensions

Edited and extended by Robert G. Wilson v, Aug 22 2007
Edited and extended to offset 0 by M. F. Hasler, Nov 05 2012

A218721 a(n) = (18^n-1)/17.

Original entry on oeis.org

0, 1, 19, 343, 6175, 111151, 2000719, 36012943, 648232975, 11668193551, 210027483919, 3780494710543, 68048904789775, 1224880286215951, 22047845151887119, 396861212733968143, 7143501829211426575, 128583032925805678351
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 18 (A001027), q-integers for q=18: diagonal k=1 in triangle A022182.
Partial sums are in A014901. Also, the sequence is related to A014935 by A014935(n) = n*a(n) - Sum_{i=0..n-1} a(i), for n>0. - Bruno Berselli, Nov 06 2012
From Bernard Schott, May 06 2017: (Start)
Except for 0, 1 and 19, all terms are Brazilian repunits numbers in base 18, and so belong to A125134. From n = 3 to n = 8286, all terms are composite. See link "Generalized repunit primes".
As explained in the extensions of A128164, a(25667) = (18^25667 - 1)/17 would be (is) the smallest prime in base 18. (End)

Examples

			a(3) = (18^3 - 1)/17 = 343 = 7 * 49; a(6) = (18^6 - 1)/17 = 2000719 = 931 * 2149. - _Bernard Schott_, May 01 2017
		

Crossrefs

Programs

Formula

a(n) = floor(18^n/17).
G.f.: x/((1-x)*(1-18*x)). - Bruno Berselli, Nov 06 2012
a(n) = 19*a(n-1) - 18*a(n-2). - Vincenzo Librandi, Nov 07 2012
E.g.f.: exp(x)*(exp(17*x) - 1)/17. - Stefano Spezia, Mar 11 2023

A218753 a(n) = (49^n - 1)/48.

Original entry on oeis.org

0, 1, 50, 2451, 120100, 5884901, 288360150, 14129647351, 692352720200, 33925283289801, 1662338881200250, 81454605178812251, 3991275653761800300, 195572507034328214701, 9583052844682082520350, 469569589389422043497151, 23008909880081680131360400
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 49 (A087752).

Crossrefs

Programs

Formula

G.f.: x/((1-x)*(1-49*x)). - Vincenzo Librandi, Nov 08 2012
a(n) = 50*a(n-1) - 49*a(n-2) with a(0)=0, a(1)=1. - Vincenzo Librandi, Nov 08 2012
a(n) = 49*a(n-1) + 1 with a(0)=0. - Vincenzo Librandi, Nov 08 2012
a(n) = floor(49^n/48). - Vincenzo Librandi, Nov 08 2012
E.g.f.: exp(25*x)*sinh(24*x)/24. - Elmo R. Oliveira, Aug 27 2024

A160870 Array read by antidiagonals: T(n,k) is the number of sublattices of index n in generic k-dimensional lattice (n >= 1, k >= 1).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 4, 7, 1, 1, 7, 13, 15, 1, 1, 6, 35, 40, 31, 1, 1, 12, 31, 155, 121, 63, 1, 1, 8, 91, 156, 651, 364, 127, 1, 1, 15, 57, 600, 781, 2667, 1093, 255, 1, 1, 13, 155, 400, 3751, 3906, 10795, 3280, 511, 1, 1, 18, 130, 1395, 2801, 22932, 19531, 43435, 9841, 1023, 1
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Examples

			Array begins:
  1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...
  1,3,7,15,31,63,127,255,511,1023,2047,4095,8191,16383,32767,65535,...
  1,4,13,40,121,364,1093,3280,9841,29524,88573,265720,797161,2391484,...
  1,7,35,155,651,2667,10795,43435,174251,698027,2794155,11180715,...
  1,6,31,156,781,3906,19531,97656,488281,2441406,12207031,61035156,...
  ...
		

References

  • Günter Scheja, Uwe Storch, Lehrbuch der Algebra, Teil 2. BG Teubner, Stuttgart, 1988. [§63, Aufg. 13]

Crossrefs

Programs

  • Mathematica
    T[, 1] = 1; T[1, ] = 1; T[n_, k_] := T[n, k] = DivisorSum[n, (n/#)^(k-1) *T[#, k-1]&]; Table[T[n-k+1, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 04 2015 *)
  • PARI
    T(n,k)={ if ( (n==1) || (k==1), 1, sumdiv(n,d, d*T(d, k-1)) ) }

Formula

T(n,1) = 1; T(1,k) = 1; T(n, k) = Sum_{d|n} d*T(d, k-1).
From Álvar Ibeas, Oct 31 2015: (Start)
T(n,k) = Sum_{d|n} (n/d)^(k-1) * T(d, k-1).
T(Product(p^e), k) = Product(Gaussian_poly[e+k-1, e]_p). (End)

A218736 a(n) = (33^n - 1)/32.

Original entry on oeis.org

0, 1, 34, 1123, 37060, 1222981, 40358374, 1331826343, 43950269320, 1450358887561, 47861843289514, 1579440828553963, 52121547342280780, 1720011062295265741, 56760365055743769454, 1873092046839544391983, 61812037545704964935440, 2039797239008263842869521
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 33 (A009977).

Crossrefs

Programs

Formula

From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1 - x)*(1 - 33*x)).
a(n) = 34*a(n-1) - 33*a(n-2).
a(n) = floor(33^n/32). (End)
E.g.f.: exp(x)*(exp(32*x) - 1)/32. - Stefano Spezia, Mar 24 2023

A036239 Number of 2-element intersecting families of an n-element set; number of 2-way interactions when 2 subsets of power set on {1..n} are chosen at random.

Original entry on oeis.org

0, 2, 15, 80, 375, 1652, 7035, 29360, 120975, 494252, 2007555, 8120840, 32753175, 131818052, 529680075, 2125927520, 8525298975, 34165897052, 136857560595, 548011897400, 2193792030375, 8780400395252, 35137296305115, 140596265198480
Offset: 1

Views

Author

Keywords

Comments

Let P(A) be the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are intersecting but for which x is not a subset of y and y is not a subset of x, or 1) x and y are intersecting and for which either x is a proper subset of y or y is a proper subset of x. - Ross La Haye, Jan 10 2008
Graph theory formulation. Let P(A) be the power set of an n-element set A. Then a(n) = the number of edges in the intersection graph G of P(A). The vertices of G are the elements of P(A) and the edges of G are the pairs of elements {x,y} of P(A) such that x and y are intersecting (and x <> y). - Ross La Haye, Dec 23 2017

References

  • W. W. Kokko, "Interactions", manuscript, 1983.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{10,-35,50,-24},{0,2,15,80},40] (* or *) With[{c=1/2!}, Table[ c(4^n-3^n-2^n+1),{n,40}]] (* Harvey P. Dale, May 11 2011 *)
  • PARI
    a(n)=(4^n-3^n-2^n+1)/2 \\ Charles R Greathouse IV, Jul 25 2011
  • Sage
    [(4^n - 2^n)/2-(3^n - 1)/2 for n in range(1,24)] # Zerinvary Lajos, Jun 05 2009
    

Formula

a(n) = (1/2) * (4^n - 3^n - 2^n + 1).
a(n) = 3*Stirling2(n+1,4) + 2*Stirling2(n+1,3). - Ross La Haye, Jan 10 2008
a(n) = A006516(n) - A003462(n). - Zerinvary Lajos, Jun 05 2009
From Harvey P. Dale, May 11 2011: (Start)
a(n) = 10*a(n-1) - 35*a(n-2) + 50*a(n-3) - 24*a(n-4); a(0)=0, a(1)=2, a(2)=15, a(3)=80.
G.f.: x^2*(2-5*x)/(1 - 10*x + 35*x^2 - 50*x^3 + 24*x^4). (End)
E.g.f.: exp(x)*(exp(x) - 1)^2*(exp(x) + 1)/2. - Stefano Spezia, Jun 26 2022

A000340 a(0)=1, a(n) = 3*a(n-1) + n + 1.

Original entry on oeis.org

1, 5, 18, 58, 179, 543, 1636, 4916, 14757, 44281, 132854, 398574, 1195735, 3587219, 10761672, 32285032, 96855113, 290565357, 871696090, 2615088290, 7845264891, 23535794695, 70607384108, 211822152348, 635466457069
Offset: 0

Views

Author

Keywords

Comments

From Johannes W. Meijer, Feb 20 2009: (Start)
Second right hand column (n-m=1) of the A156920 triangle.
The generating function of this sequence enabled the analysis of the polynomials A156921 and A156925.
(End)
Partial sums of A003462, and thus the second partial sums of A000244 (3^n). Also column k=2 of A106516. - John Keith, Jan 04 2022

Examples

			G.f. = 1 + 5*x + 18*x^2 + 58*x^3 + 179*x^4 + 543*x^5 + 1636*x^6 + ...
		

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

From Johannes W. Meijer, Feb 20 2009: (Start)
Equals A156920 second right hand column.
Equals A142963 second right hand column divided by 2^n.
Equals A156919 second right hand column divided by 2.
(End)
Cf. A014915.
Equals column k=1 of A008971 (shifted). - Jeremy Dover, Jul 11 2021
Cf. A000340, A003462 (first differences), A106516.

Programs

  • Magma
    [(3^(n+2)-2*n-5)/4: n in [0..30]]; // Vincenzo Librandi, Aug 15 2011
  • Maple
    a[ -1]:=0:a[0]:=1:for n from 1 to 50 do a[n]:=4*a[n-1]-3*a[n-2]+1 od: seq(a[n],n=0..50); # Miklos Kristof, Mar 09 2005
    A000340:=-1/(3*z-1)/(z-1)**2; # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    a[ n_] := MatrixPower[ {{1, 0, 0}, {1, 1, 0}, {1, 1, 3}}, n + 1][[3, 1]]; (* Michael Somos, May 28 2014 *)
    RecurrenceTable[{a[0]==1,a[n]==3a[n-1]+n+1},a,{n,30}] (* or *) LinearRecurrence[{5,-7,3},{1,5,18},30] (* Harvey P. Dale, Jan 31 2017 *)

Formula

G.f.: 1/((1-3*x)*(1-x)^2).
a(n) = (3^(n+2) - 2*n - 5)/4.
a(n) = Sum_{k=0..n+1} (n-k+1)*3^k = Sum_{k=0..n+1} k*3^(n-k+1). - Paul Barry, Jul 30 2004
a(n) = Sum_{k=0..n} binomial(n+2, k+2)*2^k. - Paul Barry, Jul 30 2004
a(-1)=0, a(0)=1, a(n) = 4*a(n-1) - 3*a(n-2) + 1. - Miklos Kristof, Mar 09 2005
a(n) = 5*a(n-1) - 7*a(n-2) + 3*a(n-3). - Johannes W. Meijer, Feb 20 2009
a(-2 - n) = 3^-n * A014915(n). - Michael Somos, May 28 2014
E.g.f.: exp(x)*(9*exp(2*x) - 2*x - 5)/4. - Stefano Spezia, Nov 09 2024

A008344 a(1)=0; thereafter a(n+1) = a(n) - n if a(n) >= n otherwise a(n+1) = a(n) + n.

Original entry on oeis.org

0, 1, 3, 0, 4, 9, 3, 10, 2, 11, 1, 12, 0, 13, 27, 12, 28, 11, 29, 10, 30, 9, 31, 8, 32, 7, 33, 6, 34, 5, 35, 4, 36, 3, 37, 2, 38, 1, 39, 0, 40, 81, 39, 82, 38, 83, 37, 84, 36, 85, 35, 86, 34, 87, 33, 88, 32, 89, 31, 90, 30, 91, 29, 92, 28, 93, 27, 94, 26, 95, 25, 96, 24, 97, 23, 98
Offset: 1

Views

Author

Keywords

Comments

p^a(n) = A084110(p^(n-1)) for n>1 and p prime. - Reinhard Zumkeller, May 12 2003
For n > 1: a(A029858(n)) = A029858(n) and a(A003462(n)) = 0. - Reinhard Zumkeller, May 09 2012
Absolute first differences of A085059; abs(a(n+1)-a(n)) = n, see also A086283. - Reinhard Zumkeller, Oct 17 2014
For n>3, when a(n) = 3, a(n+1) is in A116970. - Bill McEachen, Oct 03 2023

Crossrefs

Equals A085059(n)-1.
Cf. A076042 (based on squares).

Programs

  • Haskell
    a008344 n = a008344_list !! (n-1)
    a008344_list = 0 : f 0 [1..] where
       f x (z:zs) = y : f y zs where y = if x < z then x + z else x - z
    -- Reinhard Zumkeller, Oct 17 2014, May 08 2012
    
  • Maple
    A008344 := proc(n) option remember; if n = 0 then 0 elif A008344(n-1) >= (n-1) then A008344(n-1)-(n-1) else A008344(n-1)+(n-1); fi; end;
  • Mathematica
    a[1]=0; a[n_] := a[n]=If[a[n-1]>=n-1, a[n-1]-n+1, a[n-1]+n-1]
    Transpose[ NestList[ If[First[#]>=Last[#],{First[#]-Last[#],Last[#]+1}, {First[#]+Last[#],Last[#]+1}]&,{0,1},80]][[1]] (* Harvey P. Dale, Jun 20 2011 *)
    s = 0; Table[If[s < n, s = s + n, s = s - n], {n, 0, 80}] (* Horst H. Manninger, Dec 03 2018 *)
  • PARI
    a(n) = my(expo = logint(2*n+1, 3), res = n - (3^expo-1)/2); if(res==0, 0, if(res%2, (3^expo-res)/2, 3^expo-1+res/2)) \\ Jianing Song, May 25 2021

Formula

This is a concatenation S_0, S_1, S_2, ... where S_i = [b_0, b_1, ..., b_{3^(i+1)-1}] with b_0 = 0, b_{2j-1} = k+1-j, b_{2j} = 2k+j (j=1..k), k=(3^(i+1)-1)/2. E.g. S_0 = [0, 1, 3], S_1 = [0, 4, 9, 3, 10, 2, 11, 1, 12].
a((3^n-1)/2) = 0; a((3^n-1)/2 + 2k-1) = (3^n+1)/2 - k for 1 <= k <= (3^n-1)/2; a((3^n-1)/2 + 2k) = 3^n - 1 + k for 1 <= k < (3^n-1)/2. - Benoit Cloitre, Jan 09 2003 [Corrected by Jianing Song, May 25 2021]
a(n) = (n-1+a(n-1)) mod (2*(n-1)). - Jon Maiga, Jul 09 2021

Extensions

Name edited by Dmitry Kamenetsky, Feb 14 2017

A058481 a(n) = 3^n - 2.

Original entry on oeis.org

1, 7, 25, 79, 241, 727, 2185, 6559, 19681, 59047, 177145, 531439, 1594321, 4782967, 14348905, 43046719, 129140161, 387420487, 1162261465, 3486784399, 10460353201, 31381059607, 94143178825, 282429536479, 847288609441
Offset: 1

Views

Author

Vladeta Jovovic, Nov 26 2000

Keywords

Comments

a(n) = number of 2 X n binary matrices with no zero rows or columns.
a(n)^2 + 2*a(n+1) + 1 is a square number, i.e., a(n)^2 + 2*a(n+1) + 1 = (a(n)+3)^2: for n=2, a(2)^2 + 2*a(3) + 1 = 7^2 + 2*25 + 1 = 100 = (7+3)^2; for n=3, a(3)^2 + 2*a(4) + 1 = 25^2 + 2*79 + 1 = 784 = (25+3)^2. - Bruno Berselli, Apr 23 2010
Sum of n-th row of triangle of powers of 3: 1; 3 1 3; 9 3 1 3 9; 27 9 3 1 3 9 27; ... . - Philippe Deléham, Feb 24 2014
a(n) = least k such that k*3^n + 1 is a square. Thus, the square is given by (3^n-1)^2. - Derek Orr, Mar 23 2014
Binomial transform of A058481: (1, 6, 12, 24, 48, 96, ...) and second binomial transform of (1, 5, 1, 5, 1, 5, ...). - Gary W. Adamson, Aug 24 2016
Number of ordered pairs of nonempty sets whose union is [n]. a(2) = 7: ({1,2},{1,2}), ({1,2},{1}), ({1,2},{2}), ({1},{1,2}), ({1},{2}), ({2},{1,2}), ({2},{1}). If "nonempty" is omitted we get A000244. - Manfred Boergens, Mar 29 2023

Examples

			G.f. = x + 7*x^2 + 25*x^3 + 79*x^4 + 241*x^5 + 727*x^6 + 2185*x^7 + 6559*x^8 + ...
a(1) = 1;
a(2) = 3 + 1 + 3 = 7;
a(3) = 9 + 3 + 1 + 3 + 9 = 25;
a(4) = 27 + 9 + 3 + 1 + 3 + 9 + 27 = 79; etc. - _Philippe Deléham_, Feb 24 2014
		

Crossrefs

Programs

Formula

Number of m X n binary matrices with no zero rows or columns is Sum_{j=0..m} (-1)^j*C(m, j)*(2^(m-j)-1)^n.
From Mohammad K. Azarian, Jan 14 2009: (Start)
G.f.: 1/(1-3*x)-2/(1-x)+1.
E.g.f.: e^(3*x)-2*(e^x)+1. (End)
a(n) = 3*a(n-1) + 4 (with a(1)=1). - Vincenzo Librandi, Aug 07 2010
a(n) = 4*a(n-1) - 3*a(n-2). - G. C. Greubel, Aug 25 2016

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Dec 04 2000

A022167 Triangle of Gaussian binomial coefficients [ n,k ] for q = 3.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 13, 13, 1, 1, 40, 130, 40, 1, 1, 121, 1210, 1210, 121, 1, 1, 364, 11011, 33880, 11011, 364, 1, 1, 1093, 99463, 925771, 925771, 99463, 1093, 1, 1, 3280, 896260, 25095280, 75913222, 25095280, 896260, 3280, 1
Offset: 0

Views

Author

Keywords

Comments

The coefficients of the matrix inverse are apparently given by T^(-1)(n,k) = (-1)^n*A157783(n,k). - R. J. Mathar, Mar 12 2013

Examples

			Triangle begins:
  1;
  1,    1;
  1,    4,      1;
  1,   13,     13,        1;
  1,   40,    130,       40,        1;
  1,  121,   1210,     1210,      121,        1;
  1,  364,  11011,    33880,    11011,      364,      1;
  1, 1093,  99463,   925771,   925771,    99463,   1093,    1;
  1, 3280, 896260, 25095280, 75913222, 25095280, 896260, 3280, 1;
		

References

  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Columns k=0..3 give A000012, A003462, A006100, A006101.
Cf. A006117 (row sums).

Programs

Formula

T(n,k) = T(n-1,k-1) + q^k * T(n-1,k). - Peter A. Lawrence, Jul 13 2017
T(n,k) = Sum_{j=0..k} C(n,j)*qStirling2(n-j,n-k,3)*(2)^(k-j),j,0,k), n >= k, where qStirling2(n,k,3) is triangle A333143. - Vladimir Kruchinin, Mar 07 2020
G.f. of column k: x^k * exp( Sum_{j>=1} f((k+1)*j)/f(j) * x^j/j ), where f(j) = 3^j - 1. - Seiichi Manyama, May 09 2025
Previous Showing 41-50 of 293 results. Next