A115127 Second (k=2) triangle of numbers related to totally asymmetric exclusion process (case alpha=1, beta=1).
3, 6, 7, 10, 16, 19, 15, 30, 47, 56, 21, 50, 95, 146, 174, 28, 77, 170, 311, 471, 561, 36, 112, 280, 586, 1043, 1562, 1859, 45, 156, 434, 1015, 2044, 3564, 5291, 6292, 55, 210, 642, 1652, 3682, 7204, 12363, 18226, 21658, 66, 275, 915, 2562, 6230, 13392, 25623
Offset: 2
Examples
[3];[6,7];[10,16,19];[15,30,47,56];... Main diagonal (n-m=1) example: a(3,2)= 7 = 5 + 2 because A115126(3,2)=5 and A115126(2,2)=2. Subdiagonal (n-m>1) example: a(4,2)= 16 = 9 + 7 because A115126(4,2)=9 and a(3,2)=7.
Links
- W. Lang: First 10 rows.
Crossrefs
Row sums give A115128.
Formula
A005584 Coefficients of Chebyshev polynomials.
2, 13, 49, 140, 336, 714, 1386, 2508, 4290, 7007, 11011, 16744, 24752, 35700, 50388, 69768, 94962, 127281, 168245, 219604, 283360, 361790, 457470, 573300, 712530, 878787, 1076103, 1308944, 1582240, 1901416, 2272424, 2701776, 3196578, 3764565, 4414137, 5154396
Offset: 1
Comments
If X is an n-set and Y a fixed 2-subset of X then a(n-6) is equal to the number of (n-6)-subsets of X intersecting Y. - Milan Janjic, Jul 30 2007
a(n-1) = risefac(n+1,6)/6! - risefac(n+1,4)/4! is for n >=1 also the number of independent components of a symmetric traceless tensor of rank 6 and dimension n. Here risefac is the rising factorial. Put a(0) = 0. - Wolfdieter Lang, Dec 10 2015
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 797.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Milan Janjic, Two Enumerative Functions.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Richard K. Guy, Letter to N. J. A. Sloane, Feb 1988.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Cecilia Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube.
- Cecilia Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube. [Cached copy, May 15 2013]
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
- Index entries for sequences related to Chebyshev polynomials.
Programs
-
GAP
List([1..40], n-> (n+11)*Binomial(n+4,5)/6); # G. C. Greubel, Aug 27 2019
-
Magma
[n*(n+11)*(n+4)*(n+3)*(n+2)*(n+1)/720: n in [1..40]]; // Vincenzo Librandi, Jun 15 2011
-
Maple
[seq(binomial(n,6)+2*binomial(n,5), n=5..35)]; # Zerinvary Lajos, Jul 26 2006 A005584:=(-2+z)/(z-1)**7; # Simon Plouffe in his 1992 dissertation
-
Mathematica
Table[2*Binomial[n+4, 5] + Binomial[n+4, 6], {n,40}] (* Vladimir Joseph Stephan Orlovsky, Jun 14 2011, modified by G. C. Greubel, Aug 27 2019 *) Table[(n+11)*Pochhammer[n, 5]/6!, {n,40}] (* G. C. Greubel, Aug 27 2019 *)
-
PARI
a(n)=n*(n+11)*(n+4)*(n+3)*(n+2)*(n+1)/720 \\ Charles R Greathouse IV, Jun 14 2011
-
Sage
[(n+11)*rising_factorial(n,5)/factorial(6) for n in (1..40)] # G. C. Greubel, Aug 27 2019
Formula
G.f.: x*(2-x) / (1-x)^7.
a(n) = binomial(n+5, n-1) + binomial(n+4, n-1) = 1/720*n*(n+11)*(n+4)*(n+3)*(n+2)*(n+1).
a(n) = binomial(n,6) + 2*binomial(n,5), n >= 5. - Zerinvary Lajos, Jul 26 2006
a(n+1) = A127672(12+n, n), n >= 0, where A127672 gives the coefficients of Chebyshev's C polynomials. See the Abramowitz-Stegun reference. - Wolfdieter Lang, Dec 10 2015
From G. C. Greubel, Aug 27 2019: (Start)
a(n) = (n+11)*Pochhammer(n, 5)/6!.
E.g.f.: x*(1440 +3240*x +1920*x^2 +420*x^3 +36*x^4 +x^5)*exp(x)/6!. (End)
From Amiram Eldar, Feb 17 2023: (Start)
Sum_{n>=1} 1/a(n) = 1303391/2134440.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4160*log(2)/77 - 78994697/2134440. (End)
Extensions
More terms from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 07 1999
A159920 Sums of the antidiagonals of Sundaram's sieve (A159919).
4, 14, 32, 60, 100, 154, 224, 312, 420, 550, 704, 884, 1092, 1330, 1600, 1904, 2244, 2622, 3040, 3500, 4004, 4554, 5152, 5800, 6500, 7254, 8064, 8932, 9860, 10850, 11904, 13024, 14212, 15470, 16800, 18204, 19684, 21242, 22880, 24600, 26404
Offset: 2
Comments
For every n >= 2, a(n) is the sum of numbers in the (n-1)-th antidiagonal of the Sundaram sieve. (It is not clear why the offset was set to 2 rather than 1.) Thus, if T(j, k) is the element in row j and column k of the Sundaram sieve, we have a(n) = Sum_{i = 1..n-1} T(i, n-i) = Sum_{i = 1..n-1} (2*i*(n-i) + i + (n-i)) = (n - 1)*n*(n + 4)/3 for the sum of the numbers in the (n-1)-th antidiagonal. - Petros Hadjicostas, Jun 19 2019
Examples
For n = 5, (4*5*9)/3 = 60. Indeed, T(1, 4) + T(2, 3) + T(3, 2) + T(4, 1) = 13 + 17 + 17 + 13 = 60 for the sum of the terms in the 4th antidiagonal of the Sundaram sieve.
Links
- G. C. Greubel, Table of n, a(n) for n = 2..1000
- Andrew Baxter, Sundaram's Sieve.
- Julian Havil, Sundaram's Sieve, Plus Magazine, March 2009.
- New Zealand Maths, Newletter 18, October 2002.
- Wikipedia, Sundaram's Sieve.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[n*(n-1)*(n+4)/3: n in [2..60]]; // G. C. Greubel, Oct 03 2022
-
Maple
A159920:=n->n*(n-1)*(n+4)/3; seq(A159920(k), k=2..100); # Wesley Ivan Hurt, Oct 19 2013
-
Mathematica
Table[(n-1)*n*(n+4)/3,{n,2,60}] (* Vladimir Joseph Stephan Orlovsky, Apr 28 2010 *) LinearRecurrence[{4,-6,4,-1},{4,14,32,60},61] (* Harvey P. Dale, Apr 23 2011 *)
-
SageMath
[n*(n-1)*(n+4)/3 for n in range(2,60)] # G. C. Greubel, Oct 03 2022
Formula
a(n) = (n - 1)*n*(n + 4)/3.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = 2*A005581(n), n > 1.
a(n) = Sum_{i=1..n-1} i*(i + 3). - Wesley Ivan Hurt, Oct 19 2013
From G. C. Greubel, Oct 03 2022: (Start)
G.f.: 2*x^2*(2 - x)/(1-x)^4.
E.g.f.: (1/3)*x^2*(6 + x)*exp(x). (End)
a(n) = 2*A097900(n)/(n-2)! for n >= 2. - Cullen M. Vaney, Jul 14 2025
A332662 Put-and-count: An enumeration of N X N where N = {0, 1, 2, ...}. The terms are interleaved x and y coordinates. Or: A row-wise storage scheme for sequences of regular triangles.
0, 0, 0, 1, 1, 0, 2, 0, 0, 2, 1, 1, 2, 1, 3, 0, 4, 0, 5, 0, 0, 3, 1, 2, 2, 2, 3, 1, 4, 1, 5, 1, 6, 0, 7, 0, 8, 0, 9, 0, 0, 4, 1, 3, 2, 3, 3, 2, 4, 2, 5, 2, 6, 1, 7, 1, 8, 1, 9, 1, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 0, 5, 1, 4, 2, 4, 3, 3, 4, 3, 5, 3, 6, 2, 7, 2
Offset: 0
Keywords
Comments
Examples
Illustrating the linear storage layout of a sequence of regular triangles. (A) [ 0], [ 2, 3], [ 7, 8, 9], [16, 17, 18, 19], [30, 31, 32, 33, 34], ... (B) [ 1], [ 5, 6], [13, 14, 15], [26, 27, 28, 29], ... (C) [ 4], [11, 12], [23, 24, 25], ... (D) [10], [21, 22], ... (E) [20], ... ... The first column is A000292. The start values of all partial rows (in ascending order) are 0 plus A014370. The start values of the partial rows in the first row are A005581 (without first 0). The start values of the partial rows on the main diagonal are A331987. The end values of all partial rows (in ascending order) are A332023. The end values of the partial rows in the first row are A062748. The end values of the partial rows on the main diagonal are A332698.
Links
- Peter Luschny, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Julia
function a_list(N) a = Int[] for n in 1:N i = 0 for j in ((k:-1:1) for k in 1:n) t = n - j[1] for m in j push!(a, i, t) i += 1 end end end; a end a_list(5) |> println
-
Maple
count := (k, A) -> ListTools:-Occurrences(k, A): t := n -> n*(n+1)/2: PutAndCount := proc(N) local L, n, v, c, seq; L := NULL; seq := NULL; for n from 1 to N do for v from 0 to t(n)-1 do # How often did you see v in this sequence before? c := count(v, [seq]); L := L, v, c; seq := seq, v; od od; L end: PutAndCount(6); # Returning 'seq' instead of 'L' gives the x-coordinates (A332663).
-
Mathematica
t[n_] := n*(n+1)/2; PutAndCount[N_] := Module[{L, n, v, c, seq}, L = {}; seq = {}; For[n = 1, n <= N, n++, For[v = 0, v <= t[n]-1, v++, c = Count[seq, v]; L = Join[L, {v, c}]; seq = Append[seq, v] ]]; L]; PutAndCount[6] (* Jean-François Alcover, Oct 13 2024, after Maple program *)
A005715 Coefficient of x^7 in expansion of (1+x+x^2)^n.
4, 30, 126, 393, 1016, 2304, 4740, 9042, 16236, 27742, 45474, 71955, 110448, 165104, 241128, 344964, 484500, 669294, 910822, 1222749, 1621224, 2125200, 2756780, 3541590, 4509180, 5693454, 7133130, 8872231, 10960608, 13454496
Offset: 4
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 4..1000
- R. K. Guy, Letter to N. J. A. Sloane, 1987
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Eric Weisstein's World of Mathematics, Trinomial Coefficient
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
Programs
-
Magma
I:=[4, 30, 126, 393, 1016, 2304, 4740, 9042]; [n le 8 select I[n] else 8*Self(n-1)-28*Self(n-2)+56*Self(n-3)-70*Self(n-4)+56*Self(n-5)-28*Self(n-6)+8*Self(n-7)-Self(n-8): n in [1..40]]; // Vincenzo Librandi, Jun 16 2012
-
Magma
/* By definition: */ P
:=PolynomialRing(Integers()); [ Coefficients((1+x+x^2)^n)[8]: n in [4..33] ]; // Bruno Berselli, Jun 17 2012 -
Maple
A005715:=(z-2)*(z**2-2)/(z-1)**8; # Conjectured by Simon Plouffe in his 1992 dissertation. A005715 := n -> GegenbauerC(`if`(7
A005715(n)), n=4..20); # Peter Luschny, May 10 2016 -
Mathematica
CoefficientList[Series[(x-2)*(x^2-2)/(1-x)^8,{x,0,40}],x] (* Vincenzo Librandi, Jun 16 2012 *)
Formula
a(n) = binomial(n, 4)*(n^3+27*n^2+116*n-120)/210, n >= 4.
G.f.: (x^4)*(x-2)*(x^2-2)/(1-x)^8. (Numerator polynomial is N3(7, x) from A063420).
a(n) = A027907(n, 7), n >= 4 (eighth column of trinomial coefficients).
a(n) = A111808(n,7) for n>6. - Reinhard Zumkeller, Aug 17 2005
a(n) = 8*a(n-1) -28*a(n-2) +56*a(n-3) -70*a(n-4) +56*a(n-5) -28*a(n-6) +8*a(n-7) -a(n-8). Vincenzo Librandi, Jun 16 2012
a(n) = 4*binomial(n,4) + 10*binomial(n,5) + 6*binomial(n,6) + binomial(n,7) (see our comment in A026729). - Vladimir Shevelev and Peter J. C. Moses, Jun 22 2012
a(n) = GegenbauerC(N, -n, -1/2) where N = 7 if 7Peter Luschny, May 10 2016
Extensions
More terms from Vladeta Jovovic, Oct 02 2000
A014370 If n = binomial(b,2) + binomial(c,1), b > c >= 0 then a(n) = binomial(b+1,3) + binomial(c+1,2).
1, 2, 4, 5, 7, 10, 11, 13, 16, 20, 21, 23, 26, 30, 35, 36, 38, 41, 45, 50, 56, 57, 59, 62, 66, 71, 77, 84, 85, 87, 90, 94, 99, 105, 112, 120, 121, 123, 126, 130, 135, 141, 148, 156, 165, 166, 168, 171, 175, 180, 186, 193, 201, 210, 220, 221, 223, 226, 230, 235, 241, 248, 256, 265, 275, 286
Offset: 1
Examples
The triangle starts: 1 2 4 5 7 10 11 13 16 20 21 23 26 30 35
References
- W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge, 1993, p. 159.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..11325 (rows 1..150 of triangle, flattened).
Crossrefs
Programs
-
Maple
a := 0: for i from 1 to 15 do for j from 1 to i do a := a+j: printf(`%d,`,a); od:od:
-
Mathematica
A014370[n_, k_] := Binomial[n + 1, 3] + Binomial[k + 1, 2]; Table[A014370[n, k], {n, 12}, {k, n}] (* Paolo Xausa, Mar 11 2025 *)
Formula
a(n) = Sum_{m = 1..n} b(m), b(m) = 1,1,2,1,2,3,1,2,3,4,... = A002260. - Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de)
a(n*(n+1)/2+m) = n*(n+1)*(n+2)/6 + m*(m+1)/2 = A000292(n)+ A000217(m), m = 0...n+1, n = 1, 2, 3.. - Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de)
a(n) = a(n-1) + A002260(n). As a triangle with n >= k >= 1: a(n, k) = a(n-1, k) + (n-1)*n/2 = a(n, k-1) + k = (n^3-n+3k^2+3k)/6. - Henry Bottomley, Nov 14 2001
a(n) = b(n) * (b(n) + 1) * (b(n) + 2) / 6 + c(n) * (c(n) + 1) / 2, where b(n) = [sqrt(2 * n) - 1/2] and c(n) = n - b(n) * (b(n) + 1) / 2. - Robert A. Stump (bee_ess107(AT)msn.com), Sep 20 2002
As a triangle, T(n,k) = binomial(n+1, 3) + binomial(k+1,2). - Franklin T. Adams-Watters, Jan 27 2014
Extensions
More terms from James Sellers, Feb 05 2000
A176145 a(n) = n*(n-3)*(n^2-7*n+14)/8.
0, 1, 5, 18, 49, 110, 216, 385, 638, 999, 1495, 2156, 3015, 4108, 5474, 7155, 9196, 11645, 14553, 17974, 21965, 26586, 31900, 37973, 44874, 52675, 61451, 71280, 82243, 94424, 107910, 122791, 139160, 157113, 176749, 198170, 221481, 246790, 274208, 303849
Offset: 3
Comments
Number of points of intersection of diagonals of a general convex n-polygon. (both inside and outside the polygon).
n(n-3)/2 (n >= 3) is the number of diagonals of an n-gon (A080956). The number of points (inside or outside), distinct of tops, where these diagonals intersect is : (1/2)( n(n-3)/2)(n(n-3)/2 - 2(n-4) -1) = n(n-3)(n^2 - 7n + 14) / 8.
Examples
For n=3, a(3) = 0 (no diagonals in triangle), For n=4, a(4) = 1 (2 diagonals => 1 point of intersection), For n=5, a(5) = 5 (5 diagonals => 5 points of intersection), For n=6, a(6) = 18 (9 diagonals => 18 points of intersection).
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 797.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 3..10000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Magma
[n*(n-3)*(n^2 - 7*n + 14) / 8: n in [3..60]]; // Vincenzo Librandi, May 21 2011
-
Maple
for n from 3 to 50 do: x:=n*(n-3)*(n^2 - 7*n +14)/8 : print(x):od:
-
Mathematica
Table[n*(n - 3)*(n^2 - 7*n + 14)/8, {n, 3, 42}] (* Bobby Milazzo, Jun 24 2013 *) Drop[CoefficientList[Series[x^4(1+3x^2-x^3)/(1-x)^5,{x,0,50}],x],3] (* or *) LinearRecurrence[{5,-10,10,-5,1},{0,1,5,18,49},50] (* Harvey P. Dale, Mar 14 2022 *)
-
PARI
vector(100,n,(n+2)*(n-1)*(n^2-3*n+4)/8) \\ Derek Orr, Jan 21 2015
Formula
G.f.: x^4*(1+3*x^2-x^3)/(1-x)^5. [Colin Barker, Jan 31 2012]
a(n) = 5*a(n-1) -10*a(n-2) +10*a(n-3) -5*a(n-4) + a(n-5), with a(3)= 0, a(4)= 1, a(5)=5, a(6)= 18, a(7) = 49. [Bobby Milazzo, Jun 24 2013]
a(n) = Sum_{k=(n-3)..(n-2)*(n-3)/2} k. - J. M. Bergot, Jan 21 2015
Extensions
Edited by N. J. A. Sloane, Apr 19 2010
A185874 Second accumulation array of A051340, by antidiagonals.
1, 3, 4, 6, 11, 10, 10, 21, 26, 20, 15, 34, 48, 50, 35, 21, 50, 76, 90, 85, 56, 28, 69, 110, 140, 150, 133, 84, 36, 91, 150, 200, 230, 231, 196, 120, 45, 116, 196, 270, 325, 350, 336, 276, 165, 55, 144, 248, 350, 435, 490, 504, 468, 375, 220, 66, 175, 306, 440, 560, 651, 700, 696, 630, 495, 286, 78, 209, 370, 540, 700, 833, 924, 960, 930, 825, 638, 364, 91, 246, 440, 650, 855, 1036, 1176, 1260, 1275, 1210, 1056, 806, 455, 105, 286, 516, 770, 1025, 1260, 1456, 1596, 1665, 1650, 1540, 1326, 1001, 560
Offset: 1
Comments
Examples
Northwest corner: . 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... . 4, 11, 21, 34, 50, 69, 91, 116, 144, 175, ... . 10, 26, 48, 76, 110, 150, 196, 248, 306, 370, ... . 20, 50, 90, 140, 200, 270, 350, 440, 540, 650, ... . 35, 85, 150, 230, 325, 435, 560, 700, 855, 1025, ... . 56, 133, 231, 350, 490, 651, 833, 1036, 1260, 1505, ... . 84, 196, 336, 504, 700, 924, 1176, 1456, 1764, 2100, ... . 120, 276, 468, 696, 960, 1260, 1596, 1968, 2376, 2820, ... . 165, 375, 630, 930, 1275, 1665, 2100, 2580, 3105, 3675, ... . 220, 495, 825, 1210, 1650, 2145, 2695, 3300, 3960, 4675, ... ...
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Johann Cigler, Some elementary observations on Narayana polynomials and related topics, arXiv:1611.05252 [math.CO], 2016. See p. 24.
Crossrefs
Programs
-
Mathematica
f[n_, k_] := (1/12)*k*n*(1 + n)*(1 + 3*k + 2*n); TableForm[Table[f[n, k], {n, 1, 10}, {k, 1, 15}]] Table[f[n - k + 1, k], {n, 14}, {k, n, 1, -1}] // Flatten
Formula
T(n,k) = k*n*(n+1)*(2*n+3*k+1)/12 for k>=1, n>=1.
Extensions
Edited by Bruno Berselli, Jan 14 2016
A267370 Partial sums of A140091.
0, 6, 21, 48, 90, 150, 231, 336, 468, 630, 825, 1056, 1326, 1638, 1995, 2400, 2856, 3366, 3933, 4560, 5250, 6006, 6831, 7728, 8700, 9750, 10881, 12096, 13398, 14790, 16275, 17856, 19536, 21318, 23205, 25200, 27306, 29526, 31863, 34320, 36900, 39606, 42441, 45408, 48510
Offset: 0
Comments
Examples
The sequence is also provided by the row sums of the following triangle (see the fourth formula above): . 0; . 1, 5; . 4, 7, 10; . 9, 11, 13, 15; . 16, 17, 18, 19, 20; . 25, 25, 25, 25, 25, 25; . 36, 35, 34, 33, 32, 31, 30; . 49, 47, 45, 43, 41, 39, 37, 35; . 64, 61, 58, 55, 52, 49, 46, 43, 40; . 81, 77, 73, 69, 65, 61, 57, 53, 49, 45, etc. First column is A000290. Second column is A027690. Third column is included in A189834. Main diagonal is A008587; other parallel diagonals: A016921, A017029, A017077, A017245, etc. Diagonal 1, 11, 25, 43, 65, 91, 121, ... is A161532.
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[n*(n+1)*(n+5)/2: n in [0..50]];
-
Mathematica
Table[n (n + 1) (n + 5)/2, {n, 0, 50}] LinearRecurrence[{4,-6,4,-1},{0,6,21,48},50] (* Harvey P. Dale, Jul 18 2019 *)
-
PARI
vector(50, n, n--; n*(n+1)*(n+5)/2)
-
Sage
[n*(n+1)*(n+5)/2 for n in (0..50)]
Formula
O.g.f.: 3*x*(2 - x)/(1 - x)^4.
E.g.f.: x*(12 + 9*x + x^2)*exp(x)/2.
a(n) = n*(n + 1)*(n + 5)/2.
a(n) = Sum_{i=0..n} n*(n - i) + 5*i, that is: a(n) = A002411(n) + A028895(n). More generally, Sum_{i=0..n} n*(n - i) + k*i = n*(n + 1)*(n + k)/2.
a(n) = 3*A005581(n+1).
a(n+1) - 3*a(n) + 3*a(n-1) = 3*A105163(n) for n>0.
From Amiram Eldar, Jan 06 2021: (Start)
Sum_{n>=1} 1/a(n) = 163/600.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/5 - 253/600. (End)
A059036 In a triangle of numbers (such as that in A059032, A059033, A059034) how many entries lie above position (n,k)? Answer: T(n,k) = (n+1)*(k+1)-1 (n >= 0, k >= 0).
0, 1, 1, 2, 3, 2, 3, 5, 5, 3, 4, 7, 8, 7, 4, 5, 9, 11, 11, 9, 5, 6, 11, 14, 15, 14, 11, 6, 7, 13, 17, 19, 19, 17, 13, 7, 8, 15, 20, 23, 24, 23, 20, 15, 8, 9, 17, 23, 27, 29, 29, 27, 23, 17, 9, 10, 19, 26, 31, 34, 35, 34, 31, 26, 19, 10, 11, 21, 29, 35, 39, 41
Offset: 0
Examples
As an infinite triangular array: 0 1 1 2 3 2 3 5 5 3 4 7 8 7 4 5 9 11 11 9 5 As an infinite square array (matrix): 0 1 2 3 4 5 1 3 5 7 9 11 2 5 8 11 14 17 3 7 11 15 19 23 4 9 14 19 24 29 5 11 17 23 29 35
Programs
-
PARI
{T(n, k) = n + k + n*k}; /* Michael Somos, Jul 28 2015 */
Formula
T(n, k) = max(T(n-1, k-1), T(n-1, k)) + min(k, n-k+1). - Jon Perry, Aug 05 2004
E.g.f.: exp(x+y)(x+y+xy) (as a square array read by antidiagonals). - Paul Barry, Sep 24 2004
From Michael Somos, Jul 28 2015: (Start)
Row sums = Sum_{k=0..n} T(n-k, k) = A005581(n+1).
T(n, k) = T(k, n) = T(-2-n, -2-k) for all n, k in Z.
Sum_{n, k >= 0} x^T(n, k) = f(x) / x where f() is the g.f. for A000005. (End)
Comments