cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 115 results. Next

A077028 The rascal triangle, read by rows: T(n,k) (n >= 0, 0 <= k <= n) = k(n-k) + 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 4, 1, 1, 5, 7, 7, 5, 1, 1, 6, 9, 10, 9, 6, 1, 1, 7, 11, 13, 13, 11, 7, 1, 1, 8, 13, 16, 17, 16, 13, 8, 1, 1, 9, 15, 19, 21, 21, 19, 15, 9, 1, 1, 10, 17, 22, 25, 26, 25, 22, 17, 10, 1, 1, 11, 19, 25, 29, 31, 31, 29, 25, 19, 11, 1, 1, 12, 21, 28, 33, 36, 37, 36, 33, 28, 21, 12, 1
Offset: 0

Views

Author

Clark Kimberling, Oct 19 2002

Keywords

Comments

Pascal's triangle is formed using the rule South = West + East, whereas the rascal triangle uses the rule South = (West*East+1)/North. [Anggoro et al.]
The n-th diagonal is congruent to 1 mod n-1.
Row sums are the cake numbers, A000125. Alternating sum of row n is 0 if n even and (3-n)/2 if n odd. Rows are symmetric, beginning and ending with 1. The number of occurrences of k in this triangle is the number of divisors of k-1, given by A000005.
The triangle can be generated by numbers of the form k*(n-k) + 1 for k = 0 to n. Conjecture: except for n = 0,1 and 6 every row contains a prime. - Amarnath Murthy, Jul 15 2005
Above conjecture needs more exceptions, rows 30 and 54 do not contain primes. - Alois P. Heinz, Aug 31 2017
From Moshe Shmuel Newman, Apr 06 2008: (Start)
Consider the semigroup of words in x,y,q subject to the relationships: yx = xyq, qx = xq, qy = yq.
Now take words of length n in x and y, with exactly k y's. If there had been no relationships, the number of different words of this type would be n choose k, sequence A007318. Thanks to the relationships, the number of words of this type is the k-th entry in the n-th row of this sequence (read as a triangle, with the first row indexed by zero and likewise the first entry in each row.)
For example: with three letters and one y, we have three possibilities: xxy, xyx = xxyq, yxx = xxyqq. No two of them are equal, so this entry is still 3, as in Pascal's triangle.
With four letters, two y's, we have the first reduction: xyyx = yxxy = xxyyqq and this is the only reduction for 4 letters. So the middle entry of the fourth row is 5 instead of 6, as in the Pascal triangle. (End)
Main diagonals of this triangle sum to polygonal numbers. See A057145. - Raphie Frank, Oct 30 2012
T(n,k) gives the number of distinct sums of k elements in {1,2,...,n}, e.g., T(5,4) = the number of distinct sums of 4 elements in {1,2,3,4,5}, which is (5+4+3+2) - (4+3+2+1) + 1 = 5. - Derek Orr, Nov 26 2014
Conjecture: excluding the starting and ending 1's in each row, those that contain only prime numbers are n = 2, 3, 5, 7, 13, and 17. Tested up to row 10^9. - Rogério Serôdio, Sep 20 2017
The rascal triangle also uses the rule South = (West+East+1)-North. [Abstracts of AMS, Winter 2019, p. 526, 1145-VS-280, refers to Julian Fleron] - Michael Somos, Jan 12 2019
As a square array read by antidiagonals, selecting terms that give a remainder of 1 when divided by a prime gives evenly sized squares. For example, when each term is divided by 2, showing the remainder looks like:
1 1 1 1 1
1 0 1 0 1
1 1 1 1 1
1 0 1 0 1
1 1 1 1 1 - Nathaniel J. Strout, Jan 01 2020
T(n,k) is the number of binary words of length n which contain exactly k 1s and have at most 1 ascent. T(n,k) is also the number of ascent sequences avoiding 001 and 210 with length n+1 and exactly k ascents. - Amelia Gibbs, May 21 2024
T(n,k) represents the first and foundational instance R1 of a new family of Pascal-like triangles called Iterated Rascal triangles; A374378 is triangle R2; A374452 is triangle R3. - Kolosov Petro, Sep 28 2024

Examples

			Third diagonal (1,3,5,7,...) consists of the positive integers congruent to 1 mod 2.
The triangle T(n, k) begins:
  n\k  0  1  2  3  4  5  6  7  8  9 10 ...
  0:   1
  1:   1  1
  2:   1  2  1
  3:   1  3  3  1
  4:   1  4  5  4  1
  5:   1  5  7  7  5  1
  6:   1  6  9 10  9  6  1
  7:   1  7 11 13 13 11  7  1
  8:   1  8 13 16 17 16 13  8  1
  9:   1  9 15 19 21 21 19 15  9  1
 10:   1 10 17 22 25 26 25 22 17 10  1
 ... reformatted. - _Wolfdieter Lang_, Dec 19 2017
As a square array read by antidiagonals, the first rows are:
  1,  1,  1,  1,  1,  1, ...
  1,  2,  3,  4,  5,  6, ...
  1,  3,  5,  7,  9, 11, ...
  1,  4,  7, 10, 13, 16, ...
  1,  5,  9, 13, 17, 21, ...
		

Crossrefs

The maximum value for each antidiagonal is given by sequence A033638.
Equals A004247(n) + 1.

Programs

  • Maple
    A077028 := proc(n,k)
       if n <0 or k<0 or k > n then
           0;
       else
           k*(n-k)+1 ;
       end if;
    end proc: # R. J. Mathar, Jul 28 2016
  • Mathematica
    t[n_, k_] := k (n - k) + 1; t[0, 0] = 1; Table[ t[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Robert G. Wilson v, Jul 06 2012 *)
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, k * (n - k) + 1)}; /* Michael Somos, Mar 20 2011 */

Formula

As a square array read by antidiagonals, a(n, k) = 1 + n*k. a(n, k) = a(n-1, k) + k. Row n has g.f. (1+(n-1)x)/(1-x)^2, n >= 0. - Paul Barry, Feb 22 2003
Still thinking of square arrays. Let f:N->Z and g:N->Z be given and I an integer, then define a(n, k) = I + f(n)*g(k). Then a(n, k)*a(n-1, k-1) = a(n-1, k)*a(n, k-1) + I*(f(n) - f(n-1))*(g(k) - g(k-1)) for suitable n and k. S= (E*W + 1)/N. arises with I = 1, and f = g = id. - Terry Lindgren, Apr 10 2011
Using the above: Having just read J. Fleron's nice article in Discovering the Art of Mathematics on the rascal triangle, it is neat to note and straightforward to show that when I = 1, a(n, k) + a(n-1, k-1) = a(n-1, k) + a(n, k-1) + (f(n) - f(n-1))*(g(k) - g(k-1)), so with I = 1, and f = g = id, we have S+N = E+W + 1, as his students discovered. - Terry Lindgren, Nov 28 2016
T(n, k) = A128139(n-1, k-1). - Gary W. Adamson, Jul 02 2012
O.g.f. (1 - x*(1 + t) + 2*t*x^2)/((1 - x)^2*(1 - t*x)^2) = 1 + (1 + t)*x + (1 + 2*t + t^2)*x^2 + .... Cf. A105851. - Peter Bala, Jul 26 2015
T(n, k) = 0 if n < k, T(n, 0) = 1, T(n,n) = 1, for n >= 0, and T(n, k) = (T(n-1, k-1)*T(n-1, k) + 1)/(T(n-2, k-1)) for 0 < k < n. See the first comment referring to the triangle with its apex in the middle. - Wolfdieter Lang, Dec 19 2017
E.g.f. as square array: exp(x+y)*(1 + x*y). - Stefano Spezia, Aug 10 2025

Extensions

Better definition based on Murthy's comment of Jul 15 2005 and the Anggoro et al. paper. - N. J. A. Sloane, Mar 05 2011

A036561 Nicomachus triangle read by rows, T(n, k) = 2^(n - k)*3^k, for 0 <= k <= n.

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 8, 12, 18, 27, 16, 24, 36, 54, 81, 32, 48, 72, 108, 162, 243, 64, 96, 144, 216, 324, 486, 729, 128, 192, 288, 432, 648, 972, 1458, 2187, 256, 384, 576, 864, 1296, 1944, 2916, 4374, 6561, 512, 768, 1152, 1728, 2592, 3888, 5832, 8748, 13122, 19683
Offset: 0

Views

Author

Keywords

Comments

The triangle pertaining to this sequence has the property that every row, every column and every diagonal contains a nontrivial geometric progression. More interestingly every line joining any two elements contains a nontrivial geometric progression. - Amarnath Murthy, Jan 02 2002
Kappraff states (pp. 148-149): "I shall refer to this as Nicomachus' table since an identical table of numbers appeared in the Arithmetic of Nicomachus of Gerasa (circa 150 A.D.)" The table was rediscovered during the Italian Renaissance by Leon Battista Alberti, who incorporated the numbers in dimensions of his buildings and in a system of musical proportions. Kappraff states "Therefore a room could exhibit a 4:6 or 6:9 ratio but not 4:9. This ensured that ratios of these lengths would embody musical ratios". - Gary W. Adamson, Aug 18 2003
After Nichomachus and Alberti several Renaissance authors described this table. See for instance Pierre de la Ramée in 1569 (facsimile of a page of his Arithmetic Treatise in Latin in the links section). - Olivier Gérard, Jul 04 2013
The triangle sums, see A180662 for their definitions, link Nicomachus's table with eleven different sequences, see the crossrefs. It is remarkable that these eleven sequences can be described with simple elegant formulas. The mirror of this triangle is A175840. - Johannes W. Meijer, Sep 22 2010
The diagonal sums Sum_{k} T(n - k, k) give A167762(n + 2). - Michael Somos, May 28 2012
Where d(n) is the divisor count function, then d(T(i,j)) = A003991, the rows of which sum to the tetrahedral numbers A000292(n+1). For example, the sum of the divisors of row 4 of this triangle (i = 4), gives d(16) + d(24) + d(36) + d(54) + d(81) = 5 + 8 + 9 + 8 + 5 = 35 = A000292(5). In fact, where p and q are distinct primes, the aforementioned relationship to the divisor function and tetrahedral numbers can be extended to any triangle of numbers in which the i-th row is of form {p^(i-j)*q^j, 0<=j<=i}; i >= 0 (e.g., A003593, A003595). - Raphie Frank, Nov 18 2012, corrected Dec 07 2012
Sequence (or tree) generated by these rules: 1 is in S, and if x is in S, then 2*x and 3*x are in S, and duplicates are deleted as they occur; see A232559. - Clark Kimberling, Nov 28 2013
Partial sums of rows produce Stirling numbers of the 2nd kind: A000392(n+2) = Sum_{m=1..(n^2+n)/2} a(m). - Fred Daniel Kline, Sep 22 2014
A permutation of A003586. - L. Edson Jeffery, Sep 22 2014
Form a word of length i by choosing a (possibly empty) word on alphabet {0,1} then concatenating a word of length j on alphabet {2,3,4}. T(i,j) is the number of such words. - Geoffrey Critzer, Jun 23 2016
Form of Zorach additive triangle (see A035312) where each number is sum of west and northwest numbers, with the additional condition that each number is GCD of the two numbers immediately below it. - Michel Lagneau, Dec 27 2018

Examples

			The start of the sequence as a triangular array read by rows:
   1
   2   3
   4   6   9
   8  12  18  27
  16  24  36  54  81
  32  48  72 108 162 243
  ...
The start of the sequence as a table T(n,k) n, k > 0:
    1    2    4    8   16   32 ...
    3    6   12   24   48   96 ...
    9   18   36   72  144  288 ...
   27   54  108  216  432  864 ...
   81  162  324  648 1296 2592 ...
  243  486  972 1944 3888 7776 ...
  ...
- _Boris Putievskiy_, Jan 08 2013
		

References

  • Jay Kappraff, Beyond Measure, World Scientific, 2002, p. 148.
  • Flora R. Levin, The Manual of Harmonics of Nicomachus the Pythagorean, Phanes Press, 1994, p. 114.

Crossrefs

Cf. A001047 (row sums), A000400 (central terms), A013620, A007318.
Triangle sums (see the comments): A001047 (Row1); A015441 (Row2); A005061 (Kn1, Kn4); A016133 (Kn2, Kn3); A016153 (Fi1, Fi2); A016140 (Ca1, Ca4); A180844 (Ca2, Ca3); A180845 (Gi1, Gi4); A180846 (Gi2, Gi3); A180847 (Ze1, Ze4); A016185 (Ze2, Ze3). - Johannes W. Meijer, Sep 22 2010, Sep 10 2011
Antidiagonal cumulative sum: A000392; square arrays cumulative sum: A160869. Antidiagonal products: 6^A000217; antidiagonal cumulative products: 6^A000292; square arrays products: 6^A005449; square array cumulative products: 6^A006002.

Programs

  • Haskell
    a036561 n k = a036561_tabf !! n !! k
    a036561_row n = a036561_tabf !! n
    a036561_tabf = iterate (\xs@(x:_) -> x * 2 : map (* 3) xs) [1]
    -- Reinhard Zumkeller, Jun 08 2013
    
  • Magma
    /* As triangle: */ [[(2^(i-j)*3^j)/3: j in [1..i]]: i in [1..10]]; // Vincenzo Librandi, Oct 17 2014
  • Maple
    A036561 := proc(n,k): 2^(n-k)*3^k end:
    seq(seq(A036561(n,k),k=0..n),n=0..9);
    T := proc(n,k) option remember: if k=0 then 2^n elif k>=1 then procname(n,k-1) + procname(n-1,k-1) fi: end: seq(seq(T(n,k),k=0..n),n=0..9);
    # Johannes W. Meijer, Sep 22 2010, Sep 10 2011
  • Mathematica
    Flatten[Table[ 2^(i-j) 3^j, {i, 0, 12}, {j, 0, i} ]] (* Flatten added by Harvey P. Dale, Jun 07 2011 *)
  • PARI
    for(i=0,9,for(j=0,i,print1(3^j<<(i-j)", "))) \\ Charles R Greathouse IV, Dec 22 2011
    
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, 2^(n - k) * 3^k)} /* Michael Somos, May 28 2012 */
    

Formula

T(n,k) = A013620(n,k)/A007318(n,k). - Reinhard Zumkeller, May 14 2006
T(n,k) = T(n,k-1) + T(n-1,k-1) for n>=1 and 1<=k<=n with T(n,0) = 2^n for n>=0. - Johannes W. Meijer, Sep 22 2010
T(n,k) = 2^(k-1)*3^(n-1), n, k > 0 read by antidiagonals. - Boris Putievskiy, Jan 08 2013
a(n) = 2^(A004736(n)-1)*3^(A002260(n)-1), n > 0, or a(n) = 2^(j-1)*3^(i-1) n > 0, where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor[(-1+sqrt(8*n-7))/2]. - Boris Putievskiy, Jan 08 2013
G.f.: 1/((1-2x)(1-3yx)). - Geoffrey Critzer, Jun 23 2016
T(n,k) = (-1)^n * Sum_{q=0..n} (-1)^q * C(k+3*q, q) * C(n+2*q, n-q). - Marko Riedel, Jul 01 2024

A248663 Binary encoding of the prime factors of the squarefree part of n.

Original entry on oeis.org

0, 1, 2, 0, 4, 3, 8, 1, 0, 5, 16, 2, 32, 9, 6, 0, 64, 1, 128, 4, 10, 17, 256, 3, 0, 33, 2, 8, 512, 7, 1024, 1, 18, 65, 12, 0, 2048, 129, 34, 5, 4096, 11, 8192, 16, 4, 257, 16384, 2, 0, 1, 66, 32, 32768, 3, 20, 9, 130, 513, 65536, 6, 131072, 1025, 8, 0, 36, 19
Offset: 1

Views

Author

Peter Kagey, Jan 11 2015

Keywords

Comments

The binary digits of a(n) encode the prime factorization of A007913(n), where the i-th digit from the right is 1 if and only if prime(i) divides A007913(n), otherwise 0. - Robert Israel, Jan 12 2015
Old name: a(1) = 0; a(A000040(n)) = 2^(n-1), and a(n*m) = a(n) XOR a(m).
XOR is the bitwise exclusive or operation (A003987).
a(k^2) = 0 for a natural number k.
Equivalently, the i-th binary digit from the right is 1 iff prime(i) divides n an odd number of times, otherwise zero. - Ethan Beihl, Oct 15 2016
When a polynomial with nonnegative integer coefficients is encoded with the prime factorization of n (e.g., as in A206296, A260443, with scheme explained in A206284), then A048675(n) gives the evaluation of that polynomial at x=2. This sequence is otherwise similar, except the polynomial is evaluated over the field GF(2), which implies also that all its coefficients are essentially reduced modulo 2. - Antti Karttunen, Dec 11 2015
Squarefree numbers (A005117) give the positions k where a(k) = A048675(k). - Antti Karttunen, Oct 29 2016
From Peter Munn, Jun 07 2021: (Start)
When we encode polynomials with nonnegative integer coefficients as described by Antti Karttunen above, polynomial addition is represented by integer multiplication, multiplication is represented by A297845(.,.), and this sequence represents a surjective semiring homomorphism to polynomials in GF(2)[x] (encoded as described in A048720). The mapping of addition operations by this homomorphism is part of the sequence definition: "a(n*m) = a(n) XOR a(m)". The mapping of multiplication is given by a(A297845(n, k)) = A048720(a(n), a(k)).
In a related way, A329329 defines a representation of a different set of polynomials as positive integers, namely polynomials in GF(2)[x,y].
Let P_n(x,y) denote the polynomial represented, as in A329329, by n >= 1. If 0 is substituted for y in P_n(x,y), we get a polynomial P'_n(x,y) (in which y does not appear, of course) that is equivalent to a polynomial P'_n(x) in GF(2)[x]. a(n) is the integer encoding of P'_n(x) (described in A048720).
Viewed as above, this sequence represents another surjective homomorphism, a homomorphism between polynomial rings, with A329329(.,.)/A059897(.,.) and A048720(.,.)/A003987(.,.) as the respective ring operations.
a(n) can be composed as a(n) = A048675(A007913(n)) and the effect of the A007913(.) component corresponds to different operations on the respective polynomial domains of the two homomorphisms described above. In the first homomorphism, coefficients are reduced modulo 2; in the second, 0 is substituted for y. This is illustrated in the examples.
(End)

Examples

			a(3500) = a(2^2 * 5^3 * 7) = a(2) XOR a(2) XOR a(5) XOR a(5) XOR a(5) XOR a(7) = 1 XOR 1 XOR 4 XOR 4 XOR 4 XOR 8 = 0b0100 XOR 0b1000 = 0b1100 = 12.
From _Peter Munn_, Jun 07 2021: (Start)
The examples in the table below illustrate the homomorphisms (between polynomial structures) represented by this sequence.
The staggering of the rows is to show how the mapping n -> A007913(n) -> A048675(A007913(n)) = a(n) relates to the encoded polynomials, as not all encodings are relevant at each stage.
For an explanation of each polynomial encoding, see the sequence referenced in the relevant column heading. (Note also that A007913 generates squarefree numbers, and with these encodings, all squarefree numbers represent equivalent polynomials in N[x] and GF(2)[x,y].)
                     |<-----    encoded polynomials    ----->|
  n  A007913(n) a(n) |         N[x]    GF(2)[x,y]    GF(2)[x]|
                     |Cf.:  A206284       A329329     A048720|
--------------------------------------------------------------
  24                            x+3         x+y+1
          6                     x+1           x+1
                  3                                       x+1
--------------------------------------------------------------
  36                           2x+2          xy+y
          1                       0             0
                  0                                         0
--------------------------------------------------------------
  60                        x^2+x+2       x^2+x+y
         15                   x^2+x         x^2+x
                  6                                     x^2+x
--------------------------------------------------------------
  90                       x^2+2x+1      x^2+xy+1
         10                   x^2+1         x^2+1
                  5                                     x^2+1
--------------------------------------------------------------
This sequence is a left inverse of A019565. A019565(.) maps a(n) to A007913(n) for all n, effectively reversing the second stage of the mapping from n to a(n) shown above. So, with the encodings used here, A019565(.) represents each of two injective homomorphisms that map polynomials in GF(2)[x] to equivalent polynomials in N[x] and GF(2)[x,y] respectively.
(End)
		

Crossrefs

A048675 composed with A007913. A007814 composed with A225546.
A left inverse of A019565.
Other sequences used to express relationship between terms of this sequence: A003961, A007913, A331590, A334747.
Cf. also A099884, A277330.
A087207 is the analogous sequence with OR.
A277417 gives the positions where coincides with A277333.
A000290 gives the positions of zeros.

Programs

  • Haskell
    import Data.Bits (xor)
    a248663 = foldr (xor) 0 . map (\i -> 2^(i - 1)) . a112798_row
    -- Peter Kagey, Sep 16 2016
    
  • Maple
    f:= proc(n)
    local F,f;
    F:= select(t -> t[2]::odd, ifactors(n)[2]);
    add(2^(numtheory:-pi(f[1])-1), f = F)
    end proc:
    seq(f(i),i=1..100); # Robert Israel, Jan 12 2015
  • Mathematica
    a[1] = 0; a[n_] := a[n] = If[PrimeQ@ n, 2^(PrimePi@ n - 1), BitXor[a[#], a[n/#]] &@ FactorInteger[n][[1, 1]]]; Array[a, 66] (* Michael De Vlieger, Sep 16 2016 *)
  • PARI
    A248663(n) = vecsum(apply(p -> 2^(primepi(p)-1),factor(core(n))[,1])); \\ Antti Karttunen, Feb 15 2021
    
  • Python
    from sympy import factorint, primepi
    from sympy.ntheory.factor_ import core
    def a048675(n):
        f=factorint(n)
        return 0 if n==1 else sum([f[i]*2**(primepi(i) - 1) for i in f])
    def a(n): return a048675(core(n))
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 21 2017
  • Ruby
    require 'prime'
    def f(n)
      a = 0
      reverse_primes = Prime.each(n).to_a.reverse
      reverse_primes.each do |prime|
        a <<= 1
        while n % prime == 0
          n /= prime
          a ^= 1
        end
      end
      a
    end
    (Scheme, with memoizing-macro definec)
    (definec (A248663 n) (cond ((= 1 n) 0) ((= 1 (A010051 n)) (A000079 (- (A000720 n) 1))) (else (A003987bi (A248663 (A020639 n)) (A248663 (A032742 n)))))) ;; Where A003987bi computes bitwise-XOR as in A003987.
    ;; Alternatively:
    (definec (A248663 n) (cond ((= 1 n) 0) (else (A003987bi (A000079 (- (A055396 n) 1)) (A248663 (A032742 n))))))
    ;; Antti Karttunen, Dec 11 2015
    

Formula

a(1) = 0; for n > 1, if n is a prime, a(n) = 2^(A000720(n)-1), otherwise a(A020639(n)) XOR a(A032742(n)). [After the definition.] - Antti Karttunen, Dec 11 2015
For n > 1, this simplifies to: a(n) = 2^(A055396(n)-1) XOR a(A032742(n)). [Where A055396(n) gives the index of the smallest prime dividing n and A032742(n) gives the largest proper divisor of n. Cf. a similar formula for A048675.]
Other identities and observations. For all n >= 0:
a(n) = A048672(A100112(A007913(n))). - Peter Kagey, Dec 10 2015
From Antti Karttunen, Dec 11 2015, Sep 19 & Oct 27 2016, Feb 15 2021: (Start)
a(n) = a(A007913(n)). [The result depends only on the squarefree part of n.]
a(n) = A048675(A007913(n)).
a(A206296(n)) = A168081(n).
a(A260443(n)) = A264977(n).
a(A265408(n)) = A265407(n).
a(A275734(n)) = A275808(n).
a(A276076(n)) = A276074(n).
a(A283477(n)) = A006068(n).
(End)
From Peter Munn, Jan 09 2021 and Apr 20 2021: (Start)
a(n) = A007814(A225546(n)).
a(A019565(n)) = n; A019565(a(n)) = A007913(n).
a(A003961(n)) = 2 * a(n).
a(A297845(n, k)) = A048720(a(n), a(k)).
a(A329329(n, k)) = A048720(a(n), a(k)).
a(A059897(n, k)) = A003987(a(n), a(k)).
a(A331590(n, k)) = a(n) + a(k).
a(A334747(n)) = a(n) + 1.
(End)

Extensions

New name from Peter Munn, Nov 01 2023

A003990 Table of lcm(x,y), read along antidiagonals.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 4, 6, 6, 4, 5, 4, 3, 4, 5, 6, 10, 12, 12, 10, 6, 7, 6, 15, 4, 15, 6, 7, 8, 14, 6, 20, 20, 6, 14, 8, 9, 8, 21, 12, 5, 12, 21, 8, 9, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 11, 10, 9, 8, 35, 6, 35, 8, 9, 10, 11, 12, 22, 30, 36, 40, 42, 42, 40, 36, 30, 22, 12, 13, 12, 33, 20, 45, 24
Offset: 1

Views

Author

Keywords

Comments

A(x,x) = x on the diagonal. - Reinhard Zumkeller, Aug 05 2012

Examples

			The symmetric array is lcm(x,y) = lcm(y,x):
   1  2  3  4  5  6  7  8  9 10 ...
   2  2  6  4 10  6 14  8 18 10 ...
   3  6  3 12 15  6 21 24  9 30 ...
   4  4 12  4 20 12 28  8 36 20 ...
   5 10 15 20  5 30 35 40 45 10 ...
   6  6  6 12 30  6 42 24 18 30 ...
   7 14 21 28 35 42  7 56 63 70 ...
   8  8 24  8 40 24 56  8 72 40 ...
   9 18  9 36 45 18 63 72  9 90 ...
  10 10 30 20 10 30 70 40 90 10 ...
		

Crossrefs

A(x, y) = A075174(A003986(A075173(x), A075173(y))) = A075176(A003986(A075175(x), A075175(y))).
Antidiagonal sums are in A006580.
Cf. A002260.

Programs

  • Haskell
    a003990 x y = a003990_adiag x !! (y-1)
    a003990_adiag n = a003990_tabl !! (n-1)
    a003990_tabl = zipWith (zipWith lcm) a002260_tabl $ map reverse a002260_tabl
    -- Reinhard Zumkeller, Aug 05 2012
    
  • Mathematica
    Table[ LCM[x-y, y], {x, 1, 14}, {y, 1, x-1}] // Flatten (* Jean-François Alcover, Aug 20 2013 *)
  • PARI
    A(x,y)=lcm(x,y) \\ Charles R Greathouse IV, Feb 06 2017

A000442 a(n) = (n!)^3.

Original entry on oeis.org

1, 1, 8, 216, 13824, 1728000, 373248000, 128024064000, 65548320768000, 47784725839872000, 47784725839872000000, 63601470092869632000000, 109903340320478724096000000, 241457638684091756838912000000, 662559760549147780765974528000000, 2236139191853373760085164032000000000
Offset: 0

Views

Author

R. Muller

Keywords

Comments

Permanent of upper right n X n corner of multiplication table (A003991). - Marc LeBrun, Dec 11 2003
a(n) is the number of set partitions of {1, 2, ..., 4n - 1, 4n} into blocks of size 4 in which the entries of each block mod 4 are distinct. For example, a(2) = 8 counts 1234-5678, 1678-2345, 1278-3456, 1346-2578, 1238-4567, 1467-2358, 1247-3568, 1368-2457. - David Callan, Mar 30 2007
a(n) is also the determinant of the symmetric n X n matrix M defined by M(i, j) = sigma_3(gcd(i, j)) for 1 <= i,j <= n, and n > 0, where sigma_3 is A001158. - Enrique Pérez Herrero, Aug 13 2011

References

  • F. Smarandache, "Properties of the Numbers", University of Craiova Archives, 1975; Arizona State University Special Collections, Tempe, AZ

Crossrefs

Row n=3 of A225816.

Programs

Formula

a(n) = det(S(i+3, j), 1 <= i, j <= n), where S(n, k) are Stirling numbers of the second kind. - Mircea Merca, Apr 04 2013
From Karol A. Penson, Jul 28 2013: (Start)
G.f. of hypergeometric type: sum(a(n)*z^n/(n!)^3, n = 0..infinity) = 1/(1-z);
Integral representation as n-th moment of a positive function w(x) on a positive halfaxis (solution of the Stieltjes moment problem), in Maple notation:
a(n) = int(x^n*w(x), x = 0..infinity), n >= 0, where w(x) = MeijerG([[], []], [[0, 0, 0]], []], x), w(0) = infinity, limit(w(x), x = infinity) = 0.
w(x) is monotonically decreasing over (0, infinity). The Meijer G function above cannot be represented by any other known special function. This solution of the Stieltjes moment problem is not unique.
Asymptotics: a(n) -> (1/16)*sqrt(2)*Pi^(3/2)*(32*n^2 + 8*n + 1)*(n)^(-1/2+3*n)*exp(-3*n), for n -> infinity. (End)
D-finite with recurrence: a(n) -n^3*a(n-1)=0. - R. J. Mathar, Feb 16 2020
From Amiram Eldar, Nov 09 2020: (Start)
a(n) = A000142(n)^3.
Sum_{n>=0} 1/a(n) = A271574. (End)
a(n) = [x^n] Product_{k=1..n} (1 + k^3*x). - Vaclav Kotesovec, Feb 19 2022

A004247 Multiplication table read by antidiagonals: T(i,j) = i*j (i>=0, j>=0). Alternatively, multiplication triangle read by rows: P(i,j) = j*(i-j) (i>=0, 0<=j<=i).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 4, 3, 0, 0, 4, 6, 6, 4, 0, 0, 5, 8, 9, 8, 5, 0, 0, 6, 10, 12, 12, 10, 6, 0, 0, 7, 12, 15, 16, 15, 12, 7, 0, 0, 8, 14, 18, 20, 20, 18, 14, 8, 0, 0, 9, 16, 21, 24, 25, 24, 21, 16, 9, 0, 0, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 0, 0, 11, 20, 27, 32, 35, 36, 35, 32, 27, 20, 11, 0, 0, 12, 22, 30, 36, 40, 42, 42, 40, 36, 30
Offset: 0

Views

Author

Keywords

Comments

Table of x*y, where (x,y) = (0,0),(0,1),(1,0),(0,2),(1,1),(2,0),...
Or, triangle read by rows, in which row n gives the numbers 0, n*1, (n-1)*2, (n-2)*3, ..., 2*(n-1), 1*n, 0.
Letting T(n,k) be the (k+1)st entry in the (n+1)st row (same numbering used for Pascal's triangle), T(n,k) is the dimension of the space of all k-dimensional subspaces of a (fixed) n-dimensional real vector space. - Paul Boddington, Oct 21 2003
From Dennis P. Walsh, Nov 10 2009: (Start)
Triangle P(n,k), 0<=k<=n, equals n^2 x the variance of a binary data set with k zeros and (n-k) ones. [For the case when n=0, let the variance of the empty set be defined as 0.]
P(n,k) is also the number of ways to form an opposite-sex dance couple from k women and (n-k) men. (End)
P(n,k) is the number of negative products of two numbers from a set of n real numbers, k of which are negative. - Logan Pipes, Jul 08 2021

Examples

			As the triangle P, sequence begins:
  0;
  0,0;
  0,1,0;
  0,2,2,0;
  0,3,4,3,0;
  0,4,6,6,4,0,;
  0,5,8,9,8,5,0;
  ...
From _Dennis P. Walsh_, Nov 10 2009: (Start)
P(5,2)=T(2,3)=6 since the variance of the data set <0,0,1,1,1> equals 6/25.
P(5,2)=6 since, with 2 women, say Alice and Betty, and with 3 men, say Charles, Dennis, and Ed, the dance couple is one of the following: {Alice, Charles}, {Alice, Dennis}, {Alice, Ed}, {Betty, Charles}, {Betty, Dennis} and {Betty, Ed}. (End)
		

Crossrefs

See A003991 for another version with many more comments.
Cf. A002262, A025581, A003056, A004197, A003984, A048720, A325820, A000292 (row sums of triangle), A002620.

Programs

Formula

a(n) = A002262(n) * A025581(n). - Antti Karttunen
From Ridouane Oudra, Dec 14 2019: (Start)
a(n) = A004197(n)*A003984(n).
a(n) = (3/4 + n)*t^2 - (1/4)*t^4 - (1/2)*t - n^2 - n, where t = floor(sqrt(2*n+1)+1/2). (End)
P(n,k) = (P(n-1,k-1) + P(n-1,k) + n) / 2. - Robert FERREOL, Jan 16 2020
P(n,floor(n/2)) = A002620(n). - Logan Pipes, Jul 08 2021
From Stefano Spezia, Aug 19 2024: (Start)
G.f. as array: x*y/((1 - x)^2*(1 - y)^2).
E.g.f. as array: exp(x+y)*x*y. (End)

Extensions

Edited by N. J. A. Sloane, Sep 30 2007

A055096 Triangle read by rows, sums of 2 distinct nonzero squares: T(n,k) = k^2+n^2, (n>=2, 1 <= k <= n-1).

Original entry on oeis.org

5, 10, 13, 17, 20, 25, 26, 29, 34, 41, 37, 40, 45, 52, 61, 50, 53, 58, 65, 74, 85, 65, 68, 73, 80, 89, 100, 113, 82, 85, 90, 97, 106, 117, 130, 145, 101, 104, 109, 116, 125, 136, 149, 164, 181, 122, 125, 130, 137, 146, 157, 170, 185, 202, 221, 145, 148, 153, 160
Offset: 2

Views

Author

Antti Karttunen, Apr 04 2000

Keywords

Comments

Discovered by Bernard Frénicle de Bessy (1605?-1675). - Paul Curtz, Aug 18 2008
Terms that are not hypotenuses in primitive Pythagorean triangles, are replaced by 0 in A222946. - Reinhard Zumkeller, Mar 23 2013
This triangle T(n,k) gives the circumdiameters for the Pythagorean triangles with a = (n+1)^2 - k^2, b = 2*(n+1)*k and c = (n+1)^2 + k^2 (see the Floor van Lamoen entries or comments A063929, A063930, A002283, A003991). See also the formula section. Note that not all Pythagorean triangles are covered, e.g., (9,12,15) does not appear. - Wolfdieter Lang, Dec 03 2014

Examples

			The triangle T(n, k) begins:
n\k   1   2   3   4   5   6   7   8   9  10  11 ...
2:    5
3:   10  13
4:   17  20  25
5:   26  29  34  41
6:   37  40  45  52  61
7:   50  53  58  65  74  85
8:   65  68  73  80  89 100 113
9:   82  85  90  97 106 117 130 145
10: 101 104 109 116 125 136 149 164 181
11: 122 125 130 137 146 157 170 185 202 221
12: 145 148 153 160 169 180 193 208 225 244 265
...
13: 170 173 178 185 194 205 218 233 250 269 290 313,
14: 197 200 205 212 221 232 245 260 277 296 317 340 365,
15: 226 229 234 241 250 261 274 289 306 325 346 369 394 421,
16: 257 260 265 272 281 292 305 320 337 356 377 400 425 452 481,
...
Formatted and extended by _Wolfdieter Lang_, Dec 02 2014 (reformatted Jun 11 2015)
The successive terms are (1^2+2^2), (1^2+3^2), (2^2+3^2), (1^2+4^2), (2^2+4^2), (3^2+4^2), ...
		

Crossrefs

Sorting gives A024507. Count of divisors: A055097, Möbius: A055132. For trinv, follow A055088.
Cf. A001844 (right edge), A002522 (left edge), A033429 (central column).

Programs

  • Haskell
    a055096 n k = a055096_tabl !! (n-1) !! (k-1)
    a055096_row n = a055096_tabl !! (n-1)
    a055096_tabl = zipWith (zipWith (+)) a133819_tabl a140978_tabl
    -- Reinhard Zumkeller, Mar 23 2013
    
  • Magma
    [n^2+k^2: k in [1..n-1], n in [2..15]]; // G. C. Greubel, Apr 19 2023
    
  • Maple
    sum2distinct_squares_array := (n) -> (((n-((trinv(n-1)*(trinv(n-1)-1))/2))^2)+((trinv(n-1)+1)^2));
  • Mathematica
    T[n_, k_]:= (n+1)^2 + k^2; Table[T[n, k], {n,15}, {k,n}]//Flatten (* Jean-François Alcover, Mar 16 2015, after Reinhard Zumkeller *)
  • SageMath
    def A055096(n,k): return n^2 + k^2
    flatten([[A055096(n,k) for k in range(1,n)] for n in range(2,16)]) # G. C. Greubel, Apr 19 2023

Formula

a(n) = sum2distinct_squares_array(n).
T(n, 1) = A002522(n).
T(n, n-1) = A001844(n-1).
T(2*n-2, n-1) = A033429(n-1).
T(n,k) = A133819(n,k) + A140978(n,k) = (n+1)^2 + k^2, 1 <= k <= n. - Reinhard Zumkeller, Mar 23 2013
T(n, k) = a*b*c/(2*sqrt(s*(s-1)*(s-b)*(s-c))) with s =(a + b + c)/2 and the substitution a = (n+1)^2 - k^2, b = 2*(n+1)*k and c = (n+1)^2 + k^2 (the circumdiameter for the considered Pythagorean triangles). - Wolfdieter Lang, Dec 03 2014
From Bob Selcoe, Mar 21 2015: (Start)
T(n,k) = 1 + (n-k+1)^2 + Sum_{j=0..k-2} (4*j + 2*(n-k+3)).
T(n,k) = 1 + (n+k-1)^2 - Sum_{j=0..k-2} (2*(n+k-3) - 4*j).
Therefore: 4*(n-k+1) + Sum_{j=0..k-2} (2*(n-k+3) + 4*j) = 4*n(k-1) - Sum_{j=0..k-2} (2*(n+k-3) - 4*j). (End)
From G. C. Greubel, Apr 19 2023: (Start)
T(2*n-3, n-1) = A033429(n-1).
T(2*n-4, n-2) = A079273(n-1).
T(2*n-2, n) = A190816(n).
T(3*n-4, n-1) = 10*A000290(n-1) = A033583(n-1).
Sum_{k=1..n-1} T(n, k) = A331987(n-1).
Sum_{k=1..floor(n/2)} T(n-k, k) = A226141(n-1). (End)

Extensions

Edited: in T(n, k) formula by Reinhard Zumkeller k < n replaced by k <= n. - Wolfdieter Lang, Dec 02 2014
Made definition more precise, changed offset to 2. - N. J. A. Sloane, Mar 30 2015

A049581 Table T(n,k) = |n-k| read by antidiagonals (n >= 0, k >= 0).

Original entry on oeis.org

0, 1, 1, 2, 0, 2, 3, 1, 1, 3, 4, 2, 0, 2, 4, 5, 3, 1, 1, 3, 5, 6, 4, 2, 0, 2, 4, 6, 7, 5, 3, 1, 1, 3, 5, 7, 8, 6, 4, 2, 0, 2, 4, 6, 8, 9, 7, 5, 3, 1, 1, 3, 5, 7, 9, 10, 8, 6, 4, 2, 0, 2, 4, 6, 8, 10, 11, 9, 7, 5, 3, 1, 1, 3, 5, 7, 9, 11, 12, 10, 8, 6, 4, 2, 0, 2, 4, 6, 8, 10, 12
Offset: 0

Views

Author

Keywords

Comments

Commutative non-associative operator with identity 0. T(nx,kx) = x T(n,k). A multiplicative analog is A089913. - Marc LeBrun, Nov 14 2003
For the characteristic polynomial of the n X n matrix M_n with entries M_n(i, j) = |i-j| see A203993. - Wolfdieter Lang, Feb 04 2018
For the determinant of the n X n matrix M_n with entries M_n(i, j) = |i-j| see A085750. - Bernard Schott, May 13 2020
a(n) = 0 iff n = 4 times triangular number (A046092). - Bernard Schott, May 13 2020

Examples

			Displayed as a triangle t(n, k):
  n\k   0 1 2 3 4 5 6 7 8 9 10 ...
  0:    0
  1:    1 1
  2:    2 0 2
  3:    3 1 1 3
  4:    4 2 0 2 4
  5:    5 3 1 1 3 5
  6:    6 4 2 0 2 4 6
  7:    7 5 3 1 1 3 5 7
  8:    8 6 4 2 0 2 4 6 8
  9:    9 7 5 3 1 1 3 5 7 9
  10:  10 8 6 4 2 0 2 4 6 8 10
... reformatted by _Wolfdieter Lang_, Feb 04 2018
Displayed as a table:
  0 1 2 3 4 5 6 ...
  1 0 1 2 3 4 5 ...
  2 1 0 1 2 3 4 ...
  3 2 1 0 1 2 3 ...
  4 3 2 1 0 1 2 ...
  5 4 3 2 1 0 1 ...
  6 5 4 3 2 1 0 ...
  ...
		

Crossrefs

Cf. A089913. Apart from signs, same as A114327. A203993.

Programs

  • GAP
    a := Flat(List([0..12],n->List([0..n],k->Maximum(k,n-k)-Minimum(k,n-k)))); # Muniru A Asiru, Jan 26 2018
    
  • Magma
    [[Abs(n-2*k): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Jun 07 2019
    
  • Maple
    seq(seq(abs(n-2*k),k=0..n),n=0..12); # Robert Israel, Sep 30 2015
  • Mathematica
    Table[Abs[(n-k) -k], {n,0,12}, {k,0,n}]//Flatten (* Michael De Vlieger, Sep 29 2015 *)
    Table[Join[Range[n,0,-2],Range[If[EvenQ[n],2,1],n,2]],{n,0,12}]//Flatten (* Harvey P. Dale, Sep 18 2023 *)
  • PARI
    a(n) = abs(2*(n+1)-binomial((sqrtint(8*(n+1))+1)\2, 2)-(binomial(1+floor(1/2 + sqrt(2*(n+1))), 2))-1);
    vector(100, n , a(n-1)) \\ Altug Alkan, Sep 29 2015
    
  • PARI
    {t(n,k) = abs(n-2*k)}; \\ G. C. Greubel, Jun 07 2019
    
  • Python
    from math import isqrt
    def A049581(n): return abs((k:=n+1<<1)-((m:=isqrt(k))+(k>m*(m+1)))**2-1) # Chai Wah Wu, Nov 09 2024
  • Sage
    [[abs(n-2*k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jun 07 2019
    

Formula

G.f.: (x + y - 4*x*y + x^2*y + x*y^2)/((1-x)^2*(1-y)^2*(1-x*y)) = (x/(1-x)^2 + y/(1-y)^2)/(1-x*y). T(n,0) = T(0,n) = n; T(n+1,k+1) = T(n,k). - Franklin T. Adams-Watters, Feb 06 2006
a(n) = |A002260(n+1)-A004736(n+1)| or a(n) = |((n+1)-t*(t+1)/2) - ((t*t+3*t+4)/2-(n+1))| where t = floor((-1+sqrt(8*(n+1)-7))/2). - Boris Putievskiy, Dec 24 2012; corrected by Altug Alkan, Sep 30 2015
From Robert Israel, Sep 30 2015: (Start)
If b(n) = a(n+1) - 2*a(n) + a(n-1), then for n >= 3 we have
b(n) = -1 if n = (j^2+5j+4)/2 for some integer j >= 1
b(n) = -3 if n = (j^2+5j+6)/2 for some integer j >= 0
b(n) = 4 if n = 2j^2 + 6j + 4 for some integer j >= 0
b(n) = 2 if n = 2j^2 + 8j + 7 or 2j^2 + 8j + 8 for some integer j >= 0
b(n) = 0 otherwise. (End)
Triangle t(n,k) = max(k, n-k) - min(k, n-k). - Peter Luschny, Jan 26 2018
Triangle t(n, k) = |n - 2*k| for n >= 0, k = 0..n. See the Maple and Mathematica programs. Hence t(n, k)= t(n, n-k). - Wolfdieter Lang, Feb 04 2018
a(n) = |t^2 - 2*n - 1|, where t = floor(sqrt(2*n+1) + 1/2). - Ridouane Oudra, Jun 07 2019; Dec 11 2020
As a rectangle, T(n,k) = |n-k| = max(n,k) - min(n,k). - Clark Kimberling, May 11 2020

A297845 Encoded multiplication table for polynomials in one indeterminate with nonnegative integer coefficients. Symmetric square array T(n, k) read by antidiagonals, n > 0 and k > 0. See comment for details.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 4, 1, 1, 5, 9, 9, 5, 1, 1, 6, 7, 16, 7, 6, 1, 1, 7, 15, 25, 25, 15, 7, 1, 1, 8, 11, 36, 11, 36, 11, 8, 1, 1, 9, 27, 49, 35, 35, 49, 27, 9, 1, 1, 10, 25, 64, 13, 90, 13, 64, 25, 10, 1, 1, 11, 21, 81, 125, 77, 77, 125, 81
Offset: 1

Views

Author

Rémy Sigrist, Jan 10 2018

Keywords

Comments

For any number n > 0, let f(n) be the polynomial in a single indeterminate x where the coefficient of x^e is the prime(1+e)-adic valuation of n (where prime(k) denotes the k-th prime); f establishes a bijection between the positive numbers and the polynomials in a single indeterminate x with nonnegative integer coefficients; let g be the inverse of f; T(n, k) = g(f(n) * f(k)).
This table has many similarities with A248601.
For any n > 0 and m > 0, f(n * m) = f(n) + f(m).
Also, f(1) = 0 and f(2) = 1.
The function f can be naturally extended to the set of positive rational numbers: if r = u/v (not necessarily in reduced form), then f(r) = f(u) - f(v); as such, f is a homomorphism from the multiplicative group of positive rational numbers to the additive group of polynomials of a single indeterminate x with integer coefficients.
See A297473 for the main diagonal of T.
As a binary operation, T(.,.) is related to A306697(.,.) and A329329(.,.). When their operands are terms of A050376 (sometimes called Fermi-Dirac primes) the three operations give the same result. However the rest of the multiplication table for T(.,.) can be derived from these results because T(.,.) distributes over integer multiplication (A003991), whereas for A306697 and A329329, the equivalent derivation uses distribution over A059896(.,.) and A059897(.,.) respectively. - Peter Munn, Mar 25 2020
From Peter Munn, Jun 16 2021: (Start)
The operation defined by this sequence can be extended to be the multiplicative operator of a ring over the positive rationals that is isomorphic to the polynomial ring Z[x]. The extended function f (described in the author's original comments) is the isomorphism we use, and it has the same relationship with the extended operation that exists between their unextended equivalents.
Denoting this extension of T(.,.) as t_Q(.,.), we get t_Q(n, 1/k) = t_Q(1/n, k) = 1/T(n, k) and t_Q(1/n, 1/k) = T(n, k) for positive integers n and k. The result for other rationals is derived from the distributive property: t_Q(q, r*s) = t_Q(q, r) * t_Q(q, s); t_Q(q*r, s) = t_Q(q, s) * t_Q(r, s). This may look unusual because standard multiplication of rational numbers takes on the role of the ring's additive group.
There are many OEIS sequences that can be shown to be a list of the integers in an ideal of this ring. See the cross-references.
There are some completely additive sequences that similarly define by extension completely additive functions on the positive rationals that can be shown to be homomorphisms from this ring onto the integer ring Z, and these functions relate to some of the ideals. For example, the extended function of A048675, denoted A048675_Q, maps i/j to A048675(i) - A048675(j) for positive integers i and j. For any positive integer k, the set {r rational > 0 : k divides A048675_Q(r)} forms an ideal of the ring; for k=2 and k=3 the integers in this ideal are listed in A003159 and A332820 respectively.
(End)

Examples

			Array T(n, k) begins:
  n\k|  1   2   3    4    5    6    7     8    9    10
  ---+------------------------------------------------
    1|  1   1   1    1    1    1    1     1    1     1  -> A000012
    2|  1   2   3    4    5    6    7     8    9    10  -> A000027
    3|  1   3   5    9    7   15   11    27   25    21  -> A003961
    4|  1   4   9   16   25   36   49    64   81   100  -> A000290
    5|  1   5   7   25   11   35   13   125   49    55  -> A357852
    6|  1   6  15   36   35   90   77   216  225   210  -> A191002
    7|  1   7  11   49   13   77   17   343  121    91
    8|  1   8  27   64  125  216  343   512  729  1000  -> A000578
    9|  1   9  25   81   49  225  121   729  625   441
   10|  1  10  21  100   55  210   91  1000  441   550
From _Peter Munn_, Jun 24 2021: (Start)
The encoding, n, of polynomials, f(n), that is used for the table is further described in A206284. Examples of encoded polynomials:
   n      f(n)        n           f(n)
   1         0       16              4
   2         1       17            x^6
   3         x       21        x^3 + x
   4         2       25           2x^2
   5       x^2       27             3x
   6     x + 1       35      x^3 + x^2
   7       x^3       36         2x + 2
   8         3       49           2x^3
   9        2x       55      x^4 + x^2
  10   x^2 + 1       64              6
  11       x^4       77      x^4 + x^3
  12     x + 2       81             4x
  13       x^5       90   x^2 + 2x + 1
  15   x^2 + x       91      x^5 + x^3
(End)
		

Crossrefs

Row n: n=1: A000012, n=2: A000027, n=3: A003961, n=4: A000290, n=5: A357852, n=6: A191002, n=8: A000578.
Main diagonal: A297473.
Functions f satisfying f(T(n,k)) = f(n) * f(k): A001222, A048675 (and similarly, other rows of A104244), A195017.
Powers of k: k=3: A000040, k=4: A001146, k=5: A031368, k=6: A007188 (see also A066117), k=7: A031377, k=8: A023365, k=9: main diagonal of A329050.
Integers in the ideal of the related ring (see Jun 2021 comment) generated by S: S={3}: A005408, S={4}: A000290\{0}, S={4,3}: A003159, S={5}: A007310, S={5,4}: A339690, S={6}: A325698, S={6,4}: A028260, S={7}: A007775, S={8}: A000578\{0}, S={8,3}: A191257, S={8,6}: A332820, S={9}: A016754, S={10,4}: A340784, S={11}: A008364, S={12,8}: A145784, S={13}: A008365, S={15,4}: A345452, S={15,9}: A046337, S={16}: A000583\{0}, S={17}: A008366.
Equivalent sequence for polynomial composition: A326376.
Related binary operations: A003991, A306697/A059896, A329329/A059897.

Programs

  • PARI
    T(n,k) = my (f=factor(n), p=apply(primepi, f[, 1]~), g=factor(k), q=apply(primepi, g[, 1]~)); prod (i=1, #p, prod(j=1, #q, prime(p[i]+q[j]-1)^(f[i, 2]*g[j, 2])))

Formula

T is completely multiplicative in both parameters:
- for any n > 0
- and k > 0 with prime factorization Prod_{i > 0} prime(i)^e_i:
- T(prime(n), k) = T(k, prime(n)) = Prod_{i > 0} prime(n + i - 1)^e_i.
For any m > 0, n > 0 and k > 0:
- T(n, k) = T(k, n) (T is commutative),
- T(m, T(n, k)) = T(T(m, n), k) (T is associative),
- T(n, 1) = 1 (1 is an absorbing element for T),
- T(n, 2) = n (2 is an identity element for T),
- T(n, 2^i) = n^i for any i >= 0,
- T(n, 4) = n^2 (A000290),
- T(n, 8) = n^3 (A000578),
- T(n, 3) = A003961(n),
- T(n, 3^i) = A003961(n)^i for any i >= 0,
- T(n, 6) = A191002(n),
- A001221(T(n, k)) <= A001221(n) * A001221(k),
- A001222(T(n, k)) = A001222(n) * A001222(k),
- A055396(T(n, k)) = A055396(n) + A055396(k) - 1 when n > 1 and k > 1,
- A061395(T(n, k)) = A061395(n) + A061395(k) - 1 when n > 1 and k > 1,
- T(A000040(n), A000040(k)) = A000040(n + k - 1),
- T(A000040(n)^i, A000040(k)^j) = A000040(n + k - 1)^(i * j) for any i >= 0 and j >= 0.
From Peter Munn, Mar 13 2020 and Apr 20 2021: (Start)
T(A329050(i_1, j_1), A329050(i_2, j_2)) = A329050(i_1+i_2, j_1+j_2).
T(n, m*k) = T(n, m) * T(n, k); T(n*m, k) = T(n, k) * T(m, k) (T distributes over multiplication).
A104244(m, T(n, k)) = A104244(m, n) * A104244(m, k).
For example, for m = 2, the above formula is equivalent to A048675(T(n, k)) = A048675(n) * A048675(k).
A195017(T(n, k)) = A195017(n) * A195017(k).
A248663(T(n, k)) = A048720(A248663(n), A248663(k)).
T(n, k) = A306697(n, k) if and only if T(n, k) = A329329(n, k).
A007913(T(n, k)) = A007913(T(A007913(n), A007913(k))) = A007913(A329329(n, k)).
(End)

Extensions

New name from Peter Munn, Jul 17 2021

A331590 Square array A(n,k) = A225546(A225546(n) * A225546(k)), n >= 1, k >= 1, read by descending antidiagonals.

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 4, 6, 6, 4, 5, 8, 5, 8, 5, 6, 10, 12, 12, 10, 6, 7, 5, 15, 9, 15, 5, 7, 8, 14, 10, 20, 20, 10, 14, 8, 9, 12, 21, 24, 7, 24, 21, 12, 9, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 11, 15, 27, 18, 35, 15, 35, 18, 27, 15, 11, 12, 22, 30, 36, 40, 42, 42, 40, 36, 30, 22, 12, 13, 24, 33, 40, 45, 20, 11, 20, 45, 40, 33, 24, 13
Offset: 1

Views

Author

Peter Munn, Jan 21 2020

Keywords

Comments

As a binary operation, this sequence defines a commutative monoid over the positive integers that is isomorphic to multiplication. The self-inverse permutation A225546(.) provides an isomorphism. This monoid therefore has unique factorization. Its primes are the even terms of A050376: 2, 4, 16, 256, ..., which in standard integer multiplication are the powers of 2 with powers of 2 as exponents.
In this monoid, in contrast, the powers of 2 run through the squarefree numbers, the k-th power of 2 being A019565(k). 4 is irreducible and its powers are the squares of the squarefree numbers, the k-th power of 4 being A019565(k)^2 (where "^2" denotes standard integer squaring); and so on with powers of 16, 256, ...
In many cases the product of two numbers is the same here as in standard integer multiplication. See the formula section for details.

Examples

			From _Antti Karttunen_, Feb 02 2020: (Start)
The top left 16 X 16 corner of the array:
   1,  2,  3,  4,  5,  6,   7,   8,   9,  10,  11,  12,  13,  14,  15,  16, ...
   2,  3,  6,  8, 10,  5,  14,  12,  18,  15,  22,  24,  26,  21,  30,  32, ...
   3,  6,  5, 12, 15, 10,  21,  24,  27,  30,  33,  20,  39,  42,   7,  48, ...
   4,  8, 12,  9, 20, 24,  28,  18,  36,  40,  44,  27,  52,  56,  60,  64, ...
   5, 10, 15, 20,  7, 30,  35,  40,  45,  14,  55,  60,  65,  70,  21,  80, ...
   6,  5, 10, 24, 30, 15,  42,  20,  54,   7,  66,  40,  78,  35,  14,  96, ...
   7, 14, 21, 28, 35, 42,  11,  56,  63,  70,  77,  84,  91,  22, 105, 112, ...
   8, 12, 24, 18, 40, 20,  56,  27,  72,  60,  88,  54, 104,  84, 120, 128, ...
   9, 18, 27, 36, 45, 54,  63,  72,  25,  90,  99, 108, 117, 126, 135, 144, ...
  10, 15, 30, 40, 14,  7,  70,  60,  90,  21, 110, 120, 130, 105,  42, 160, ...
  11, 22, 33, 44, 55, 66,  77,  88,  99, 110,  13, 132, 143, 154, 165, 176, ...
  12, 24, 20, 27, 60, 40,  84,  54, 108, 120, 132,  45, 156, 168,  28, 192, ...
  13, 26, 39, 52, 65, 78,  91, 104, 117, 130, 143, 156,  17, 182, 195, 208, ...
  14, 21, 42, 56, 70, 35,  22,  84, 126, 105, 154, 168, 182,  33, 210, 224, ...
  15, 30,  7, 60, 21, 14, 105, 120, 135,  42, 165,  28, 195, 210,  35, 240, ...
  16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240,  81, ...
(End)
		

Crossrefs

Isomorphic to A003991 with A225546 as isomorphism.
Cf. A003961(main diagonal), A048675, A059895, A059896, A059897.
Rows/columns, sorted in ascending order: 2: A000037, 3: A028983, 4: A252849.
A019565 lists powers of 2 in order of increasing exponent.
Powers of k, sorted in ascending order: k=2: A005117, k=3: A056911, k=4: A062503, k=5: A276378, k=6: intersection of A325698 and A005117, k=7: intersection of A007775 and A005117, k=8: A062838.
Irreducibles are A001146 (even terms of A050376).

Programs

  • PARI
    up_to = 1275;
    A019565(n) = factorback(vecextract(primes(logint(n+!n, 2)+1), n));
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A331590sq(x,y) = if(1==x,y,if(1==y,x, my(fx=factor(x),fy=factor(y),u=max(#binary(vecmax(fx[, 2])),#binary(vecmax(fy[, 2]))),prodsx=vector(u,x,1),m=1); for(i=1,u,for(k=1,#fx~, if(bitand(fx[k,2],m),prodsx[i] *= fx[k,1])); for(k=1,#fy~, if(bitand(fy[k,2],m),prodsx[i] *= fy[k,1])); m<<=1); prod(i=1,u,A019565(A048675(prodsx[i]))^(1<<(i-1)))));
    A331590list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A331590sq(col,(a-(col-1))))); (v); };
    v331590 = A331590list(up_to);
    A331590(n) = v331590[n]; \\ Antti Karttunen, Feb 02 2020

Formula

Alternative definition: A(n,1) = n; A(n,k) = A(A059897(n,k), A003961(A059895(n,k))).
Main derived identities: (Start)
A(n,k) = A(k,n).
A(1,n) = n.
A(n, A(m,k)) = A(A(n,m), k).
A(m,m) = A003961(m).
A(n^2, k^2) = A(n,k)^2.
A(A003961(n), A003961(k)) = A003961(A(n,k)).
A(A019565(n), A019565(k)) = A019565(n+k).
(End)
Characterization of conditions for A(n,k) = n * k: (Start)
The following 4 conditions are equivalent:
(1) A(n,k) = n * k;
(2) A(n,k) = A059897(n,k);
(3) A(n,k) = A059896(n,k);
(4) A059895(n,k) = 1.
If gcd(n,k) = 1, A(n,k) = n * k.
If gcd(n,k) = 1, A(A225546(n), A225546(k)) = A225546(n) * A225546(k).
The previous formula implies A(n,k) = n * k in the following cases:
(1) for n = A005117(m), k = j^2;
(2) more generally for n = A005117(m_1)^(2^i_1), k = A005117(m_2)^(2^i_2), with A004198(i_1, i_2) = 0.
(End)
Previous Showing 11-20 of 115 results. Next