cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A106328 Numbers j such that 8*(j^2) + 9 = k^2 for some positive number k.

Original entry on oeis.org

0, 3, 18, 105, 612, 3567, 20790, 121173, 706248, 4116315, 23991642, 139833537, 815009580, 4750223943, 27686334078, 161367780525, 940520349072, 5481754313907, 31950005534370, 186218278892313, 1085359667819508, 6325939728024735, 36870278700328902, 214895732473948677
Offset: 1

Views

Author

Pierre CAMI, Apr 29 2005

Keywords

Comments

The ratio k(n) /(2*j(n)) tends to sqrt(2) as n increases.
The squares of the numbers in this sequence are one less than a triangular number: a(n)^2 = A164080(n). For example, 18^2 is 324, and 325 is a triangular number. a(n)^2 + 1 = A164055(n). a(n)^2 = A072221(n)(A072221(n)+1)/2 - 1. - Tanya Khovanova & Alexey Radul, Aug 09 2009
For n > 0, a(n+1) is the n-th almost balancing number of first type (see Tekcan and Erdem). - Stefano Spezia, Nov 25 2022

Crossrefs

Programs

  • Haskell
    a106328 n = a106328_list !! (n-1)
    a106328_list = 0 : 3 : zipWith (-) (map (* 6) (tail a106328_list)) a106328_list
    -- Reinhard Zumkeller, Jan 10 2012
    
  • Mathematica
    s=0;lst={};Do[s+=n;If[Sqrt[s-1]==Floor[Sqrt[s-1]],AppendTo[lst,Sqrt[s-1]]],{n,8!}];lst (* Vladimir Joseph Stephan Orlovsky, Apr 02 2009 *)
    Rest@ CoefficientList[Series[3 x^2/(1 - 6 x + x^2), {x, 0, 24}], x] (* Michael De Vlieger, Nov 02 2020 *)
  • PARI
    concat(0, Vec(3*x^2/(1-6*x+x^2) + O(x^40))) \\ Michel Marcus, Sep 07 2016
    
  • PARI
    a(n)=([0,1;-1,6]^n*[-3;0])[1,1] \\ Charles R Greathouse IV, Sep 07 2016

Formula

a(1)=0, a(2)=3 then a(n) = 6*a(n-1) - a(n-2).
a(n) = ((3+2*sqrt(2))^(n-1) - (3-2*sqrt(2))^(n-1))*3/4/sqrt(2). - Max Alekseyev, Jan 11 2007
a(n) = 3*A001109(n). - M. F. Hasler, R. J. Mathar, Jun 03 2009
a(n) = (3/4)*A005319(n-1).
G.f.: 3*x^2/(1 - 6*x + x^2). - Philippe Deléham, Nov 17 2008
E.g.f.: 3 - 3*exp(3*x)*(4*cosh(2*sqrt(2)*x) - 3*sqrt(2)*sinh(2*sqrt(2)*x))/4. - Stefano Spezia, Nov 25 2022

Extensions

More terms from Max Alekseyev, Jan 11 2007

A182190 a(n) = 6*a(n-1) - a(n-2) + 4 with n > 1, a(0)=0, a(1)=4.

Original entry on oeis.org

0, 4, 28, 168, 984, 5740, 33460, 195024, 1136688, 6625108, 38613964, 225058680, 1311738120, 7645370044, 44560482148, 259717522848, 1513744654944, 8822750406820, 51422757785980, 299713796309064
Offset: 0

Views

Author

Kenneth J Ramsey, Apr 17 2012

Keywords

Comments

Also, nonnegative m such that 2m(m+2)+1 is a square. - Bruno Berselli, Oct 22 2012

Crossrefs

Programs

  • Magma
    I:=[0,4]; [n le 2 select I[n] else 6*Self(n-1)-Self(n-2)+4: n in [1..20]]; // Bruno Berselli, Jun 07 2012
    
  • Mathematica
    m = 4;n = 0; c = 0;
    list3 = Reap[While[c < 22, t = 6 n - m + 4; Sow[t];m = n; n = t;c++]][[2,1]]
    Table[Fibonacci[2*n+1, 2] -1, {n,0,40}] (* G. C. Greubel, May 24 2021 *)
  • Sage
    [lucas_number1(2*n+1,2,-1) -1 for n in (0..40)] # G. C. Greubel, May 24 2021

Formula

G.f.: 4*x/((1-x)*(1-6*x+x^2)). - Bruno Berselli, Jun 07 2012
a(n) = 4*A053142(n). - Bruno Berselli, Jun 07 2012
a(n) = A001653(n+1) - 1. - Kiran S. Kedlaya, Mar 14 2021
a(n) = A000129(2*n+1) - 1. - G. C. Greubel, May 24 2021
a(n) = A143608(n)*A143608(n+1). - R. J. Mathar, Jan 31 2024
a(n)-a(n-1) = A005319(n). - R. J. Mathar, Jan 31 2024

A046727 Related to Pythagorean triples: alternate terms of A001652 and A046090.

Original entry on oeis.org

0, 3, 21, 119, 697, 4059, 23661, 137903, 803761, 4684659, 27304197, 159140519, 927538921, 5406093003, 31509019101, 183648021599, 1070379110497, 6238626641379, 36361380737781, 211929657785303, 1235216565974041, 7199369738058939, 41961001862379597, 244566641436218639
Offset: 0

Views

Author

Keywords

Comments

For a triple (a,b,c) there exist k,m such that (a,b,c) = (k^2 - m^2, 2*k*m, k^2 + m^2). Here k = A001333(n) and m = A001333(n+1), so this sequence is identical to the Pell oblongs A084159 for n > 0. - Lambert Klasen (Lambert.Klasen(AT)gmx.de), Nov 10 2004
a(n), for n >= 1, gives the odd length (in some unit) catheti (legs) of the (primitive) Pythagorean triples which have absolute length difference of the catheti equal to one. See a W. Lang comment on A001653 on how to generate all such Pythagorean triples. - Wolfdieter Lang, Mar 08 2012

References

  • A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, pp. 122-125, 1964.

Crossrefs

Essentially the same as A084159.

Programs

  • Haskell
    a046727 n = a046727_list !! n
    a046727_list = 0 : f (tail a001652_list) (tail a046090_list) where
       f (x::xs) (:y:ys) = x : y : f xs ys
    -- Reinhard Zumkeller, Jan 10 2012
    
  • Magma
    I:=[0,3,21,119]; [n le 4 select I[n] else 5*Self(n-1)+5*Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Nov 04 2016
    
  • Mathematica
    RecurrenceTable[{a[n+2]==6a[n+1] -a[n] -4*(-1)^n, a[0]==3, a[1]==21}, a, {n, 30}] (* Ron Knott, Jul 01 2013 *)
    LinearRecurrence[{5,5,-1}, {0,3,21,119}, 30] (* Vincenzo Librandi, Nov 04 2016 *)
  • PARI
    concat(0, Vec(x*(3+6*x-x^2)/((1+x)*(1-6*x+x^2)) + O(x^30))) \\ Colin Barker, Nov 03 2016
    
  • SageMath
    [(lucas_number2(2*n+1,2,-1) +2*(-1)^n)/4 -int(n==0) for n in range(41)] # G. C. Greubel, Feb 11 2023

Formula

Values of x obtained by repeatedly multiplying the triple (x, y, z) = (3, 4, 5) by the matrix A = ([1 2 2], [2 1 2], [2 2 3]), the Across matrix of "The Trinary Tree(s) underlying Primitive Pythagorean Triples" generating matrices. - Vim Wenders, Jan 14 2004
For n > 0, a(n) = A001333(n)*A001333(n+1). - Lambert Klasen (Lambert.Klasen(AT)gmx.de), Nov 10 2004
G.f.: x*(3+6*x-x^2)/((1+x)*(1-6*x+x^2)). - R. J. Mathar, Jul 08 2009
a(n) + a(n+1) = A005319(n+1), n > 0. - R. J. Mathar, Jul 13 2009
a(n) = 6*a(n-1) - a(n-2) - 4*(-1)^n. - Ron Knott, Jul 01 2013
From Colin Barker, Nov 03 2016: (Start)
a(n) = (2*(-1)^n + (1+sqrt(2))^(2*n+1) + (1-sqrt(2))^(2*n+1))/4 for n > 0.
a(n) = 5*a(n-1) + 5*a(n-2) - a(n-3) for n > 3. (End)
From G. C. Greubel, Feb 11 2023: (Start)
a(n) = (1/2)*(A001109(n+1) + A001109(n) + (-1)^n) - [n=0].
a(n) = (A001333(2*n+1) + (-1)^n)/2 - [n=0]. (End)
E.g.f.: exp(-x)*(1 + exp(4*x)*(cosh(2*sqrt(2)*x) + sqrt(2)*sinh(2*sqrt(2)*x)))/2 - 1. - Stefano Spezia, Aug 03 2024

Extensions

More terms from Sascha Kurz, Jan 23 2003

A065113 Sum of the squares of the a(n)-th and the (a(n)+1)st triangular numbers (A000217) is a perfect square.

Original entry on oeis.org

6, 40, 238, 1392, 8118, 47320, 275806, 1607520, 9369318, 54608392, 318281038, 1855077840, 10812186006, 63018038200, 367296043198, 2140758220992, 12477253282758, 72722761475560, 423859315570606, 2470433131948080, 14398739476117878, 83922003724759192
Offset: 1

Views

Author

Robert G. Wilson v, Nov 12 2001

Keywords

Comments

The sequence of square roots of the sum of the squares of the n-th and the (n+1)st triangular numbers is A046176.

Examples

			T6 = 21 and T7 = 28, 21^2 + 28^2 = 441 + 784 = 1225 = 35^2.
		

Crossrefs

Cf. A001652, A002315, A003499 (first differences), A065651.

Programs

  • Mathematica
    CoefficientList[ Series[2*(x - 3)/(-1 + 7x - 7x^2 + x^3), {x, 0, 24} ], x]
    LinearRecurrence[{7,-7,1},{6,40,238},41] (* Harvey P. Dale, Dec 27 2011 *)
  • PARI
    a(n)=-1+subst(poltchebi(abs(n+1))-poltchebi(abs(n)),x,3)/2
    
  • PARI
    Vec(2*x*(3-x)/((1-6*x+x^2)*(1-x)) + O(x^40)) \\ Colin Barker, Mar 05 2016

Formula

a(n) = 2*A001652(n) = -1 + A002315(n).
a(n) - a(n-1) = A003499(n).
From Michael Somos, Apr 07 2003: (Start)
G.f.: 2*x*(3-x)/((1-6*x+x^2)*(1-x)).
a(n) = 6*a(n-1) - a(n-2) + 4.
a(-1-n) = -a(n) - 2. (End)
a(1)=6, a(2)=40, a(3)=238, a(n) = 7*a(n-1)-7*a(n-2)+a(n-3). - Harvey P. Dale, Dec 27 2011
a(n)^2 + (a(n)+2)^2 = A075870(n+1)^2 = A165518(n+1). - Joerg Arndt, Feb 15 2012
a(n) = (-2-(3-2*sqrt(2))^n*(-1+sqrt(2))+(1+sqrt(2))*(3+2*sqrt(2))^n)/2. - Colin Barker, Mar 05 2016
From Klaus Purath, Sep 05 2021: (Start)
(a(n+1) - a(n) - a(n-1) + a(n-2))/8 = A005319(n), for n >= 3.
((a(n) - a(n-1))^2)/2 - 2 = A005319(n)^2 = 2*A132592(n), for n>= 2.
a(n) = A265278(2*n+1).
a(n) = A293004(2*n+1).
a(n) = A213667(2*n).
a(n) = Sum_{k=1..n} A003499(k). (End)

A082639 Numbers k such that 2*k*(k+2) is a square.

Original entry on oeis.org

0, 2, 16, 98, 576, 3362, 19600, 114242, 665856, 3880898, 22619536, 131836322, 768398400, 4478554082, 26102926096, 152139002498, 886731088896, 5168247530882, 30122754096400, 175568277047522, 1023286908188736
Offset: 1

Views

Author

James R. Buddenhagen, May 15 2003

Keywords

Comments

Even-indexed terms are squares. Their square roots form sequence A005319. Odd-indexed terms divided by 2 are squares. Their square roots form the sequence A002315. (Index starts at 0.)
Lower of two terms with difference 2 in A088827. - Ophir Spector, Nov 06 2024

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[1] = 2; a[n_] := a[n] = 6a[n - 1] - a[n - 2] + 4; Table[ a[n], {n, 0, 20}]
    LinearRecurrence[{7,-7,1},{0,2,16},30] (* Harvey P. Dale, Nov 21 2015 *)

Formula

a(n) = A001541(n) - 1.
a(n) = (1/2)*(s^n + t^n) - 1, where s = 3 + 2*sqrt(2), t = 3 - 2*sqrt(2). Note: s=1/t. a(n) = 6*a(n-1) - a(n-2) + 4, a(0)=0, a(1)=2.
a(n) = 1/kappa(sqrt(2)/A001542(n)); a(n) = 1/kappa(sqrt(8)/A005319(n)) where kappa(x) is the sum of successive remainders by computing the Euclidean algorithm for (1, x). - Thomas Baruchel, Nov 29 2003
G.f.: -2*x^2*(x+1)/((x-1)*(x^2-6*x+1)). - Colin Barker, Nov 22 2012

Extensions

More terms from Robert G. Wilson v, May 15 2003

A082981 Start with the sequence S(0)={1,1} and for k>0 define S(k) to be I(S(k-1)) where I denotes the operation of inserting, for i=1,2,3..., the term a(i)+a(i+1) between any two terms for which 4a(i+1)<=5a(i). The listed terms are the initial terms of the limit of this process as k goes to infinity.

Original entry on oeis.org

1, 2, 3, 4, 9, 14, 19, 24, 53, 82, 111, 140, 309, 478, 647, 816, 1801, 2786, 3771, 4756, 10497, 16238, 21979, 27720, 61181, 94642, 128103, 161564, 356589, 551614, 746639, 941664, 2078353, 3215042, 4351731, 5488420, 12113529, 18738638, 25363747
Offset: 1

Views

Author

John W. Layman, May 28 2003

Keywords

Comments

Conjectures:
(1) the section {a(2n+1)}={1,3,9,19,53,111,...} is A077442, the terms of which are solutions of ax^2+7 = a square,
(2) the section {a(4n+1)}={1,9,53,309,1801,...} is A038761,
(3) the section {a(4n+2)}={2,14,82,478,2786,...} is A077444, the terms of which are solutions of 2x^2+8 = a square,
(4) the sequence {a(4n+2)/2}={1,7,41,239,1393,...} is A002315, the terms of which are solutions of 2x^2+2 = a square,
(5) the section {a(4n+4)}={4,24,140,816,4756,...} is A005319, the terms of which are solutions of 2x^2+4=a square,
(6) the sequence {a(4n+4)/4}={1,6,35,204,1189,...} is A001109, the terms of which are solutions of 8x^2+1=a square.

Crossrefs

Programs

  • Mathematica
    Most@Nest[If[#[[-2]] >= 4 #[[-1]], Append[Most@#, #[[-1]] + #[[-2]]], Insert[#, #[[-1]] + #[[-2]], -2]] &, {1, 1}, 47] (* Ivan Neretin, Apr 27 2017 *)

Formula

It appears that a(n)=6a(n-4)-a(n-8).
Empirical g.f.: x*(x+1)^2*(x^2+1)^2/((x^4-2*x^2-1)*(x^4+2*x^2-1)). - Colin Barker, Nov 06 2014

A089499 a(0)=0; a(1)=1; a(2n) = 4*Sum_{k=0..n} a(2k-1); a(2n+1) = a(2n) + a(2n-1).

Original entry on oeis.org

0, 1, 4, 5, 24, 29, 140, 169, 816, 985, 4756, 5741, 27720, 33461, 161564, 195025, 941664, 1136689, 5488420, 6625109, 31988856, 38613965, 186444716, 225058681, 1086679440, 1311738121, 6333631924, 7645370045, 36915112104, 44560482149
Offset: 0

Views

Author

Charlie Marion, Nov 11 2003

Keywords

Comments

1, 4, 5, 24, 29, 140, ...= numerators in convergents to (sqrt(8) - 2) = continued fraction [0; 1, 4, 1, 4, 1, 4, ...]; where sqrt(8) - 2 = 0.828427124... = the inradius of a right triangle with hypotenuse 6, legs sqrt(32) and 2. Denominators of convergents to [0; 1, 4, 1, 4, 1, 4, ...] = A041011 starting (1, 5, 6, 29, 35, ...). - Gary W. Adamson, Dec 22 2007
This is a strong divisibility sequence, that is, gcd(a(n), a(m)) = a(gcd(n,m)) for all natural numbers n and m. - Peter Bala, May 12 2014

Crossrefs

Cf. A041011.

Programs

Formula

For n > 0, a(n) = A001333(n) + A084068(n-1)*(-1)^n.
a(n)*a(n+1) = A046729(n).
a(2n+1) = A001653(n); a(2n) = A005319(n).
a(1) = 1, a(2n) = 4*a(2n-1) + a(2n-2); a(2n-1) = a(2n-2) + a(2n-3). Given the 2 X 2 matrix X = [1, 4; 1, 5], [a(2n-1), a(2n)] = top row of X^n. The sequence starting (1, 4, 5, 24, 29, ...) = numerators in continued fraction [0; 1, 4, 1, 4, 1, 4, ...] = (sqrt(8) - 2) = 0.828427124... E.g., X^3 = [29, 140; 35, 169], where 29/35, 140/169 are convergents to (sqrt(8)-2). - Gary W. Adamson, Dec 22 2007
From R. J. Mathar, Jul 08 2009: (Start)
a(n) = A000129(n)*A000034(n+1).
a(n) = 6*a(n-2) - a(n-4).
G.f.: -x*(-1-4*x+x^2)/((x^2-2*x-1)*(x^2+2*x-1)). (End)
From Peter Bala, May 12 2014: (Start)
a(2*n + 1) = A041011(2*n + 1); a(2*n) = 4*A041011(2*n).
For n odd, a(n) = (alpha^n - beta^n)/(alpha - beta), and for n even, a(n) = 4*(alpha^n - beta^n)/(alpha^2 - beta^2), where alpha = 1 + sqrt(2) and beta = 1 - sqrt(2).
a(n) = Product_{j = 1..floor(n/2)} ( 4 + 4*cos^2(j*Pi/n) ) for n >= 1. (End)

Extensions

Corrected by T. D. Noe, Nov 08 2006
Definition corrected by Jonathan Sondow, Jun 06 2014

A227972 Two column recursive array A(n,k), relating expressions based on half-squares (A007590) to each other and several other sequences, read by rows.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 3, 4, 5, 7, 7, 10, 17, 24, 29, 41, 41, 58, 99, 140, 169, 239, 239, 338, 577, 816, 985, 1393, 1393, 1970, 3363, 4756, 5741, 8119, 8119, 11482, 19601, 27720, 33461, 47321, 47321, 66922, 114243, 161564, 195025, 275807, 275807, 390050, 665857, 941664, 1136689, 1607521
Offset: 1

Views

Author

Richard R. Forberg, Aug 01 2013

Keywords

Comments

The first column (k=1) holds the interleaved integer square roots of these two "Half-Square" expressions in ascending order: floor(m^2/2 + 1) for m=>0 and floor(m^2/2 - 1) for m=>1. The second column (k=2) holds the value of m that yields the corresponding integer square root.
The value of m for row n (at n mod 3 = 2) is the value of the square root for the next row (at n mod 3 = 0) which uses the other expression.
There are twice as many results for the expression floor(m^2/2 + 1) as for floor(m^2/2 - 1), interleaved consistently as two of every three results (as shown in the example below).
The first column, for n mod 3 = 1, produces A001541.
The first column, for n mod 3 = 2, produces A001653.
NOTE: Interleaving of the two sequences above is A079496.
The first column, for n mod 3 = 0, produces A002315 (NSW Numbers).
NOTE: Interleaving of A001541 and A002315 is A001333.
The second column, for n mod 3 = 1, produces A005319.
The second column, for n mod 3 = 2, produces A002315 (again).
NOTE: Interleaving of the two sequences above is A143608.
The second column, for n mod 3 = 0, produces A075870.
NOTE: Interleaving of A005319 and A075870 is A052542 = 2*A000129 (Pell)
The row sums at n mod 3 = 1 and n mod 3 = 0 are used in the recursion to produce values in subsequent rows of the array for both columns.
For rows at n mod 3 = 2, the ascending interleaved combination of A(n,1) and the row sum (of the same row) produces A000129 (Pell Numbers).
Row sums also hold all the integer square roots (as given in A001542) of the Half-Squares, (A007590), at n mod 3 = 2, and the corresponding values of m in the next row at n mod 3 = 0, corresponding to A001541.
The value of the floor of half the row sum, for n mod 3 =0 and n mod 3 = 1, produces A048739, giving the partial sums of A000129 (Pell Numbers), for the Pell Numbers produced through the prior row at n mod 3 = 2.
The value of half the row sum, for n mod 3 = 2, produces A001109 (without its initial 0). This subsequence is also produced from finding the integer square roots of A083374. The value of the indices of that sequence where these roots occur is given by A002315 (NSW Numbers).
The differences of two entries in row n equals the row sum for row n-3, consistently for all rows n > 3.
The ratio of the two entries in the same row converges to sqrt(2).
The ratio of two entries in the same column (either k=1 or k=2) converge as follows:
A(k,n)/A(k,n-1)--> sqrt(2) for n mod 3 = 0,
--> sqrt(2) + 1 for n mod 3 = 1,
--> sqrt(2)/2 + 1 for n mod 3 = 2.
A(k,n)/A(k,n-3)--> sqrt(8) + 3 for n mod 3 = 0, 1, or 2,
That last line means: A001541, A001653, A002315, A005319 and A075870 all have the convergence ratio of sqrt(8) + 3 for adjacent terms. In addition alternating Pell Numbers also converge to that ratio.

Examples

			The two column array with row number n and the row sum. An extra column on the right shows which expression is applicable to get that row's values: either floor(m^2/2 + 1) indicated as "+1",  or floor(m^2/2 - 1) indicated as "-1". (NOTE: The value of n is immaterial, except as a row number).
The array begins:
Row         k=1         k=2                   Applicable "Half-Square"
n          (sqrt)       (m)         Row Sum        Expression
1            1           0               1             +1
2            1           1               2             +1
3            1           2               3             -1
4            3           4               7             +1
5            5           7              12             +1
6            7          10              17             -1
7           17          24              41             +1
8           29          41              70             +1
9           41          58              99             -1
10          99         140             239             +1
11         169         239             408             +1
12         239         338             577             -1
13         577         816            1393             +1
14         985        1393            2378             +1
15        1393        1970            3363             -1
16        3363        4756            8119             +1
17        5741        8119           13860             +1
18        8119       11482           19601             -1
19       19601       27720           47321             +1
20       33461       47321           80782             +1
		

Crossrefs

Formula

Initialize row 1 as A(1,1) = 1 and A(1,2) = 0, then:
For rows at n mod 3 = 0: A(n,1) = A(n-1, 2)
A(n,2) = A(n, 1) + A(n-2, 1)
For rows at n mod 3 = 1: A(n,1) = A(n-1, 1) + A(n-1, 2)
A(n,2) = A(n, 1) + A(n-1, 1)
For rows at n mod 3 = 2: A(n,1) = A(n-1,1) + A(n-3, 1)
A(n,2) = A(n-1,1) + A(n-1, 2)
Empirical g.f.: -x*(2*x^11-x^10-x^9+x^8-4*x^7+3*x^6-2*x^5-x^4-x^3-x^2-1) / ((x^6-2*x^3-1)*(x^6+2*x^3-1)). - Colin Barker, Aug 08 2013

Extensions

Some additional comments by Richard R. Forberg, Aug 12 2013

A100434 Expansion of g.f. (1+x)*(3+x)/(1+6*x^2+x^4).

Original entry on oeis.org

3, 4, -17, -24, 99, 140, -577, -816, 3363, 4756, -19601, -27720, 114243, 161564, -665857, -941664, 3880899, 5488420, -22619537, -31988856, 131836323, 186444716, -768398401, -1086679440, 4478554083, 6333631924, -26102926097, -36915112104, 152139002499, 215157040700
Offset: 0

Views

Author

N. J. A. Sloane, Nov 21 2004, suggested by correspondence from Creighton Dement

Keywords

Comments

From Creighton Dement, Dec 18 2004: (Start)
Define the following sequences:
b(2n) = c(2n+1), b(2n+1) = c(2n); (c(n)) = (1, -3, -7, 17, 41, -99, -239, 577, 1393, -3363, -8119, 19601, 47321). This is the sequence A001333, apart from signs. Then c(2n) = ((-1)^n)*A002315(n) and c(2n+1) = ((-1)^(n+1))*A001541(n+1).
(d(n)) = (2, 4, -10, -24, 58, 140, -338, -816, 1970, 4756, -11482, -27720). This is A052542, apart from signs. Also, d(2n) = ((-1)^n)*A075870(n), d(2n+1) = ((-1)^n)*A005319(n+1).
(e(n)) = (1, -1, -5, 5, 29, -29, -169, 169, 985, -985, -5741, 5741, 33461, -33461), e(2n) = d(2n)/2, e(2n+1) = - d(2n)/2.
(f(n)) = (2, 2, -12, -12, 70, 70, -408, -408, 2378, 2378, -13860, -13860, ) f(2n) = f(2n+1) = d(2n+1)/2.
(g(n)) = (0, -3, 0, 17, 0, -99, 0, 577, 0, -3363, 0, 19601, 0, -114243, 0, 665857), g(2n) = 0, g(2n+1) = c(2n+1).
Then a(2n) = - c(2n+1), a(2n+1) = d(2n+1) and we have the following conjectures: c(n) + d(n) = e(n) + f(n) = g(n) + a(n); c(n) + d(n) = b(n). In other words, the sequences (c(n) + d(n)) = (e(n) + f(n)) = (g(n) + h(n)) all represent the sequence c with even- and odd-indexed terms reversed. (End)

Crossrefs

Programs

  • Magma
    I:=[3,4,-17,-24]; [n le 4 select I[n] else -6*Self(n-2)-Self(n-4): n in [1..40]]; // G. C. Greubel, Apr 09 2023
    
  • Mathematica
    LinearRecurrence[{0,-6,0,-1}, {3,4,-17,-24}, 41] (* G. C. Greubel, Apr 09 2023 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A100434
        if (n<4): return (3,4,-17,-24)[n]
        else: return -6*a(n-2) - a(n-4)
    [a(n) for n in range(41)] # G. C. Greubel, Apr 09 2023

Formula

a(n) = (-1)^floor(n/2)*A000034(n)*A126354(n+3). - R. J. Mathar, Mar 08 2009
a(n) = -2*a(n-1) - 3*a(n-2) if n is even; a(n) = (4*a(n-1) - a(n-2))/3 if n is odd. - R. J. Mathar, Jun 18 2014

A175033 Numbers n such that (ceiling(sqrt(n*n/2)))^2 - n*n/2 = 17/2.

Original entry on oeis.org

9, 15, 55, 89, 321, 519, 1871, 3025, 10905, 17631, 63559, 102761, 370449, 598935, 2159135, 3490849, 12584361, 20346159, 73347031, 118586105, 427497825, 691170471
Offset: 1

Views

Author

Ctibor O. Zizka, Nov 09 2009

Keywords

Comments

Let (ceiling(sqrt(n*n/2)))^2 - n*n/2 = i. Then for i=1/2 we have A002315, for i=1 we have A005319, for i=2 we have A077444, for i=7/2 we have A077446, for i=4 we have A081554.
Conjecture: a(n) = 6*a(n-2) - a(n-4). - Charles R Greathouse IV, Apr 30 2016

Crossrefs

Programs

  • PARI
    lista(nn)=for (n=1, nn, if ((ceil(sqrt(n*n/2)))^2 - n*n/2 == 17/2, print1(n, ", "));); \\ Michel Marcus, Jun 02 2013
    
  • PARI
    forstep(n=9,1e9,2, if((sqrtint(n^2\2)+1)^2==(n^2+17)/2, print1(n", "))) \\ Charles R Greathouse IV, Apr 30 2016

Extensions

More terms from Michel Marcus, Jun 02 2013
a(17)-a(22) from Charles R Greathouse IV, Apr 30 2016
Previous Showing 11-20 of 21 results. Next