A135705
a(n) = 10*binomial(n,2) + 9*n.
Original entry on oeis.org
0, 9, 28, 57, 96, 145, 204, 273, 352, 441, 540, 649, 768, 897, 1036, 1185, 1344, 1513, 1692, 1881, 2080, 2289, 2508, 2737, 2976, 3225, 3484, 3753, 4032, 4321, 4620, 4929, 5248, 5577, 5916, 6265, 6624, 6993, 7372, 7761, 8160, 8569, 8988, 9417, 9856, 10305, 10764
Offset: 0
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- L. Hogben, Choice and Chance by Cardpack and Chessboard, Vol. 1, Max Parrish and Co, London, 1950, p. 36.
- Leo Tavares, Illustration: Diamond Clipped Stars
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
List([0..50], n-> n*(5*n+4)); # G. C. Greubel, Jul 04 2019
-
[n*(5*n+4): n in [0..50]]; // G. C. Greubel, Jul 04 2019
-
LinearRecurrence[{3,-3,1}, {0,9,28}, 50] (* or *) Table[5*n^2 + 4*n, {n,0,50}] (* G. C. Greubel, Oct 29 2016 *)
Table[10 Binomial[n,2]+9n,{n,0,60}] (* Harvey P. Dale, Jun 14 2023 *)
-
a(n) = 10*binomial(n,2) + 9*n \\ Charles R Greathouse IV, Jun 11 2015
-
[n*(5*n+4) for n in (0..50)] # G. C. Greubel, Jul 04 2019
A151542
Generalized pentagonal numbers: a(n) = 12*n + 3*n*(n-1)/2.
Original entry on oeis.org
0, 12, 27, 45, 66, 90, 117, 147, 180, 216, 255, 297, 342, 390, 441, 495, 552, 612, 675, 741, 810, 882, 957, 1035, 1116, 1200, 1287, 1377, 1470, 1566, 1665, 1767, 1872, 1980, 2091, 2205, 2322, 2442, 2565, 2691, 2820, 2952, 3087, 3225, 3366, 3510, 3657, 3807, 3960
Offset: 0
The generalized pentagonal numbers b*n + 3*n*(n-1)/2, for b = 1 through 12, form sequences
A000326,
A005449,
A045943,
A115067,
A140090,
A140091,
A059845,
A140672,
A140673,
A140674,
A140675,
A151542.
-
s=0;lst={};Do[AppendTo[lst,s+=n],{n,12,6!,3}];lst (* Vladimir Joseph Stephan Orlovsky, Mar 05 2010 *)
LinearRecurrence[{3,-3,1}, {0,12,27}, 50] (* or *) With[{nn = 50}, CoefficientList[Series[(3/2)*(8*x + x^2)*Exp[x], {x, 0, nn}], x] Range[0, nn]!] (* G. C. Greubel, May 26 2017 *)
-
x='x+O('x^50); concat([0], Vec(serlaplace((3/2)*(8*x + x^2)*exp(x)))) \\ G. C. Greubel, May 26 2017
-
a(n)=(3*n^2+21*n)/2 \\ Charles R Greathouse IV, Jun 16 2017
A165355
a(n) = 3n + 1 if n is even, or a(n) = (3n + 1)/2 if n is odd.
Original entry on oeis.org
1, 2, 7, 5, 13, 8, 19, 11, 25, 14, 31, 17, 37, 20, 43, 23, 49, 26, 55, 29, 61, 32, 67, 35, 73, 38, 79, 41, 85, 44, 91, 47, 97, 50, 103, 53, 109, 56, 115, 59, 121, 62, 127, 65, 133, 68, 139, 71, 145, 74, 151, 77, 157, 80, 163, 83, 169, 86, 175, 89, 181, 92, 187, 95, 193, 98
Offset: 0
-
f[n_] := If[ OddQ@ n, (3n +1)/2, (3n +1)]; Array[f, 66, 0] (* Robert G. Wilson v, Jan 26 2015 *)
f[n_] := (3 (-1)^(2n) + (-1)^(1 + n)) (-2 + 3n)/4; Array[f, 66] (* or *)
CoefficientList[ Series[(x^3 + 5x^2 + 2x + 1)/(x^2 - 1)^2, {x, 0, 65}], x] (* or *)
LinearRecurrence[{0, 2, 0, -1}, {1, 2, 7, 5}, 66] (* Robert G. Wilson v, Apr 13 2017 *)
-
a(n)=n+=2*n+1; if(n%2,n,n/2) \\ Charles R Greathouse IV, Jan 13 2015
All comments changed to formulas by
R. J. Mathar, Sep 26 2009
A261718
Number A(n,k) of partitions of n where each part i is marked with a word of length i over a k-ary alphabet whose letters appear in alphabetical order; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 7, 3, 0, 1, 4, 15, 18, 5, 0, 1, 5, 26, 55, 50, 7, 0, 1, 6, 40, 124, 216, 118, 11, 0, 1, 7, 57, 235, 631, 729, 301, 15, 0, 1, 8, 77, 398, 1470, 2780, 2621, 684, 22, 0, 1, 9, 100, 623, 2955, 8001, 12954, 8535, 1621, 30, 0
Offset: 0
A(3,2) = 18: 3aaa, 3aab, 3abb, 3bbb, 2aa1a, 2aa1b, 2ab1a, 2ab1b, 2bb1a, 2bb1b, 1a1a1a, 1a1a1b, 1a1b1a, 1a1b1b, 1b1a1a, 1b1a1b, 1b1b1a, 1b1b1b.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, ...
0, 2, 7, 15, 26, 40, 57, 77, ...
0, 3, 18, 55, 124, 235, 398, 623, ...
0, 5, 50, 216, 631, 1470, 2955, 5355, ...
0, 7, 118, 729, 2780, 8001, 19158, 40299, ...
0, 11, 301, 2621, 12954, 45865, 130453, 317905, ...
0, 15, 684, 8535, 55196, 241870, 820554, 2323483, ...
Columns k=0-10 give:
A000007,
A000041,
A074141,
A261737,
A261738,
A261739,
A261740,
A261741,
A261742,
A261743,
A261744.
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, k)+`if`(i>n, 0, b(n-i, i, k)*binomial(i+k-1, k-1))))
end:
A:= (n, k)-> b(n, n, k):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + If[i > n, 0, b[n - i, i, k]*Binomial[i + k - 1, k - 1]]]]; A[n_, k_] := b[n, n, k]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)
A033580
Four times second pentagonal numbers: a(n) = 2*n*(3*n+1).
Original entry on oeis.org
0, 8, 28, 60, 104, 160, 228, 308, 400, 504, 620, 748, 888, 1040, 1204, 1380, 1568, 1768, 1980, 2204, 2440, 2688, 2948, 3220, 3504, 3800, 4108, 4428, 4760, 5104, 5460, 5828, 6208, 6600, 7004, 7420, 7848, 8288, 8740, 9204, 9680, 10168, 10668, 11180, 11704, 12240
Offset: 0
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- M. K. Siddiqui, M. Naeem, N. A. Rahman, and M. Imran, Computing topological indices of certain networks, J. of Optoelectronics and Advanced Materials, 18, No. 9-10 (2016), pp. 884-892.
- Leo Tavares, Illustration: Crossed Stars
- Leo Tavares, Illustration: Four Quarter Star Crosses
- Leo Tavares, Illustration: Triangulated Star Crosses
- Leo Tavares, Illustration: Oblong Star Crosses
- Leo Tavares, Illustration: Crossed Diamond Stars
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
A140673
a(n) = 3*n*(n + 5)/2.
Original entry on oeis.org
0, 9, 21, 36, 54, 75, 99, 126, 156, 189, 225, 264, 306, 351, 399, 450, 504, 561, 621, 684, 750, 819, 891, 966, 1044, 1125, 1209, 1296, 1386, 1479, 1575, 1674, 1776, 1881, 1989, 2100, 2214, 2331, 2451, 2574, 2700, 2829, 2961, 3096
Offset: 0
The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences
A000326,
A005449,
A045943,
A115067,
A140090,
A140091,
A059845,
A140672,
A140673,
A140674,
A140675,
A151542.
-
Table[Sum[i + n - 3, {i, 6, n}], {n, 5, 52}] (* Zerinvary Lajos, Jul 11 2009 *)
Table[3 n (n + 5)/2, {n, 0, 50}] (* Bruno Berselli, Sep 05 2018 *)
LinearRecurrence[{3,-3,1},{0,9,21},50] (* Harvey P. Dale, Jul 20 2023 *)
-
concat(0, Vec(3*x*(3 - 2*x)/(1 - x)^3 + O(x^100))) \\ Michel Marcus, Apr 20 2015
-
a(n) = 3*n*(n+5)/2; \\ Altug Alkan, Sep 05 2018
A140674
a(n) = n*(3*n + 17)/2.
Original entry on oeis.org
0, 10, 23, 39, 58, 80, 105, 133, 164, 198, 235, 275, 318, 364, 413, 465, 520, 578, 639, 703, 770, 840, 913, 989, 1068, 1150, 1235, 1323, 1414, 1508, 1605, 1705, 1808, 1914, 2023, 2135, 2250, 2368, 2489, 2613, 2740, 2870, 3003, 3139
Offset: 0
The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences
A000326,
A005449,
A045943,
A115067,
A140090,
A140091,
A059845,
A140672,
A140673,
A140674,
A140675,
A151542.
A101986
Maximum sum of products of successive pairs in a permutation of order n+1.
Original entry on oeis.org
0, 2, 9, 23, 46, 80, 127, 189, 268, 366, 485, 627, 794, 988, 1211, 1465, 1752, 2074, 2433, 2831, 3270, 3752, 4279, 4853, 5476, 6150, 6877, 7659, 8498, 9396, 10355, 11377, 12464, 13618, 14841, 16135, 17502, 18944, 20463, 22061, 23740, 25502
Offset: 0
Eugene McDonnell (eemcd(AT)mac.com), Jan 29 2005
The permutations of order 5 with maximum sum of products is 1 3 5 4 2 and its reverse, since (1*3)+(3*5)+(5*4)+(4*2) is 46. All others are empirically less than 46. So a(4) = 46.
-
a101986 n = sum $ zipWith (*) [1,3..] (reverse [2..n+1])
-- Reinhard Zumkeller, Mar 30 2012
-
0 1 9 2 & p. % 6 & p. (A) NB. the polynomial P such that P(n) is a(n).
NB. where 0 1 9 2 are the coefficients in ascending order of the numerator of a rational polynomial and 6 is the (constant) coefficient of its denominator. J's primitive function p. produces a polynomial with these coefficients. Division is indicated by % . Thus the J expression (A) is equivalent to the formula above.
-
a:=n->add((n+j^2),j=1..n): seq(a(n),n=0..41); # Zerinvary Lajos, Jul 27 2006
-
Table[(n + 9 n^2 + 2 n^3)/6, {n, 0, 41}] (* Robert G. Wilson v, Feb 04 2005 *)
-
a(n)=n*(2*n^2+9*n+1)/6 \\ Charles R Greathouse IV, Jan 17 2012
A225470
Triangle read by rows, s_3(n, k) where s_m(n, k) are the Stirling-Frobenius cycle numbers of order m; n >= 0, k >= 0.
Original entry on oeis.org
1, 2, 1, 10, 7, 1, 80, 66, 15, 1, 880, 806, 231, 26, 1, 12320, 12164, 4040, 595, 40, 1, 209440, 219108, 80844, 14155, 1275, 57, 1, 4188800, 4591600, 1835988, 363944, 39655, 2415, 77, 1, 96342400, 109795600, 46819324, 10206700, 1276009, 95200, 4186, 100, 1
Offset: 0
Triangle starts:
[n\k][ 0, 1, 2, 3, 4, 5, 6]
[0] 1,
[1] 2, 1,
[2] 10, 7, 1,
[3] 80, 66, 15, 1,
[4] 880, 806, 231, 26, 1,
[5] 12320, 12164, 4040, 595, 40, 1,
[6] 209440, 219108, 80844, 14155, 1275, 57, 1.
...
From _Wolfdieter Lang_, Aug 11 2017: (Start)
Recurrence (see Maple program): T(4, 2) = T(3, 1) + (3*4 - 1)*T(3, 2) = 66 + 11*15 = 231.
Boas-Buck type recurrence for column k = 2 and n = 4: T(4, 2) = (4!/2)*(3*(2 + 6*(5/12))*T(2, 2)/2! + 1*(2 + 6*(1/2))*T(3,2)/3!) = (4!/2)*(3*9/4 + 5*15/3!) = 231. (End)
-
SF_C := proc(n, k, m) option remember;
if n = 0 and k = 0 then return(1) fi;
if k > n or k < 0 then return(0) fi;
SF_C(n-1, k-1, m) + (m*n-1)*SF_C(n-1, k, m) end:
seq(print(seq(SF_C(n, k, 3), k = 0..n)), n = 0..8);
-
SFC[0, 0, ] = 1; SFC[n, k_, ] /; (k > n || k < 0) = 0; SFC[n, k_, m_] := SFC[n, k, m] = SFC[n-1, k-1, m] + (m*n-1)*SFC[n-1, k, m]; Table[SFC[n, k, 3], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 26 2013, after Maple *)
A045945
Hexagonal matchstick numbers: a(n) = 3*n*(3*n+1).
Original entry on oeis.org
0, 12, 42, 90, 156, 240, 342, 462, 600, 756, 930, 1122, 1332, 1560, 1806, 2070, 2352, 2652, 2970, 3306, 3660, 4032, 4422, 4830, 5256, 5700, 6162, 6642, 7140, 7656, 8190, 8742, 9312, 9900, 10506, 11130, 11772, 12432, 13110, 13806, 14520, 15252, 16002, 16770, 17556
Offset: 0
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- Peter M. Chema, Illustration of initial terms as the first difference of number of rods required to make a 3-D cube.
- Craig Knecht, Number of positions a frame shifted H1 hexagon can occupy in a hexagon of order n.
- Amelia Carolina Sparavigna, The groupoids of Mersenne, Fermat, Cullen, Woodall and other Numbers and their representations by means of integer sequences, Politecnico di Torino, Italy (2019), [math.NT].
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
The hexagon matchstick sequences are: Number of matchsticks: this sequence; size=1 triangles:
A033581; larger triangles:
A307253; total triangles:
A045949. Analog for triangles:
A045943; analog for stars:
A045946. -
John King, Apr 05 2019
Comments