cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 80 results. Next

A027880 a(n) = Product_{i=1..n} (12^i - 1).

Original entry on oeis.org

1, 11, 1573, 2716571, 56328099685, 14016177372718235, 41852067359921313500005, 1499635200191700040518673659035, 644815685260091508353787979063721364325, 3327107302821620489265827570792988872583047378075
Offset: 0

Views

Author

Keywords

Comments

In general, Product_{i=1..n} (q^i-1) ~ c * q^(n*(n+1)/2), where c = Product_{k >= 1} (1-1/q^k). - Vaclav Kotesovec, Nov 21 2015

Crossrefs

Cf. A005329 (q=2), A027871 (q=3), A027637 (q=4), A027872 (q=5), A027873 (q=6), A027875 (q=7), A027876 (q=8), A027877 (q=9), A027878 (q=10), A027879 (q=11).
Cf. A132268.

Programs

  • Magma
    [1] cat [&*[12^k-1: k in [1..n]]: n in [1..11]]; // Vincenzo Librandi, Dec 24 2015
  • Mathematica
    FoldList[Times,1,12^Range[10]-1] (* Harvey P. Dale, Mar 01 2015 *)
    Abs@QPochhammer[12, 12, Range[0, 30]] (* G. C. Greubel, Nov 24 2015 *)
  • PARI
    a(n) = prod(k=1, n, 12^k - 1) \\ Altug Alkan, Nov 25 2015
    

Formula

a(n) ~ c * 12^(n*(n+1)/2), where c = Product_{k>=1} (1-1/12^k) = 0.909726268905994888636362046977080249120791691941... . - Vaclav Kotesovec, Nov 21 2015
(11)^n*(13)^(floor(n/2))|a(n) for n>=0. - G. C. Greubel, Nov 24 2015
Equals 12^(binomial(n+1,2))*(1/12;1/12){n}, where (a;q){n} is the q-Pochhammer symbol. - G. C. Greubel, Dec 24 2015
G.f.: Sum_{n>=0} 12^(n*(n+1)/2)*x^n / Product_{k=0..n} (1 + 12^k*x). - Ilya Gutkovskiy, May 22 2017
Sum_{n>=0} (-1)^n/a(n) = A132268. - Amiram Eldar, May 07 2023

A028365 Order of general affine group over GF(2), AGL(n,2).

Original entry on oeis.org

1, 2, 24, 1344, 322560, 319979520, 1290157424640, 20972799094947840, 1369104324918194995200, 358201502736997192984166400, 375234700595146883504949480652800, 1573079924978208093254925489963584716800
Offset: 0

Views

Author

Keywords

Comments

For n > 0, a(n) = v(n+1)/v(n), where v = A203305 is the Vandermonde determinant of the first n of the numbers -2^j - 1; see the Mathematica section. - Clark Kimberling, Jan 01 2012

References

  • J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 54 (1.64).

Crossrefs

Programs

  • Magma
    [1] cat [(&*[2^(n+1) - 2^(j+1): j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 31 2023
    
  • Maple
    A028365 := n->2^n*product(2^n-2^'i','i'=0..n-1); # version 1
    A028365 := n->product(2^'j'-1,'j'=1..n)*2^binomial(n+1,2); # version 2
  • Mathematica
    RecurrenceTable[{a[1]==1, a[2]==2, a[3]==24, a[n]==(6a[n-1]^2 a[n-3] - 8a[n-1] a[n-2]^2)/(a[n-2] a[n-3])}, a[n], {n,20}] (* Harvey P. Dale, Aug 03 2011 *)
    (* Next, the connection with Vandermonde determinants *)
    f[j_]:= 2^j - 1; z = 15;
    v[n_]:= Product[Product[f[k] - f[j], {j,k-1}], {k,2,n}]
    Table[v[n], {n,z}]   (* A203303 *)
    Table[v[n+1]/v[n], {n,z}]  (* A028365 *)
    Table[v[n]*v[n+2]/(2*v[n+1])^2, {n,z}]  (* A171499 *) (* Clark Kimberling, Jan 01 2011 *)
    Table[(-1)^n*2^Binomial[n+1,2]*QPochhammer[2,2,n], {n,0,20}] (* G. C. Greubel, Aug 31 2023 *)
  • PARI
    a(n)=if(n<0,0,prod(k=1,n,2^k-1)*2^((n^2+n)/2)) /* Michael Somos, May 09 2005 */
    
  • SageMath
    [product(2^(n+1) - 2^(k+1) for k in range(n)) for n in range(21)] # G. C. Greubel, Aug 31 2023

Formula

a(n) is asymptotic to C*2^(n*(n+1)) where C = 0.288788095086602421278899721... = prod(k>=1, 1-1/2^k) (cf. A048651). - Benoit Cloitre, Apr 11 2003
a(n) = (6*a(n-1)^2*a(n-3) - 8*a(n-1)*a(n-2)^2) / (a(n-2)*a(n-3)). [From Putman Exam]. - Max Alekseyev, May 18 2007
a(n) = 2*A203305(n), n > 0. - Clark Kimberling, Jan 01 2012
From Max Alekseyev, Jun 09 2015: (Start)
a(n) = 2^A000217(n) * A005329(n).
a(n) = 2^n * A002884(n).
a(n) = 2^n * n! * A053601(n). (End)
From G. C. Greubel, Aug 31 2023: (Start)
a(n) = Product_{j=0..n-1} (2^(n+1) - 2^(j+1)).
a(n) = (-1)^n * 2^binomial(n+1,2) * QPochhammer(2,2,n). (End)

A289545 Number of flags in an n-dimensional vector space over GF(2).

Original entry on oeis.org

1, 1, 4, 36, 696, 27808, 2257888, 369572160, 121459776768, 79991977040128, 105466641591287296, 278244130564826548224, 1468496684404408240109568, 15502543140842029367582248960, 327332729703063815298568073396224, 13823536566775628445052117519260598272
Offset: 0

Views

Author

Geoffrey Critzer, Jul 28 2017

Keywords

Crossrefs

Cf. A381299.
Column k=2 of A381426.

Programs

  • Maple
    b:= proc(o, u, t) option remember; `if`(u+o=0, 1, `if`(t=1,
          b(u+o, 0$2), 0)+add(2^(u+j-1)*b(o-j, u+j-1, 1), j=1..o))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..16);  # Alois P. Heinz, Feb 21 2025
  • Mathematica
    nn = 15; eq[z_] :=Sum[z^n/FunctionExpand[QFactorial[n, q]], {n, 0, nn}];Table[FunctionExpand[QFactorial[n, q]] /. q -> 2, {n, 0,
       nn}] CoefficientList[Series[ 1/(1 - (eq[z] - 1)) /. q -> 2, {z, 0, nn}], z]

Formula

a(n) = Sum A005329(n)/( A005329(n_1)*A005329(n_2)*...*A005329(n_k) ) where the sum is over all compositions of n = n_1 + n_2 + ... + n_k.
G.f. a(n)/A005329(n) is the coefficient of x^n in 1/(2 - eq(x)) where eq(x) is the 2-exponential function.
a(n) = Sum_{k=0..binomial(n,2)} 2^k * A381299(n,k). - Alois P. Heinz, Feb 21 2025

A135950 Matrix inverse of triangle A022166.

Original entry on oeis.org

1, -1, 1, 2, -3, 1, -8, 14, -7, 1, 64, -120, 70, -15, 1, -1024, 1984, -1240, 310, -31, 1, 32768, -64512, 41664, -11160, 1302, -63, 1, -2097152, 4161536, -2731008, 755904, -94488, 5334, -127, 1, 268435456, -534773760, 353730560, -99486720, 12850368, -777240, 21590, -255, 1
Offset: 0

Views

Author

Paul D. Hanna, Dec 08 2007

Keywords

Comments

A022166 is the triangle of Gaussian binomial coefficients [n,k] for q = 2.
The coefficient [x^k] of Product_{i=1..n} (x-2^(i-1)). - Roger L. Bagula, Mar 20 2009
Triangle T(n,k), 0 <= k <= n, read by rows given by (-1, 1-q, -q^2, q-q^3, -q^4, q^2-q^5, -q^6, q^3-q^7, -q^8, ...) DELTA (1, 0, q, 0, q^2, 0, q^3, 0, q^4, 0, ...) (for q = 2) = (-1, -1, -4, -6, -16, -28, -64, -120, -256, ...) DELTA (1, 0, 2, 0, 4, 0, 8, 0, 16, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 20 2013
Reversed rows of triangle A158474. - Werner Schulte, Apr 06 2019
T(n,k) = Sum mu(0,U) where the sum is taken over the subspaces U of GF(2)^n having dimension n-k and mu is the Moebius function of the poset of all subspaces of GF(2)^n. - Geoffrey Critzer, Jun 02 2024

Examples

			Triangle begins:
         1;
        -1,       1;
         2,      -3,        1;
        -8,      14,       -7,      1;
        64,    -120,       70,    -15,      1;
     -1024,    1984,    -1240,    310,    -31,    1;
     32768,  -64512,    41664, -11160,   1302,  -63,    1;
  -2097152, 4161536, -2731008, 755904, -94488, 5334, -127, 1; ...
		

Crossrefs

Cf. A022166, A006125, A028361, A127850, A135951 (central terms), A158474.

Programs

  • Mathematica
    max = 9; M = Table[QBinomial[n, k, 2], {n, 0, max}, {k, 0, max}] // Inverse; Table[M[[n, k]], {n, 1, max+1}, {k, 1, n}] // Flatten (* Jean-François Alcover, Apr 08 2016 *)
    p[x_, n_, q_] := (-1)^n*q^Binomial[n, 2]*QPochhammer[x, 1/q, n];
    Table[CoefficientList[Series[p[x, n, 2], {x, 0, n}], x], {n, 0, 10}]// Flatten (* G. C. Greubel, Apr 15 2019 *)
  • PARI
    T(n,k)=local(q=2,A=matrix(n+1,n+1,n,k,if(n>=k,if(n==1 || k==1, 1, prod(j=n-k+1, n-1, 1-q^j)/prod(j=1, k-1, 1-q^j))))^-1);A[n+1,k+1]

Formula

Unsigned column 0 equals A006125(n) = 2^(n*(n-1)/2).
Unsigned column 1 equals A127850(n) = (2^n-1)*2^(n*(n-1)/2)/2^(n-1).
Row sums equal 0^n.
Unsigned row sums equal A028361(n) = Product_{k=0..n} (1+2^k).
T(n,k) = (-1)^(n-k) * A022166(n,k) * 2^binomial(n-k,2) for 0 <= k <= n. - Werner Schulte, Apr 06 2019 [corrected by Werner Schulte, Dec 27 2021]
Sum_{n>=0} Sum_{k=0..n} T(n,k)y^k*x^n/A005329(n) = e(y*x)/e(x) where e(x) = Sum_{n>=0} x^n/A005329(n). - Geoffrey Critzer, Jun 02 2024

A377484 a(n) = Product_{d|n, d>1} (d - 1).

Original entry on oeis.org

1, 1, 2, 3, 4, 10, 6, 21, 16, 36, 10, 330, 12, 78, 112, 315, 16, 1360, 18, 2052, 240, 210, 22, 53130, 96, 300, 416, 6318, 28, 146160, 30, 9765, 640, 528, 816, 1570800, 36, 666, 912, 560196, 40, 639600, 42, 27090, 39424, 990, 46, 37456650, 288, 42336, 1600, 45900, 52, 1874080, 2160
Offset: 1

Views

Author

Ridouane Oudra, Oct 29 2024

Keywords

Examples

			a(12) = (2-1)*(3-1)*(4-1)*(6-1)*(12-1) = 1*2*3*5*11 = 330.
		

Crossrefs

Programs

  • Maple
    with(numtheory): seq(mul(d-1, d in divisors(n) minus {1}), n=1..80);
  • Mathematica
    a[n_] := Times @@ (Rest@ Divisors[n] - 1); Array[a, 60] (* Amiram Eldar, Nov 01 2024 *)
  • PARI
    a(n) = my(d=divisors(n)); prod(k=2, #d, d[k]-1); \\ Michel Marcus, Oct 30 2024

Formula

a(n) = Product_{k=2..A000005(n)} (A027750(n,k) - 1).
a(p^n) = Product_{k=1..n} (p^k - 1), where p is prime, and n an integer.
a(2^n) = A005329(n).
a(3^n) = A027871(n).
a(5^n) = A027872(n).
a(7^n) = A027875(n).
a(11^n) = A027879(n).
From Amiram Eldar, Nov 02 2024: (Start)
a(n) = n-1 if and only if n is in A175787 (i.e., n = 4 or n is prime).
a(n) == 1 (mod 2) if and only if n is a power of 2 (A000079). (End)

A139382 Triangle read by rows, T(n,k) = (2^k-1) * T(n-1,k) + T(n-1,k-1).

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 13, 11, 1, 1, 40, 90, 26, 1, 1, 121, 670, 480, 57, 1, 1, 364, 4811, 7870, 2247, 120, 1, 1, 1093, 34041, 122861, 77527, 9807, 247, 1, 1, 3280, 239380, 1876956, 2526198, 695368, 41176, 502, 1, 1, 9841, 1678940, 28393720, 80189094, 46334382, 5924720, 169186, 1013, 1
Offset: 1

Views

Author

Gary W. Adamson, Apr 16 2008

Keywords

Comments

Row sums = A135922 starting with offset 1: (1, 2, 6, 26, 158, 1330, ...).
This triangle is the q-analog of A008277 (Stirling numbers of the 2nd kind) for q=2 (see Cai et al. link). - Werner Schulte, Apr 04 2019
T(n,k) is the number of naturally labeled posets on [n] with height at most one containing exactly k minimal elements. See link by David Bevan and others below. - Geoffrey Critzer, May 03 2025

Examples

			First few rows of the triangle are:
  1;
  1,   1;
  1,   4,   1;
  1,  13,  11,   1;
  1,  40,  90,  26,   1;
  1, 121, 670, 480,  57,   1;
  ...
a(13) = T(5,3) = 90 = (2^3 - 1)*T(4,3) + T(4,2) = 7*11 + 13.
		

Crossrefs

Cf. A000295 (2nd diagonal), A003462 (column 2), A016212 (column 3), A156823.

Programs

  • Maple
    # Uses[qStirling2 from A333143]
    seq(seq(qStirling2(n, k, 2), k=0..n), n=0..9); # Peter Luschny, Mar 10 2020
    # Alternative.
    A139382 := proc(n, k) if k = 1 then 1 elif k = n then 1 elif k < 1 then 0 else
    (2^k - 1)*A139382(n-1, k) + A139382(n-1, k-1) fi end:
    for n from 1 to 8 do seq(A139382(n, k), k = 1..n) od; # Peter Luschny, Jun 28 2022
  • Mathematica
    T[1, 1]:= 1; T[n_, k_]:= T[n, k] = If[k > n || k < 1, 0, (2^k-1)*T[n-1, k] + T[n-1, k-1]]; Table[T[n, k], {n, 1, 12}, {k, 1, n}] (* G. C. Greubel, Apr 02 2019 *)
  • PARI
    {T(n,k) = if(k<1 || k>n, 0, if(n==1 && k==1, 1, (2^k-1)*T(n-1,k) + T(n-1,k-1)))};
    for(n=1,12, for(k=1,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Apr 02 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
       if (k==1): return 1
       elif (k==n): return 1
       else: return (2^k-1)*T(n-1, k) + T(n-1, k-1)
    [[T(n, k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Apr 02 2019

Formula

Triangle read by rows, T(n,k) = (2^k-1) * T(n-1,k) + T(n-1,k-1). Let X = an infinite bidiagonal matrix with (1,3,7,15,31...) in the main diagonal and (1,1,1,...) in the subdiagonal. n-th row of the triangle = X^n * [1,0,0,0,...].
From Werner Schulte, Apr 02 2019: (Start)
G.f. of column k: col(k,t) = Sum_{n>=k} T(n,k)*t^n = t^k/Product_{i=1..k} (1 - (2^i-1)*t) for k > 0.
Sum_{k>0} col(k,t) * (Product_{i=1..k-1} (1 - 2^i)) = t (empty product equals 1).
Sum_{k=1..n} (-1)^k * 2^binomial(k,2) * T(n,k) = (-1)^n for n > 0.
An example for k=3: g.f. of column 3: col(3,t) = Sum_{n>=3} T(n,3) * t^n = 1*t^3 + 11*t^4 + 90*t^5 + 670*t^6 + ... = t^3 * (1 + 11*t + 90*t^2 + 670*t^3 + ...) = t^3 / Product_{i=1..3} (1 - (2^i - 1)*t) = t^3 / ((1 - t) * (1 - 3*t) * (1 - 7*t)) = t^3 / (1 - 11*t + 31*t^2 - 21*t^3). Perhaps the following recurrence formula is useful too: col(k,t) = col(k-1,t) * t / (1 - (2^k - 1)*t) for k > 1 with initial value col(1,t) = t / (1 - t). Finally: col(k,t) is the g.f. of column k.
With regard to the 2nd formula: We can it replace with the following formula: Sum_{k=1..n} T(n,k) * (Product_{i=1..k-1} (1-2^i)) = A000007(n-1) for n > 0 with empty product 1 (case k=1). Example for n=5: 1*1 + (-1)*40 + (-1)*(-3)*90 + (-1)*(-3)*(-7)*26 + (-1)*(-3)*(-7)*(-15)*1 = 0. (End)
T(n,k) = (1/(2^binomial(k,2)*A005329(k))) * Sum_{j=0..k} (-1)^(k-j)*2^binomial(k-j,2)*A022166(k,j)*(2^j-1)^n. - Fabian Pereyra, Jan 27 2024
T(n,k) = Sum_{j=k..n} (-1)^(n-j)*binomial(n,j)*qBinomial(j,k,2), where qBinomial(n,k,2) is A022166(n,k). - Fabian Pereyra, Jan 31 2024

Extensions

More terms from G. C. Greubel, Apr 02 2019

A203305 Vandermonde determinant of the first n terms of (1,3,7,15,31,...).

Original entry on oeis.org

1, 2, 48, 64512, 20808990720, 6658450862270054400, 8590449816558320728896700416000, 180165778137909187135292776823951671626301440000, 246665746050863452218796304775365273357060390005370386894553088000000
Offset: 1

Views

Author

Clark Kimberling, Jan 01 2012

Keywords

Comments

Each term divides its successor, as in A028365 and A203307.

Crossrefs

Programs

  • Magma
    [1] cat [(&*[(&*[2^(k+1) - 2^j: j in [1..k]]): k in [1..n-1]]): n in [2..15]]; // G. C. Greubel, Aug 30 2023
    
  • Mathematica
    (* First program *)
    f[j_]:= 2^j - 1; z = 15;
    v[n_]:= Product[Product[f[k] - f[j], {j,k-1}], {k,2,n}]
    Table[v[n], {n,z}]         (* A203305 *)
    Table[v[n+1]/v[n], {n,z}]  (* A028365 *)
    %/2                         (* A203307 *)
    (* Second program *)
    Table[(-1)^n * 2^(n*(n+1)*(2*n+1)/6 - 1) / QPochhammer[2, 2, n] * Product[QPochhammer[1/2^k, 2, k], {k, 2, n}], {n, 10}] (* Vaclav Kotesovec, Feb 18 2021 *)
  • SageMath
    [product(product(2^k - 2^j for j in range(1,k)) for k in range(2,n+1)) for n in range(1,16)] # G. C. Greubel, Aug 30 2023

Formula

a(n) = Product_{k=1..n-1} Product_{j=1..k} (2^(k+1) - 2^j).
From Vaclav Kotesovec, Feb 18 2021: (Start)
a(n) = (-1)^n * (2^(n*(n+1)*(2*n+1)/6 - 1) / QPochhammer(2,2,n)) * Product_{k=2..n} QPochhammer(1/2^k, 2, k).
a(n) ~ 2^(n*(n^2 - 1)/3) * QPochhammer(1/2)^n / A335011. (End)
a(n) = Product_{k=2..n} ( 2^(k+1)^2 * QPochhammer(2^(-k-1), 2, k+1) )/ (2^(k+1) - 1). - G. C. Greubel, Aug 30 2023

A005327 Certain subgraphs of a directed graph (inverse binomial transform of A005321).

Original entry on oeis.org

1, 0, 1, 6, 91, 2820, 177661, 22562946, 5753551231, 2940064679040, 3007686166657921, 6156733583148764286, 25211824022994189751171, 206510050572345408251841660, 3383254158526734823389921915781
Offset: 1

Views

Author

Keywords

Comments

q-Subfactorial for q=2. - Vladimir Reshetnikov, Sep 12 2016

References

  • T. L. Greenough, Enumeration of interval orders without duplicated holdings, Preprint, circa 1976.
  • T. L. Greenough and T. Lockman, Representation and enumeration of interval orders and semiorders, Ph.D. Thesis, Dartmouth, 1976.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    p:=proc(n) if n=0 then 1 else product(2^i-1,i=1..n) fi end: a:=n->p(n-1)*sum((-1)^j/p(j),j=0..n-1): seq(a(n),n=1..17); # Emeric Deutsch, Jan 23 2005
  • Mathematica
    a[1] = 1; a[n_] := a[n] = (2^(n-1)-1)*a[n-1] + (-1)^(n-1); Array[a, 15] (* Jean-François Alcover, Apr 05 2016, after Max Alekseyev *)
    With[{q = 2}, Table[QFactorial[n, q] Sum[(-1)^k/QFactorial[k, q], {k, 0, n}], {n, 0, 20}]] (* Vladimir Reshetnikov, Sep 12 2016 *)

Formula

For n>1, a(n) = (2^(n-1)-1)*a(n-1) + (-1)^(n-1). - Max Alekseyev, Feb 23 2012
a(n) = p(n-1)*sum((-1)^j/p(j), j=0..n-1), where p(0) = 1, p(k) = product(2^i-1, i=1..k) for k>0. - Emeric Deutsch, Jan 23 2005
a(n) ~ A048651^2 * 2^(n*(n-1)/2). - Vaclav Kotesovec, Oct 09 2019

Extensions

More terms from Max Alekseyev, Apr 27 2010

A182507 G.f.: Sum_{n>=0} n! * 2^(n*(n-1)/2) * x^n / Product_{k=1..n} (1 + k*2^k*x).

Original entry on oeis.org

1, 1, 2, 12, 232, 12848, 1858464, 663242944, 562426769024, 1103780804371200, 4916976475489286656, 48986367134323580374016, 1078808700869188981508990976, 52024935094126934151475827453952, 5451309776848243787358722272838524928
Offset: 0

Views

Author

Paul D. Hanna, May 03 2012

Keywords

Comments

Compare the g.f. to the identities:
(1) 1/(1-x) = Sum_{n>=0} n! * x^n / Product_{k=1..n} (1 + k*x).
(2) 1+x = Sum_{n>=0} 2^(n*(n-1)/2) * x^n / Product_{k=1..n} (1 + 2^k*x).
First differs from A309615 at a(5) = 12848, A309615(5) = 19230. - Gus Wiseman, Aug 11 2019

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 12*x^3 + 232*x^4 + 12848*x^5 + 1858464*x^6 +...
such that
A(x) = 1 + x/(1+2*x) + 2!*2^1*x^2/((1+1*2*x)*(1+2*4*x)) + 3!*2^3*x^3/((1+1*2*x)*(1+2*4*x)*(1+3*8*x)) + 4!*2^6*x^4/((1+1*2*x)*(1+2*4*x)*(1+3*8*x)*(1+4*16*x)) +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(sum(m=0,n,m!*2^(m*(m-1)/2)*x^m/prod(k=1,m,1+k*2^k*x +x*O(x^n))),n)}
    for(n=0,20,print1(a(n),", "))

A048652 Continued fraction for Product_{k >= 1} (1-1/2^k) (Cf. A048651).

Original entry on oeis.org

0, 3, 2, 6, 4, 1, 2, 1, 9, 2, 1, 2, 3, 2, 3, 5, 1, 2, 1, 1, 6, 1, 2, 5, 79, 6, 4, 5, 1, 1, 1, 1, 12, 1, 1, 2, 5, 1, 659, 2, 17, 1, 5, 2, 3, 2, 6, 1, 1, 2, 3, 1, 2, 6, 1, 1, 3, 11, 1, 1, 2, 1, 1, 2, 4, 11, 2, 1, 3, 4, 2, 2, 1, 3, 1, 71, 1, 1, 1, 19, 1, 4, 1, 1, 8, 1, 49, 3, 1, 2, 2, 11, 1, 11, 10, 1, 2, 1, 1
Offset: 0

Views

Author

Keywords

Comments

Continued fraction expansion of the constant Product{k>=1} (1-1/2^k)^(-1) = 3.46274661945506361... (A065446) gives essentially the same sequence.

Examples

			0.2887880950866024212788997219294585937270...
0.288788095086602421278899721... = 0 + 1/(3 + 1/(2 + 1/(6 + 1/(4 + ...)))). - _Harry J. Smith_, May 02 2009
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 354-361.

Crossrefs

Programs

  • Mathematica
    ContinuedFraction[ N[ Product[ 1/(1 - 1/2^k), {k, 1, Infinity} ], 500 ], 49]
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=prodinf(k=1, -1/2^k, 1); z=contfrac(x); for (n=1, 20001, write("b048652.txt", n-1, " ", z[n])); } \\ Harry J. Smith, May 07 2009

Extensions

Corrected by Harry J. Smith, May 02 2009
Deleted old PARI program. - Harry J. Smith, May 20 2009
Previous Showing 21-30 of 80 results. Next