cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 67 results. Next

A055795 a(n) = binomial(n,4) + binomial(n,2).

Original entry on oeis.org

0, 1, 3, 7, 15, 30, 56, 98, 162, 255, 385, 561, 793, 1092, 1470, 1940, 2516, 3213, 4047, 5035, 6195, 7546, 9108, 10902, 12950, 15275, 17901, 20853, 24157, 27840, 31930, 36456, 41448, 46937, 52955, 59535, 66711, 74518, 82992, 92170, 102090, 112791, 124313, 136697
Offset: 1

Views

Author

Clark Kimberling, May 28 2000

Keywords

Comments

Answer to the question: if you have a tall building and 4 plates and you need to find the highest story from which a plate thrown does not break, what is the number of stories you can handle given n tries?
If Y is a 2-subset of an n-set X then, for n >= 4, a(n-3) is the number of 4-subsets of X which do not have exactly one element in common with Y. - Milan Janjic, Dec 28 2007
Antidiagonal sums of A139600. - Johannes W. Meijer, Apr 29 2011
Also the number of maximal cliques in the n-tetrahedral graph for n > 5. - Eric W. Weisstein, Jun 12 2017
Mark each point on an 8^(n-2) grid with the number of points that are visible from the point; for n > 3, a(n) is the number of distinct values in the grid. - Torlach Rush, Mar 25 2021
Antidiagonal sums of both A057145 and also A134394 yield this sequence without the initial term 0. - Michael Somos, Nov 23 2021

Crossrefs

T(2n+1, n), array T as in A055794. Cf. A004006, A000127.

Programs

Formula

a(n) = A000127(n)-1. Differences give A000127.
a(1) = 1; a(n) = a(n-1) + 1 + A004006(n-1).
a(n+1) = C(n, 1) + C(n, 2) + C(n, 3) + C(n, 4). - James Sellers, Mar 16 2002
Row sums of triangle A134394. Also, binomial transform of [1, 2, 2, 2, 1, 0, 0, 0, ...]. - Gary W. Adamson, Oct 23 2007
O.g.f.: -x^2(1-2x+2x^2)/(x-1)^5. a(n) = A000332(n) + A000217(n-1). - R. J. Mathar, Apr 13 2008
a(n) = n*(n^3 - 6*n^2 + 23*n - 18)/24. - Gary Detlefs, Dec 08 2011
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5); a(1)=0, a(2)=1, a(3)=3, a(4)=7, a(5)=15. - Harvey P. Dale, Dec 07 2015

Extensions

Better description from Leonid Broukhis, Oct 24 2000
Edited by Zerinvary Lajos, Jul 24 2006
Offset corrected and Sellers formula adjusted by Gary Detlefs, Nov 28 2011

A062025 a(n) = n*(13*n^2 - 7)/6.

Original entry on oeis.org

0, 1, 15, 55, 134, 265, 461, 735, 1100, 1569, 2155, 2871, 3730, 4745, 5929, 7295, 8856, 10625, 12615, 14839, 17310, 20041, 23045, 26335, 29924, 33825, 38051, 42615, 47530, 52809, 58465, 64511, 70960, 77825, 85119, 92855, 101046, 109705, 118845, 128479, 138620, 149281
Offset: 0

Views

Author

N. J. A. Sloane, Aug 02 2001

Keywords

Crossrefs

1/12*t*(n^3-n)+n for t = 2, 4, 6, ... gives A004006, A006527, A006003, A005900, A004068, A000578, A004126, A000447, A004188, A004466, A004467, A007588, A062025, A063521, A063522, A063523.

Programs

Formula

From G. C. Greubel, Sep 01 2017: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: (x + 11*x^2 + x^3)/(1 - x)^4.
E.g.f.: (x/6)*(6 + 39*x + 13*x^2)*exp(x). (End)

A063523 a(n) = n*(8*n^2 - 5)/3.

Original entry on oeis.org

0, 1, 18, 67, 164, 325, 566, 903, 1352, 1929, 2650, 3531, 4588, 5837, 7294, 8975, 10896, 13073, 15522, 18259, 21300, 24661, 28358, 32407, 36824, 41625, 46826, 52443, 58492, 64989, 71950, 79391, 87328, 95777, 104754, 114275, 124356, 135013, 146262, 158119, 170600
Offset: 0

Views

Author

N. J. A. Sloane, Aug 02 2001

Keywords

Comments

Also as a(n)=(1/6)*(16*n^3-10*n), n>0: structured octagonal anti-diamond numbers (vertex structure 17) (Cf. A100187 = alternate vertex; A100188 = structured anti-diamonds; A100145 for more on structured numbers). - James A. Record (james.record(AT)gmail.com), Nov 07 2004

Crossrefs

1/12*t*(n^3-n)+n for t = 2, 4, 6, ... gives A004006, A006527, A006003, A005900, A004068, A000578, A004126, A000447, A004188, A004466, A004467, A007588, A062025, A063521, A063522, A063523.

Programs

  • Mathematica
    Table[n(8n^2-5)/3,{n,0,80}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
    LinearRecurrence[{4,-6,4,-1},{0,1,18,67},81] (* or *) CoefficientList[ Series[ (x+14 x^2+x^3)/(x-1)^4,{x,0,80}],x] (* Harvey P. Dale, Jul 11 2011 *)
  • PARI
    a(n) = n*(8*n^2 - 5)/3 \\ Harry J. Smith, Aug 25 2009

Formula

a(0)=0, a(1)=1, a(2)=18, a(3)=67, a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)- a(n-4). - Harvey P. Dale, Jul 11 2011
G.f.: (x+14*x^2+x^3)/(x-1)^4. - Harvey P. Dale, Jul 11 2011
E.g.f.: (x/3)*(3 + 24*x + 8*x^2)*exp(x). - G. C. Greubel, Sep 01 2017

A033547 Otto Haxel's guess for magic numbers of nuclear shells.

Original entry on oeis.org

0, 2, 6, 14, 28, 50, 82, 126, 184, 258, 350, 462, 596, 754, 938, 1150, 1392, 1666, 1974, 2318, 2700, 3122, 3586, 4094, 4648, 5250, 5902, 6606, 7364, 8178, 9050, 9982, 10976, 12034, 13158, 14350, 15612, 16946, 18354, 19838, 21400, 23042, 24766, 26574, 28468
Offset: 0

Views

Author

Keywords

Comments

O. Haxel gave a construction procedure. The formulas are due to Wolfdieter Lang.

Crossrefs

Equals 2*A004006, partial sums of A014206, 2*(partial sums of A000124).

Programs

Formula

a(n) = n*(n^2 + 5)/3.
G.f.: 2*x*(1 - x + x^2)/(1-x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Wesley Ivan Hurt, Apr 05 2015
E.g.f.: x*(6 + 3*x + x^2)*exp(x)/3. - G. C. Greubel, Oct 12 2019
a(n) = A046127(n+1) - 2. - Jianing Song, Feb 03 2024

A266428 T(n,k)=Number of nXk binary arrays with rows and columns lexicographically nondecreasing and column sums nondecreasing.

Original entry on oeis.org

2, 3, 3, 4, 7, 4, 5, 14, 13, 5, 6, 25, 39, 22, 6, 7, 41, 106, 96, 34, 7, 8, 63, 259, 404, 212, 50, 8, 9, 92, 574, 1556, 1391, 433, 70, 9, 10, 129, 1170, 5365, 8764, 4383, 826, 95, 10, 11, 175, 2223, 16585, 49894, 45907, 12758, 1493, 125, 11, 12, 231, 3982, 46463, 251381
Offset: 1

Views

Author

R. H. Hardin, Dec 29 2015

Keywords

Comments

Table starts
..2...3....4......5........6..........7............8............9
..3...7...14.....25.......41.........63...........92..........129
..4..13...39....106......259........574.........1170.........2223
..5..22...96....404.....1556.......5365........16585........46463
..6..34..212...1391.....8764......49894.......251381......1122721
..7..50..433...4383....45907.....448649......3889553.....29520031
..8..70..826..12758...223075....3825307.....59155748....798834778
..9..95.1493..34611..1005991...30555624....861030491..21325003746
.10.125.2575..88206..4224203..227542455..11809616668.546283341439
.11.161.4270.212609.16588684.1579153474.151566391972

Examples

			Some solutions for n=4 k=4
..0..0..0..0....0..0..1..1....0..0..0..1....0..0..1..1....0..0..0..1
..0..0..0..1....0..0..1..1....0..0..1..0....0..1..0..1....0..1..1..1
..0..0..1..1....1..1..0..1....0..1..1..1....0..1..1..1....0..1..1..1
..0..1..0..1....1..1..1..0....1..1..0..0....1..1..1..0....1..0..0..1
		

Crossrefs

Column 1 and row 1 are A000027(n+1).
Column 2 is A002623.
Row 2 is A004006(n+1).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) -a(n-2)
k=2: a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +3*a(n-4) -a(n-5)
k=3: [order 12] Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = (1/6)*n^3 + (1/2)*n^2 + (4/3)*n + 1
n=3: [polynomial of degree 6]
n=4: [polynomial of degree 11]
n=5: [polynomial of degree 19]
n=6: [polynomial of degree 33]
n=7: [polynomial of degree 57]

A177342 a(n) = (4*n^3-3*n^2+5*n-3)/3.

Original entry on oeis.org

1, 9, 31, 75, 149, 261, 419, 631, 905, 1249, 1671, 2179, 2781, 3485, 4299, 5231, 6289, 7481, 8815, 10299, 11941, 13749, 15731, 17895, 20249, 22801, 25559, 28531, 31725, 35149, 38811, 42719, 46881, 51305, 55999, 60971, 66229, 71781, 77635
Offset: 1

Views

Author

Bruno Berselli, May 06 2010 - Nov 27 2010

Keywords

Comments

This sequence is related to the fourth powers (A000583) by n^4 = n*a(n) - Sum_{i=1..n-1} a(i) - (n-1), with n>1.
Also, n*a(n) - Sum_{i=1..n-1} a(i) provides the first column of A162624 and the second column of A162622 (or A162623). - Bruno Berselli, revised Dec 14 2012

Crossrefs

First differences: 2*A084849.
Partial sums: A178073.

Programs

  • Magma
    [(4*n^3-3*n^2+5*n-3)/3: n in [1..39]]; // Bruno Berselli, Aug 24 2011
    
  • Magma
    I:=[1,9,31,75]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Aug 19 2013
  • Mathematica
    CoefficientList[Series[(1 + 5 x + x^2 + x^3) / (1 - x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Aug 19 2013 *)
    Table[(4 n^3 - 3 n^2 + 5 n - 3)/3, {n, 1, 40}] (* Bruno Berselli, Feb 17 2015 *)
    LinearRecurrence[{4,-6,4,-1},{1,9,31,75},40] (* Harvey P. Dale, Jul 31 2021 *)
  • PARI
    a(n)=(4*n^3-3*n^2+5*n-3)/3 \\ Charles R Greathouse IV, Jun 23 2011
    

Formula

G.f.: x*(1 + 5*x + x^2 + x^3)/(1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) - a(-n) = 2*A004006(2n).
a(n) + a(-n) = -A002522(n).
a(n) = 1 + (n-1)*(4*n^2+n+6)/3 = 2*A174723(n)-1.

Extensions

Formulae added and revised by Bruno Berselli, Feb 17 2015

A180985 Array T(n,k) = number of n X k binary matrices with rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

2, 3, 3, 4, 7, 4, 5, 14, 14, 5, 6, 25, 45, 25, 6, 7, 41, 130, 130, 41, 7, 8, 63, 336, 650, 336, 63, 8, 9, 92, 785, 2942, 2942, 785, 92, 9, 10, 129, 1682, 11819, 24520, 11819, 1682, 129, 10, 11, 175, 3351, 42305, 183010, 183010, 42305, 3351, 175, 11, 12, 231, 6280, 136564
Offset: 1

Views

Author

R. H. Hardin, Sep 30 2010

Keywords

Comments

Differs from "number of inequivalent {0,1}-matrices of size n X k, modulo permutations of rows and columns", A241956, starting at T(2, 3) = 14 while A241956(2, 3) = 13. - M. F. Hasler, Apr 27 2022

Examples

			Table starts:
..2...3.....4.......5.........6...........7.............8................9
..3...7....14......25........41..........63............92..............129
..4..14....45.....130.......336.........785..........1682.............3351
..5..25...130.....650......2942.......11819.........42305...........136564
..6..41...336....2942.....24520......183010.......1202234..........6979061
..7..63...785...11819....183010.....2625117......33345183........371484319
..8..92..1682...42305...1202234....33345183.....836488618......18470742266
..9.129..3351..136564...6979061...371484319...18470742266.....818230288201
.10.175..6280..402910..36211867..3651371519..358194085968...31887670171373
.11.231.11176.1099694.170079565.32017940222.6148026957098.1096628939510047
.
All solutions for 3 X 3:
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..0....0..0..0....0..0..1....0..0..1....0..0..1....0..1..1....0..0..0
..0..0..1....0..1..1....0..1..0....0..0..1....0..1..1....0..1..1....1..1..1
.
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..1....0..0..1
..0..0..1....0..1..1....0..0..1....0..1..1....0..1..1....0..1..0....0..1..0
..1..1..0....1..0..0....1..1..1....1..0..1....1..1..1....0..1..0....0..1..1
.
..0..0..1....0..0..1....0..0..1....0..0..1....0..0..1....0..0..1....0..0..1
..0..0..1....0..0..1....0..0..1....0..1..1....0..1..0....0..1..0....0..1..0
..0..1..0....0..0..1....0..1..1....0..1..1....1..0..0....1..1..0....1..0..1
.
..0..0..1....0..0..1....0..0..1....0..0..1....0..0..1....0..0..1....0..0..1
..0..1..0....0..0..1....0..1..1....0..1..1....0..0..1....0..1..1....0..1..1
..1..1..1....1..1..0....1..0..0....1..1..0....1..1..1....1..0..1....1..1..1
.
..0..0..0....0..0..1....0..0..1....0..0..1....0..1..1....0..1..1....0..1..1
..1..1..1....1..1..0....1..1..0....1..1..1....0..1..1....0..1..1....0..1..1
..1..1..1....1..1..0....1..1..1....1..1..1....0..1..1....1..0..0....1..0..1
...
..0..1..1....0..1..1....0..1..1....0..1..1....0..1..1....0..1..1....0..1..1
..0..1..1....1..0..0....1..0..0....1..0..0....1..0..1....1..0..1....1..0..1
..1..1..1....1..0..0....1..0..1....1..1..1....1..1..0....1..0..1....1..1..1
.
..0..1..1....1..1..1
..1..1..1....1..1..1
..1..1..1....1..1..1
		

Crossrefs

Cf. A089006 (diagonal).
Cf. A004006 (row & column 2), A184138 (row & column 3).
Cf. A241956 (similar but different).

Programs

  • PARI
    A180985(h,w,cnt=0)={ local(A=matrix(h,w), z(r,c)=!while(r1 && z(r,c), c--); while(c>1, A[r,c--]=0); while(r>1, A[r--,]=A[r+1,]); next(3))); break); cnt} \\ M. F. Hasler, Apr 27 2022

Formula

T(n,k) = T(k,n). T(1,k) = k+1. T(2,k) = A004006(k+1). T(3,k) = A184138(k). - M. F. Hasler, Apr 27 2022

A212013 Triangle read by rows: total number of pairs of states of the first n subshells of the nuclear shell model in which the subshells are ordered by energy level in increasing order.

Original entry on oeis.org

1, 3, 4, 7, 9, 10, 14, 17, 19, 20, 25, 29, 32, 34, 35, 41, 46, 50, 53, 55, 56, 63, 69, 74, 78, 81, 83, 84, 92, 99, 105, 110, 114, 117, 119, 120, 129, 137, 144, 150, 155, 159, 162, 164, 165, 175, 184, 192, 199, 205, 210, 214, 217, 219, 220, 231, 241, 250, 258, 265, 271, 276, 280, 283, 285, 286
Offset: 1

Views

Author

Omar E. Pol, Jul 15 2012

Keywords

Examples

			Example 1: written as a triangle in which row i is related to the (i-1)st level of nucleus. Triangle begins:
    1;
    3,   4;
    7,   9,  10;
   14,  17,  19,  20;
   25,  29,  32,  34,  35;
   41,  46,  50,  53,  55,  56;
   63,  69,  74,  78,  81,  83,  84;
   92,  99, 105, 110, 114, 117, 119, 120;
  129, 137, 144, 150, 155, 159, 162, 164, 165;
  175, 184, 192, 199, 205, 210, 214, 217, 219, 220;
  ...
Column 1 gives positive terms of A004006. Right border gives positive terms of A000292. Row sums give positive terms of A006325.
Example 2: written as an irregular triangle in which row j is related to the j-th shell of nucleus. Note that in this case row 4 has only one term. Triangle begins:
    1;
    3,   4;
    7,   9,  10;
   14;
   17,  19,  20,  25;
   29,  32,  34,  35,  41;
   46,  50,  53,  55,  56,  63;
   69,  74,  78,  81,  83,  84,  92;
   99, 105, 110, 114, 117, 119, 120, 129;
  137, 144, 150, 155, 159, 162, 164, 165, 175;
  184, 192, 199, 205, 210, 214, 217, 219, 220, 231;
  ...
		

Crossrefs

Partial sums of A004736. Other versions are A210983, A212123, A213363, A213373.

Programs

  • J
    row =: monad define
        d=.>y
        < |. (+/d)-d
    )
    ;}. row"0 <\ +/\ 1+i.11 NB. Vanessa McHale (vamchale(AT)gmail.com), Mar 01 2025
    
  • Mathematica
    Accumulate[Flatten[Range[Range[15], 1, -1]]] (* Paolo Xausa, Mar 15 2025 *)
  • PARI
    row(n) = vector(n, k, n*(n+1)*(n+2)/6 - (n-k)*(n-k+1)/2); \\ Michel Marcus, Mar 10 2025

Formula

a(n) = A212014(n)/2.
Let R = floor(sqrt(8*n+1)) and S = floor(R/2) + R mod 2; then a(n) = binomial(S,3) + n + (n-binomial(S,2))*(S*(S+3)-2*n-2)/4. - Gerald Hillier, Jan 16 2018
T(n,k) = n*(n+1)*(n+2)/6 - (n-k)*(n-k+1)/2. - Davide Rotondo, Mar 10 2025
G.f.: x*y*(1 - x + x^2*(1 - 3*y) - x^5*y^3 + x^3*y*(1 + y) - x^4*y*(1 - 2*y))/((1 - x)^4*(1 - x*y)^4). - Stefano Spezia, Mar 10 2025

Extensions

More terms from Michel Marcus, Mar 10 2025

A212123 Total number of pairs of states of the first n subshells of the nuclear shell model in which the subshells are ordered by energy level in increasing order.

Original entry on oeis.org

1, 3, 4, 7, 8, 10, 14, 16, 19, 20, 25, 29, 32, 34, 35, 41, 46, 50, 53, 55, 56, 63, 68, 71, 77, 81, 82, 84, 92
Offset: 1

Views

Author

Omar E. Pol, Jun 03 2012

Keywords

Comments

First differs from A213363 at a(12).

Examples

			Example 1: written as a triangle in which row i is related to the (i-1)st level of nucleus. Triangle begins:
1;
3,    4;
7,    8,  10;
14,  16,  19,  20;
25,  29,  32,  34,  35;
41,  46,  50,  53,  55,  56;
63,  68,  71,  77,  81,  82,  84;
...
Example 2: written as an irregular triangle in which row j is related to the j-th shell of nucleus. Note that in this case row 4 has only one term. Triangle begins:
1;
3,   4;
7,   8, 10;
14,
16, 19, 20, 25;
29, 32, 34, 35, 41;
46, 50, 53, 55, 56, 63;
68, 71, 77, 81, 82, 84, 92;
...
		

Crossrefs

Partial sums of A212121. Other versions are A210983, A212013, A213363, A213373.

Formula

a(n) = A212124(n)/2.

A027927 Number of plane regions after drawing (in general position) a convex n-gon and all its diagonals.

Original entry on oeis.org

1, 2, 5, 12, 26, 51, 92, 155, 247, 376, 551, 782, 1080, 1457, 1926, 2501, 3197, 4030, 5017, 6176, 7526, 9087, 10880, 12927, 15251, 17876, 20827, 24130, 27812, 31901, 36426, 41417, 46905, 52922, 59501, 66676, 74482, 82955, 92132, 102051, 112751, 124272, 136655, 149942, 164176, 179401
Offset: 2

Views

Author

Keywords

Comments

For n>=1, a(n+1) is the number of Grassmannian permutations that avoid a pattern, sigma, where sigma is a pattern of size 5 with exactly one descent. - Jessica A. Tomasko, Nov 15 2022

Examples

			a(2)=1 (segment traced twice has only exterior).
		

Crossrefs

Cf. A006522 (does not count exterior of n-gon).

Programs

  • GAP
    List([2..50], n-> (n^4 -6*n^3 +23*n^2 -42*n +48)/24); # G. C. Greubel, Sep 06 2019
  • Magma
    [(n^4 -6*n^3 +23*n^2 -42*n +48)/24: n in [2..50]]; // G. C. Greubel, Sep 06 2019
    
  • Maple
    seq((n^4 -6*n^3 +23*n^2 -42*n +48)/24, n=2..50); # G. C. Greubel, Sep 06 2019
  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1 }, {1,2,5,12,26}, 50] (* Vincenzo Librandi, Feb 01 2012 *)
    S[n_] :=n*(n+1)/2; Table[S[S[n]+2]/3, {n, 0, 50}] (* Waldemar Puszkarz, Jan 22 2016 *)
  • PARI
    a(n)=n*(n^3-6*n^2+23*n-42)/24+2 \\ Charles R Greathouse IV, Jan 31 2012
    
  • Sage
    [(n^4 -6*n^3 +23*n^2 -42*n +48)/24 for n in (2..50)] # G. C. Greubel, Sep 06 2019
    

Formula

a(n) = T(n, 2*n-4), T given by A027926.
a(n) = 1 + binomial(n, 4) + binomial(n-1, 2) = (n^4 - 6*n^3 + 23*n^2 - 42*n + 48)/24.
G.f.: x^2*(1 -3*x +5*x^2 -3*x^3 +x^4)/(1-x)^5. - Colin Barker, Jan 31 2012
a(n) = (1/6)*A152950(n-1)*A152948(n). - Bruno Berselli, Jan 31 2012
a(n) = A000217(A000217(n-2)+2)/3, a(n+1) - a(n) = A004006(n-1) for n > 2. - Waldemar Puszkarz, Jan 22 2016 [Adjusted for offset by Peter Munn, Jan 10 2023]
a(n) = 1 + Sum {i=3..5} binomial(n-1, i-1). - Jessica A. Tomasko, Nov 15 2022

Extensions

New name from Len Smiley, Oct 19 2001
Previous Showing 21-30 of 67 results. Next