cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A006414 Number of nonseparable toroidal tree-rooted maps with n + 2 edges and n + 1 vertices.

Original entry on oeis.org

1, 9, 40, 125, 315, 686, 1344, 2430, 4125, 6655, 10296, 15379, 22295, 31500, 43520, 58956, 78489, 102885, 133000, 169785, 214291, 267674, 331200, 406250, 494325, 597051, 716184, 853615, 1011375, 1191640, 1396736, 1629144, 1891505, 2186625, 2517480, 2887221
Offset: 0

Views

Author

Keywords

Comments

The number of faces is 1.
a(n) = K(Oa(2,3,n)), Kekulé numbers of certain benzenoid structures (see the Cyvin - Gutman reference).
Sequence of partial sums of A006322. - L. Edson Jeffery, Dec 13 2011
The sequence b(n) = a(n-2) with a(-1) = 0, for n >= 1, is b(n) = n^3*(n^2 - 1)/4!. It is obtained by comparing the result for the powers n^5 from Worpitzky's identity (see a formula in A000584) with the result obtained from the counting of degrees of freedom for the decomposition of a rank 5 tensor in n dimensions via the standard Young tableaux version with 5 boxes corresponding to the seven partitions of 5. The difference of the two versions gives: 10*(binomial(n+3, 5) + 3*binomial(n+2, 5) + binomial(n+1, 5)) = 5*n*(binomial(n+2, 4) + binomial(n+1, 4)) = 10*b(n). See the formula for a(n) below. - Wolfdieter Lang, Jul 18 2019

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988, p. 105, eq. (ii), and p. 186.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Differences of A006542 (C(n, 3)*C(n-1, 3)/4).

Programs

Formula

a(n) = (n+1)*(n+2)^3*(n+3)/24. - N. J. A. Sloane, Apr 02 2004
a(n) = (n+2)^3*((n+2)^2 - 1)/24. - Paul Richards, Mar 04 2007
G.f.: (1 + 3*x + x^2)/(1-x)^6. - Colin Barker, Feb 21 2012
a(n) = (Sum_{k=0..n+1} k*(n+1)*((n+1)^2 - k^2))/6 for n > 0, which is the sum of all areas of Pythagorean triangles with arms 2*k*(n+1) and (n+1)^2 - k^2 with hypotenuse k^2 + (n+1)^2. - J. M. Bergot, May 12 2014
a(n) = A143945(n+2)/8. - J. M. Bergot, Jun 14 2014
Sum_{n>=0} 1/a(n) = 30 - 24*zeta(3). - Jaume Oliver Lafont, Jul 09 2017
a(n) = binomial(n+5, 5) + 3*binomial(n+4, 5) + binomial(n+3, 5) = ((n+2)/2)*(binomial(n+4, 4) + binomial(n+3, 4)), for n >= 0. See a comment above on the sequence b(n) = a(n-2) = n^3*(n^2 - 1)/4!. - Wolfdieter Lang, Jul 19 2019
E.g.f.: (24 + 192*x + 276*x^2 + 124*x^3 + 20*x^4 + x^5)*exp(x)/4!. - G. C. Greubel, Sep 02 2019
Sum_{n>=0} (-1)^n/a(n) = 18*zeta(3) + 48*log(2) - 54. - Amiram Eldar, Jan 09 2022

Extensions

More terms from Robert Newstedt (Patternfinder(AT)webtv.net)
Name clarified by Andrew Howroyd, Apr 05 2021

A215630 Triangle read by rows: T(n,k) = n^2 - n*k + k^2, 1 <= k <= n.

Original entry on oeis.org

1, 3, 4, 7, 7, 9, 13, 12, 13, 16, 21, 19, 19, 21, 25, 31, 28, 27, 28, 31, 36, 43, 39, 37, 37, 39, 43, 49, 57, 52, 49, 48, 49, 52, 57, 64, 73, 67, 63, 61, 61, 63, 67, 73, 81, 91, 84, 79, 76, 75, 76, 79, 84, 91, 100, 111, 103, 97, 93, 91, 91, 93, 97, 103, 111
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 11 2012

Keywords

Comments

T(n,k) = A093995(n,k) - A075362(n,k) + A133819(n,k) = 2*A070216(n,k) - A215631(n,k), 1 <= k <= n.

Examples

			The triangle begins:
.  1:     1
.  2:     3    4
.  3:     7    7    9
.  4:    13   12   13   16
.  5:    21   19   19   21   25
.  6:    31   28   27   28   31   36
.  7:    43   39   37   37   39   43   49
.  8:    57   52   49   48   49   52   57   64
.  9:    73   67   63   61   61   63   67   73   81
. 10:    91   84   79   76   75   76   79   84   91  100
. 11:   111  103   97   93   91   91   93   97  103  111  121
. 12:   133  124  117  112  109  108  109  112  117  124  133  144 .
		

Crossrefs

Cf. A004068 (row sums), A002061 (left edge), A000290 (right edge).
Cf. A003215 (central terms).

Programs

  • Haskell
    a215630 n k = a215630_tabl !! (n-1) !! (k-1)
    a215630_row n = a215630_tabl !! (n-1)
    a215630_tabl = zipWith3 (zipWith3 (\u v w -> u - v + w))
                            a093995_tabl a075362_tabl a133819_tabl

A322638 Numbers that are sums of consecutive centered pentagonal numbers (A005891).

Original entry on oeis.org

0, 1, 6, 7, 16, 22, 23, 31, 47, 51, 53, 54, 76, 82, 98, 104, 105, 106, 127, 141, 158, 174, 180, 181, 182, 226, 233, 247, 264, 276, 280, 286, 287, 322, 323, 331, 374, 391, 405, 407, 421, 427, 428, 456, 502, 504, 526, 548, 555, 586, 601, 602, 607, 608, 609, 654, 681, 683, 722
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 21 2018

Keywords

Crossrefs

Programs

  • Maple
    L:= [seq((5*n^2+5*n+2)/2,n=0..30)]: N:= L[-1]:
    S:=[0,op(ListTools:-PartialSums(L))]:
    R:=select(`<=`,{0,seq(seq(S[n]-S[m],m=1..n-1),n=1..nops(S))},N):
    sort(convert(R,list)); # Robert Israel, Mar 19 2023
  • Mathematica
    terms = 59;
    nmax = 16; kmax = 9; (* empirical *)
    T = Table[(5n^2 + 5n + 2)/2, {n, 0, nmax}];
    Union[{0}, T, Table[k MovingAverage[T, k], {k, 2, kmax}] // Flatten][[1 ;; terms]] (* Jean-François Alcover, Dec 26 2018 *)

A008354 a(n) = (5*n^2 + 1)*n^2 / 6.

Original entry on oeis.org

0, 1, 14, 69, 216, 525, 1086, 2009, 3424, 5481, 8350, 12221, 17304, 23829, 32046, 42225, 54656, 69649, 87534, 108661, 133400, 162141, 195294, 233289, 276576, 325625, 380926, 442989, 512344, 589541, 675150, 769761, 873984, 988449, 1113806, 1250725, 1399896
Offset: 0

Views

Author

Keywords

Comments

Partial sums of A005902. - Jonathan Vos Post, Mar 14 2006

Crossrefs

Programs

  • GAP
    List([0..30], n -> (5*n^2+1)*n^2/6); # Muniru A Asiru, Feb 12 2018
  • Maple
    a:= n-> 5*n^4/6 + n^2/6: seq(a(n), n=0..45);
  • Mathematica
    Table[n^2 (5 n^2 + 1)/6, {n, 0, 30}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 14, 69, 216}, 30] (* Harvey P. Dale, Feb 12 2015 *)

Formula

From R. J. Mathar, Aug 10 2008: (Start)
O.g.f.: x*(1 + x)*(x^2 + 8*x + 1)/(1 - x)^5.
a(n) = n*A004068(n). (End)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>4, a(0)=0, a(1)=1, a(2)=14, a(3)=69, a(4)=216. - Harvey P. Dale, Feb 12 2015

Extensions

Definition corrected by R. J. Mathar, Aug 10 2008

A272039 a(n) = 10*n^2 + 4*n + 1.

Original entry on oeis.org

1, 15, 49, 103, 177, 271, 385, 519, 673, 847, 1041, 1255, 1489, 1743, 2017, 2311, 2625, 2959, 3313, 3687, 4081, 4495, 4929, 5383, 5857, 6351, 6865, 7399, 7953, 8527, 9121, 9735, 10369, 11023, 11697, 12391, 13105, 13839, 14593, 15367, 16161, 16975, 17809, 18663, 19537
Offset: 0

Views

Author

Vincenzo Librandi, Apr 20 2016

Keywords

Comments

Polynomials from the table "Coefficients and roots of Ehrhart polynomials" in Beck et al. paper (see Links section):
. Cube: A000578;
. Cube minus corner: A004068;
. Prism: A002411;
. Octahedron: A005900;
. Square pyramid: A000330;
. Bypyramid: A006003;
. Unimodular tetrahedron: A000292;
. Fat tetrahedron: A167875;
. Cyclic(2,5), which has the same polynomial form of this sequence.
a(n) for n = 0, -1, 1, -2, 2, -3, 3, ... gives all x such that (5*x - 3)/2 is a square.
Squares in sequence: 1, 49, 1385329, 101263969, 2880599856289, ...
Is this 1 followed by A228219?

Crossrefs

Programs

  • Magma
    [10*n^2+4*n+1: n in [0..50]];
    
  • Mathematica
    Table[10 n^2 + 4 n + 1, {n, 0, 50}]
    LinearRecurrence[{3,-3,1},{1,15,49},50] (* Harvey P. Dale, Dec 26 2021 *)
  • PARI
    a(n)=10*n^2+4*n+1 \\ Charles R Greathouse IV, Jun 17 2017

Formula

O.g.f.: (1 + 12*x + 7*x^2)/(1 - x)^3.
E.g.f.: (1 + 14*x + 10*x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 2*A168668(n) + 1.

Extensions

Edited by Bruno Berselli, Apr 22 2016

A377976 Expansion of the 48th root of the series 2*E_2(x) - E_4(x), where E_2(x) and E_4(x) are the Eisenstein series of weight 2 and 4.

Original entry on oeis.org

1, -6, -894, -174420, -38431614, -9048710040, -2221653118116, -561444889080960, -144914324838755910, -38011797621225586602, -10098281618881696696392, -2710458654395655881518356, -733711171629600485187568404, -200033609249999737396399900920, -54867682197669353983111639906656
Offset: 0

Views

Author

Peter Bala, Nov 14 2024

Keywords

Comments

Let R = 1 + x*Z[[x]] denote the set of integer power series with constant term equal to 1. Let P(n) = {g^n, g in R}. The Eisenstein series E_2(x) lies in P(4) and E_4(x) lies in P(8) (Heninger et al.).
We claim that the series 2*E_2(x) - E_4(x) belongs to P(48).
Proof.
E_2(x) = 1 - 24*Sum_{n >= 1} sigma_1(n)*x^n.
E_4(x) = 1 + 240*Sum_{n >= 1} sigma_3(n)*x^n.
Hence,
2*E_2(x) - E_4(x) = 1 - (288)*Sum_{n >= 1} ((1/6)*sigma_1(n) + (5/6)*sigma_3(n))*x^n belongs to the set R, since the polynomial (1/6)*k + (5/6)*k^3 has integer values for integer k. See A004068.
Hence, 2*E_2(x) - E_4(x) == 1 (mod 288) == 1 (mod (2^5)*(3^2)).
It follows from Heninger et al., Theorem 1, Corollary 2, that the series 2*E_2(x) - E_4(x) belongs to P((2^4)*3) = P(48). End Proof.
In a similar way we find that the series 3*E_2(x) - E_6(x) - 1 belongs to P(72) and the three series 3*E_4(x) - 2*E_6(x), 5*E_4(x) - 2*E_10(x) - 2 and 5*E_6(x) - 3*E_10(x) - 1 belong to P(288).

Crossrefs

Cf. A004068, A006352 (E_2), A004009 (E_4), A108091 ((E_4)^1/8), A289392 ((E_2)^(1/4)), A341871 - A341875, A377973, A377974, A377975, A377977.

Programs

  • Maple
    with(numtheory):
    E := proc (k) local n, t1; t1 := 1 - 2*k*add(sigma[k-1](n)*q^n, n = 1..30)/bernoulli(k); series(t1, q, 30) end:
    seq(coeftayl((2*E(2) - E(4))^(1/48), q = 0, n),n = 0..20);
  • Mathematica
    terms = 20; E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}]; E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}]; CoefficientList[Series[(2*E2[x] - E4[x])^(1/48), {x, 0, terms}], x] (* Vaclav Kotesovec, Aug 03 2025 *)

Formula

a(n) ~ c * d^n / n^(49/48), where d = 295.8669385406700495308385233671383399895922733900742171390678012914822364544611... and c = -0.0205882497833853345146399243734199945444083043388859856935627869352251231763... - Vaclav Kotesovec, Aug 03 2025

A185909 Accumulation array of A185908, by antidiagonals.

Original entry on oeis.org

1, 2, 3, 3, 7, 6, 4, 11, 14, 10, 5, 15, 23, 23, 15, 6, 19, 32, 38, 34, 21, 7, 23, 41, 54, 56, 47, 28, 8, 27, 50, 70, 80, 77, 62, 36, 9, 31, 59, 86, 105, 110, 101, 79, 45, 10, 35, 68, 102, 130, 145, 144, 128, 98, 55, 11, 39, 77, 118, 155, 181, 190, 182, 158, 119, 66, 12, 43, 86, 134, 180, 217, 238, 240, 224, 191, 142, 78, 13, 47, 95, 150, 205, 253, 287, 301, 295, 270, 227, 167, 91, 14, 51, 104, 166, 230, 289, 336, 364, 370, 355, 320, 266, 194, 105, 15, 55, 113, 182, 255
Offset: 1

Views

Author

Clark Kimberling, Feb 06 2011

Keywords

Comments

A member of the accumulation chain ... < A185907 < A185908 < A185909 < ...
(See A144112 for definitions of weight array and accumulation array.)

Examples

			Northwest corner:
   1,  2,  3,  4,  5
   3,  7, 11, 15, 19
   6, 14, 23, 32, 41
  10, 23, 38, 54, 70
		

Crossrefs

diag (1,7,...): A004068.
diag (2,11,...): A033994.
diag (3,14,...): A162147.

Programs

  • Mathematica
    f[n_, 0] := 0; f[0, k_] := 0; (*needed for the weight array*)
    f[n_, k_] := Min[n, k] + n - 1;
    s[n_, k_] := Sum[f[i, j], {i, 1, n}, {j, 1, k}];
    Table[s[n - k + 1, k], {n, 10}, {k, n, 1, -1}] // Flatten

A071910 a(n) = t(n)*t(n+1)*t(n+2), where t() are the triangular numbers.

Original entry on oeis.org

0, 18, 180, 900, 3150, 8820, 21168, 45360, 89100, 163350, 283140, 468468, 745290, 1146600, 1713600, 2496960, 3558168, 4970970, 6822900, 9216900, 12273030, 16130268, 20948400, 26910000, 34222500, 43120350, 53867268, 66758580, 82123650, 100328400, 121777920
Offset: 0

Views

Author

N. J. A. Sloane, Jun 13 2002

Keywords

Comments

a(n) is also the number of three-dimensional cage assemblies such that the assembly is not a cube. See also A052149 for the two-dimensional version and to A059827 for the non-exclusive version. - Alejandro Rodriguez, Oct 20 2020

Crossrefs

Cf. A006542, (first differences of a(n) /18) A006414, (second differences of a(n) /18) A006322, (third differences of a(n) /18) A004068, (fourth differences of a(n) /18) A005891, (fifth differences of a(n) /18) A008706.

Programs

  • Mathematica
    Join[{0},Times@@@Partition[Accumulate[Range[40]],3,1]] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,18,180,900,3150,8820,21168},40] (* Harvey P. Dale, Aug 08 2025 *)
  • PARI
    t(n) = n*(n+1)/2;
    a(n) = t(n)*t(n+1)*t(n+2); \\ Michel Marcus, Oct 21 2015

Formula

a(n) = 18*A006542(n+3). - Vladeta Jovovic, Jun 14 2002
G.f.: 18*x*(1+3*x+x^2)/(1-x)^7. - Vladeta Jovovic, Jun 14 2002
a(n) = ((n+1)*(n+2))^3/8 - Sum_{i=1..n+1} i^3. - Jon Perry, Feb 13 2004
a(n) = C(2+n, n)*C(3+n, 1+n)*C(4+n, 2+n). - Zerinvary Lajos, Jul 29 2005
a(n) = A059827(n+1) - A000537(n+1). - Michel Marcus, Oct 21 2015

A365904 Triangle read by rows T(n,k) = n^2 - binomial(k+1,2), n>=1, k

Original entry on oeis.org

1, 4, 3, 9, 8, 6, 16, 15, 13, 10, 25, 24, 22, 19, 15, 36, 35, 33, 30, 26, 21, 49, 48, 46, 43, 39, 34, 28, 64, 63, 61, 58, 54, 49, 43, 36, 81, 80, 78, 75, 71, 66, 60, 53, 45, 100, 99, 97, 94, 90, 85, 79, 72, 64, 55, 121, 120, 118, 115, 111, 106, 100, 93, 85, 76, 66
Offset: 1

Views

Author

Joan Llobera Querol, Sep 22 2023

Keywords

Comments

T(n,k) is the number of points in a rhombus that has 1 point in the first row, then 2 in the second, and following until the n-th row with n points, and then n-1 in the following row, n-2 in the following to end with a row with k+1 points.
T(n,0) are the perfect squares (A000290).
T(n,n-1) are the triangular numbers (A000217).

Examples

			Triangle begins:
    1;
    4,  3;
    9,  8,  6;
   16, 15, 13, 10;
   25, 24, 22, 19, 15;
   36, 35, 33, 30, 26, 21;
   49, 48, 46, 43, 39, 34, 28;
   64, 63, 61, 58, 54, 49, 43, 36;
   81, 80, 78, 75, 71, 66, 60, 53, 45;
  100, 99, 97, 94, 90, 85, 79, 72, 64, 55;
  ...
		

Crossrefs

Row sums give A004068.
Cf. A214859.

Formula

G.f.: x*(1 + x - 4*x^2*y + x^3*y^2 + x^4*y^2)/((1 - x)^3*(1 - x*y)^3). - Stefano Spezia, Oct 05 2023

A329523 a(n) = n * (binomial(n + 1, 3) + 1).

Original entry on oeis.org

0, 1, 4, 15, 44, 105, 216, 399, 680, 1089, 1660, 2431, 3444, 4745, 6384, 8415, 10896, 13889, 17460, 21679, 26620, 32361, 38984, 46575, 55224, 65025, 76076, 88479, 102340, 117769, 134880, 153791, 174624, 197505, 222564, 249935, 279756, 312169, 347320, 385359, 426440
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 15 2019

Keywords

Comments

The n-th centered n-gonal pyramidal number.

Examples

			Square array begins:
  (0), 1,  2,   3,   4,    5,  ... A001477
   0, (1), 3,   7,  14,   25,  ... A004006
   0,  1, (4), 11,  24,   45,  ... A006527
   0,  1,  5, (15), 34,   65,  ... A006003 (partial sums of A005448)
   0,  1,  6,  19, (44),  85,  ... A005900 (partial sums of A001844)
   0,  1,  7,  23,  54, (105), ... A004068 (partial sums of A005891)
...
This sequence is the main diagonal of the array.
		

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), 142.

Crossrefs

Programs

  • Magma
    [ n*(Binomial(n+1,3)+1):n in [0..40]]; // Marius A. Burtea, Nov 15 2019
    
  • Magma
    R:=PowerSeriesRing(Integers(), 41); [0] cat Coefficients(R!(x*(1-x+5*x^2-x^3)/(1-x)^5)); // Marius A. Burtea, Nov 15 2019
  • Mathematica
    Table[n (Binomial[n + 1, 3] + 1), {n, 0, 40}]
    nmax = 40; CoefficientList[Series[x (1 - x + 5 x^2 - x^3)/(1 - x)^5, {x, 0, nmax}], x]
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 4, 15, 44}, 41]

Formula

G.f.: x * (1 - x + 5*x^2 - x^3) / (1 - x)^5.
E.g.f.: exp(x) * x * (1 + x + x^2 + x^3 / 6).
a(n) = n * (n + 2) * (n^2 - 2*n + 3) / 6.
a(n) = n * (A000292(n-1) + 1).
a(n) = n + 2 * Sum_{k=1..n} A000330(k-1).
a(n) + a(-n) = 4 * A002415(n).
Previous Showing 21-30 of 30 results.