A055795
a(n) = binomial(n,4) + binomial(n,2).
Original entry on oeis.org
0, 1, 3, 7, 15, 30, 56, 98, 162, 255, 385, 561, 793, 1092, 1470, 1940, 2516, 3213, 4047, 5035, 6195, 7546, 9108, 10902, 12950, 15275, 17901, 20853, 24157, 27840, 31930, 36456, 41448, 46937, 52955, 59535, 66711, 74518, 82992, 92170, 102090, 112791, 124313, 136697
Offset: 1
- James Spahlinger, Table of n, a(n) for n = 1..1000
- Michael Boardman, The Egg-Drop Numbers, Mathematics Magazine, 77 (2004), 368-372.
- Milan Janjic, Two Enumerative Functions
- Alexsandar Petojevic, The Function vM_m(s; a; z) and Some Well-Known Sequences, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.7
- Eric Weisstein's World of Mathematics, Johnson Graph
- Eric Weisstein's World of Mathematics, Maximal Clique
- Eric Weisstein's World of Mathematics, Tetrahedral Graph
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
-
[n*(n^3-6*n^2+23*n-18)/24: n in [1..100]]; // Wesley Ivan Hurt, Sep 29 2013
-
A055795:=n->binomial(n,4)+binomial(n,2); # Zerinvary Lajos, Jul 24 2006
-
Table[Binomial[n, 4] + Binomial[n, 2], {n, 50}] (* Vladimir Joseph Stephan Orlovsky, May 24 2009 *)
Table[n (n^3 - 6 n^2 + 23 n - 18)/24, {n, 100}] (* Wesley Ivan Hurt, Sep 29 2013 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 3, 7, 15}, 50] (* Harvey P. Dale, Dec 07 2015 *)
Total[Binomial[Range[20], #] & /@ {2, 4}] (* Eric W. Weisstein, Dec 01 2017 *)
CoefficientList[Series[x (-1 + 2 x - 2 x^2)/(-1 + x)^5, {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017~ *)
-
A055795(n):=n*(n^3-6*n^2+23*n-18)/24$ makelist(A055795(n), n, 1, 100); /* Wesley Ivan Hurt, Sep 29 2013 */
-
a(n)= n*(n^3-6*n^2+23*n-18)/24 \\ Wesley Ivan Hurt, Sep 29 2013
Offset corrected and Sellers formula adjusted by
Gary Detlefs, Nov 28 2011
A062025
a(n) = n*(13*n^2 - 7)/6.
Original entry on oeis.org
0, 1, 15, 55, 134, 265, 461, 735, 1100, 1569, 2155, 2871, 3730, 4745, 5929, 7295, 8856, 10625, 12615, 14839, 17310, 20041, 23045, 26335, 29924, 33825, 38051, 42615, 47530, 52809, 58465, 64511, 70960, 77825, 85119, 92855, 101046, 109705, 118845, 128479, 138620, 149281
Offset: 0
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
- Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1).
1/12*t*(n^3-n)+n for t = 2, 4, 6, ... gives
A004006,
A006527,
A006003,
A005900,
A004068,
A000578,
A004126,
A000447,
A004188,
A004466,
A004467,
A007588,
A062025,
A063521,
A063522,
A063523.
A063523
a(n) = n*(8*n^2 - 5)/3.
Original entry on oeis.org
0, 1, 18, 67, 164, 325, 566, 903, 1352, 1929, 2650, 3531, 4588, 5837, 7294, 8975, 10896, 13073, 15522, 18259, 21300, 24661, 28358, 32407, 36824, 41625, 46826, 52443, 58492, 64989, 71950, 79391, 87328, 95777, 104754, 114275, 124356, 135013, 146262, 158119, 170600
Offset: 0
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
- Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1).
1/12*t*(n^3-n)+n for t = 2, 4, 6, ... gives
A004006,
A006527,
A006003,
A005900,
A004068,
A000578,
A004126,
A000447,
A004188,
A004466,
A004467,
A007588,
A062025,
A063521,
A063522,
A063523.
-
Table[n(8n^2-5)/3,{n,0,80}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
LinearRecurrence[{4,-6,4,-1},{0,1,18,67},81] (* or *) CoefficientList[ Series[ (x+14 x^2+x^3)/(x-1)^4,{x,0,80}],x] (* Harvey P. Dale, Jul 11 2011 *)
-
a(n) = n*(8*n^2 - 5)/3 \\ Harry J. Smith, Aug 25 2009
A033547
Otto Haxel's guess for magic numbers of nuclear shells.
Original entry on oeis.org
0, 2, 6, 14, 28, 50, 82, 126, 184, 258, 350, 462, 596, 754, 938, 1150, 1392, 1666, 1974, 2318, 2700, 3122, 3586, 4094, 4648, 5250, 5902, 6606, 7364, 8178, 9050, 9982, 10976, 12034, 13158, 14350, 15612, 16946, 18354, 19838, 21400, 23042, 24766, 26574, 28468
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- O. Haxel, Die Entstehung des Schalenmodells der Atomkerne, Physikalische Blätter, vol. 50, p. 339, 1994.
- O. Haxel et al., On the "Magic Numbers" in Nuclear Structure, Phys. Rev., 75 (1949), 1766.
- V. Ladma, Magic Numbers
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
List([0..50], n-> n*(n^2+5)/3); # G. C. Greubel, Oct 12 2019
-
[n*(n^2+5)/3 : n in [0..50]]; // Wesley Ivan Hurt, Apr 05 2015
-
A033547:=n->n*(n^2+5)/3: seq(A033547(n), n=0..50); # Wesley Ivan Hurt, Apr 05 2015
-
Table[n(n^2+5)/3, {n,0,50}] (* Harvey P. Dale, Apr 07 2011 *)
LinearRecurrence[{4, -6, 4, -1}, {0, 2, 6, 14}, 50] (* Vincenzo Librandi, Apr 06 2015 *)
-
a(n)=n*(n^2+5)/3 \\ Charles R Greathouse IV, Jun 25 2017
-
[n*(n^2+5)/3 for n in range(50)] # G. C. Greubel, Oct 12 2019
A266428
T(n,k)=Number of nXk binary arrays with rows and columns lexicographically nondecreasing and column sums nondecreasing.
Original entry on oeis.org
2, 3, 3, 4, 7, 4, 5, 14, 13, 5, 6, 25, 39, 22, 6, 7, 41, 106, 96, 34, 7, 8, 63, 259, 404, 212, 50, 8, 9, 92, 574, 1556, 1391, 433, 70, 9, 10, 129, 1170, 5365, 8764, 4383, 826, 95, 10, 11, 175, 2223, 16585, 49894, 45907, 12758, 1493, 125, 11, 12, 231, 3982, 46463, 251381
Offset: 1
Some solutions for n=4 k=4
..0..0..0..0....0..0..1..1....0..0..0..1....0..0..1..1....0..0..0..1
..0..0..0..1....0..0..1..1....0..0..1..0....0..1..0..1....0..1..1..1
..0..0..1..1....1..1..0..1....0..1..1..1....0..1..1..1....0..1..1..1
..0..1..0..1....1..1..1..0....1..1..0..0....1..1..1..0....1..0..0..1
Column 1 and row 1 are
A000027(n+1).
A177342
a(n) = (4*n^3-3*n^2+5*n-3)/3.
Original entry on oeis.org
1, 9, 31, 75, 149, 261, 419, 631, 905, 1249, 1671, 2179, 2781, 3485, 4299, 5231, 6289, 7481, 8815, 10299, 11941, 13749, 15731, 17895, 20249, 22801, 25559, 28531, 31725, 35149, 38811, 42719, 46881, 51305, 55999, 60971, 66229, 71781, 77635
Offset: 1
-
[(4*n^3-3*n^2+5*n-3)/3: n in [1..39]]; // Bruno Berselli, Aug 24 2011
-
I:=[1,9,31,75]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Aug 19 2013
-
CoefficientList[Series[(1 + 5 x + x^2 + x^3) / (1 - x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Aug 19 2013 *)
Table[(4 n^3 - 3 n^2 + 5 n - 3)/3, {n, 1, 40}] (* Bruno Berselli, Feb 17 2015 *)
LinearRecurrence[{4,-6,4,-1},{1,9,31,75},40] (* Harvey P. Dale, Jul 31 2021 *)
-
a(n)=(4*n^3-3*n^2+5*n-3)/3 \\ Charles R Greathouse IV, Jun 23 2011
A180985
Array T(n,k) = number of n X k binary matrices with rows and columns in lexicographically nondecreasing order.
Original entry on oeis.org
2, 3, 3, 4, 7, 4, 5, 14, 14, 5, 6, 25, 45, 25, 6, 7, 41, 130, 130, 41, 7, 8, 63, 336, 650, 336, 63, 8, 9, 92, 785, 2942, 2942, 785, 92, 9, 10, 129, 1682, 11819, 24520, 11819, 1682, 129, 10, 11, 175, 3351, 42305, 183010, 183010, 42305, 3351, 175, 11, 12, 231, 6280, 136564
Offset: 1
Table starts:
..2...3.....4.......5.........6...........7.............8................9
..3...7....14......25........41..........63............92..............129
..4..14....45.....130.......336.........785..........1682.............3351
..5..25...130.....650......2942.......11819.........42305...........136564
..6..41...336....2942.....24520......183010.......1202234..........6979061
..7..63...785...11819....183010.....2625117......33345183........371484319
..8..92..1682...42305...1202234....33345183.....836488618......18470742266
..9.129..3351..136564...6979061...371484319...18470742266.....818230288201
.10.175..6280..402910..36211867..3651371519..358194085968...31887670171373
.11.231.11176.1099694.170079565.32017940222.6148026957098.1096628939510047
.
All solutions for 3 X 3:
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..0....0..0..0....0..0..1....0..0..1....0..0..1....0..1..1....0..0..0
..0..0..1....0..1..1....0..1..0....0..0..1....0..1..1....0..1..1....1..1..1
.
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..1....0..0..1
..0..0..1....0..1..1....0..0..1....0..1..1....0..1..1....0..1..0....0..1..0
..1..1..0....1..0..0....1..1..1....1..0..1....1..1..1....0..1..0....0..1..1
.
..0..0..1....0..0..1....0..0..1....0..0..1....0..0..1....0..0..1....0..0..1
..0..0..1....0..0..1....0..0..1....0..1..1....0..1..0....0..1..0....0..1..0
..0..1..0....0..0..1....0..1..1....0..1..1....1..0..0....1..1..0....1..0..1
.
..0..0..1....0..0..1....0..0..1....0..0..1....0..0..1....0..0..1....0..0..1
..0..1..0....0..0..1....0..1..1....0..1..1....0..0..1....0..1..1....0..1..1
..1..1..1....1..1..0....1..0..0....1..1..0....1..1..1....1..0..1....1..1..1
.
..0..0..0....0..0..1....0..0..1....0..0..1....0..1..1....0..1..1....0..1..1
..1..1..1....1..1..0....1..1..0....1..1..1....0..1..1....0..1..1....0..1..1
..1..1..1....1..1..0....1..1..1....1..1..1....0..1..1....1..0..0....1..0..1
...
..0..1..1....0..1..1....0..1..1....0..1..1....0..1..1....0..1..1....0..1..1
..0..1..1....1..0..0....1..0..0....1..0..0....1..0..1....1..0..1....1..0..1
..1..1..1....1..0..0....1..0..1....1..1..1....1..1..0....1..0..1....1..1..1
.
..0..1..1....1..1..1
..1..1..1....1..1..1
..1..1..1....1..1..1
Cf.
A241956 (similar but different).
-
A180985(h,w,cnt=0)={ local(A=matrix(h,w), z(r,c)=!while(r1 && z(r,c), c--); while(c>1, A[r,c--]=0); while(r>1, A[r--,]=A[r+1,]); next(3))); break); cnt} \\ M. F. Hasler, Apr 27 2022
A212013
Triangle read by rows: total number of pairs of states of the first n subshells of the nuclear shell model in which the subshells are ordered by energy level in increasing order.
Original entry on oeis.org
1, 3, 4, 7, 9, 10, 14, 17, 19, 20, 25, 29, 32, 34, 35, 41, 46, 50, 53, 55, 56, 63, 69, 74, 78, 81, 83, 84, 92, 99, 105, 110, 114, 117, 119, 120, 129, 137, 144, 150, 155, 159, 162, 164, 165, 175, 184, 192, 199, 205, 210, 214, 217, 219, 220, 231, 241, 250, 258, 265, 271, 276, 280, 283, 285, 286
Offset: 1
Example 1: written as a triangle in which row i is related to the (i-1)st level of nucleus. Triangle begins:
1;
3, 4;
7, 9, 10;
14, 17, 19, 20;
25, 29, 32, 34, 35;
41, 46, 50, 53, 55, 56;
63, 69, 74, 78, 81, 83, 84;
92, 99, 105, 110, 114, 117, 119, 120;
129, 137, 144, 150, 155, 159, 162, 164, 165;
175, 184, 192, 199, 205, 210, 214, 217, 219, 220;
...
Column 1 gives positive terms of A004006. Right border gives positive terms of A000292. Row sums give positive terms of A006325.
Example 2: written as an irregular triangle in which row j is related to the j-th shell of nucleus. Note that in this case row 4 has only one term. Triangle begins:
1;
3, 4;
7, 9, 10;
14;
17, 19, 20, 25;
29, 32, 34, 35, 41;
46, 50, 53, 55, 56, 63;
69, 74, 78, 81, 83, 84, 92;
99, 105, 110, 114, 117, 119, 120, 129;
137, 144, 150, 155, 159, 162, 164, 165, 175;
184, 192, 199, 205, 210, 214, 217, 219, 220, 231;
...
-
row =: monad define
d=.>y
< |. (+/d)-d
)
;}. row"0 <\ +/\ 1+i.11 NB. Vanessa McHale (vamchale(AT)gmail.com), Mar 01 2025
-
Accumulate[Flatten[Range[Range[15], 1, -1]]] (* Paolo Xausa, Mar 15 2025 *)
-
row(n) = vector(n, k, n*(n+1)*(n+2)/6 - (n-k)*(n-k+1)/2); \\ Michel Marcus, Mar 10 2025
A212123
Total number of pairs of states of the first n subshells of the nuclear shell model in which the subshells are ordered by energy level in increasing order.
Original entry on oeis.org
1, 3, 4, 7, 8, 10, 14, 16, 19, 20, 25, 29, 32, 34, 35, 41, 46, 50, 53, 55, 56, 63, 68, 71, 77, 81, 82, 84, 92
Offset: 1
Example 1: written as a triangle in which row i is related to the (i-1)st level of nucleus. Triangle begins:
1;
3, 4;
7, 8, 10;
14, 16, 19, 20;
25, 29, 32, 34, 35;
41, 46, 50, 53, 55, 56;
63, 68, 71, 77, 81, 82, 84;
...
Example 2: written as an irregular triangle in which row j is related to the j-th shell of nucleus. Note that in this case row 4 has only one term. Triangle begins:
1;
3, 4;
7, 8, 10;
14,
16, 19, 20, 25;
29, 32, 34, 35, 41;
46, 50, 53, 55, 56, 63;
68, 71, 77, 81, 82, 84, 92;
...
A027927
Number of plane regions after drawing (in general position) a convex n-gon and all its diagonals.
Original entry on oeis.org
1, 2, 5, 12, 26, 51, 92, 155, 247, 376, 551, 782, 1080, 1457, 1926, 2501, 3197, 4030, 5017, 6176, 7526, 9087, 10880, 12927, 15251, 17876, 20827, 24130, 27812, 31901, 36426, 41417, 46905, 52922, 59501, 66676, 74482, 82955, 92132, 102051, 112751, 124272, 136655, 149942, 164176, 179401
Offset: 2
a(2)=1 (segment traced twice has only exterior).
- Vincenzo Librandi, Table of n, a(n) for n = 2..10000
- Lapo Cioni and Luca Ferrari, Enumerative Results on the Schröder Pattern Poset, In: Dennunzio A., Formenti E., Manzoni L., Porreca A. (eds) Cellular Automata and Discrete Complex Systems, AUTOMATA 2017, Lecture Notes in Computer Science, vol 10248.
- Michael Dairyko, Samantha Tyner, Lara Pudwell, and Casey Wynn, Non-contiguous pattern avoidance in binary trees, Electron. J. Combin. 19 (2012), no. 3, Paper 22, 21 pp. MR2967227. - From _N. J. A. Sloane_, Feb 01 2013
- J. B. Gil and J. Tomasko, Restricted Grassmannian permutations, ECA 2:4 (2022) Article S4PP6.
- Milan Janjić, Hessenberg Matrices and Integer Sequences, J. Int. Seq. 13 (2010) # 10.7.8.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Cf.
A006522 (does not count exterior of n-gon).
-
List([2..50], n-> (n^4 -6*n^3 +23*n^2 -42*n +48)/24); # G. C. Greubel, Sep 06 2019
-
[(n^4 -6*n^3 +23*n^2 -42*n +48)/24: n in [2..50]]; // G. C. Greubel, Sep 06 2019
-
seq((n^4 -6*n^3 +23*n^2 -42*n +48)/24, n=2..50); # G. C. Greubel, Sep 06 2019
-
LinearRecurrence[{5,-10,10,-5,1 }, {1,2,5,12,26}, 50] (* Vincenzo Librandi, Feb 01 2012 *)
S[n_] :=n*(n+1)/2; Table[S[S[n]+2]/3, {n, 0, 50}] (* Waldemar Puszkarz, Jan 22 2016 *)
-
a(n)=n*(n^3-6*n^2+23*n-42)/24+2 \\ Charles R Greathouse IV, Jan 31 2012
-
[(n^4 -6*n^3 +23*n^2 -42*n +48)/24 for n in (2..50)] # G. C. Greubel, Sep 06 2019
Comments