cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 49 results. Next

A115127 Second (k=2) triangle of numbers related to totally asymmetric exclusion process (case alpha=1, beta=1).

Original entry on oeis.org

3, 6, 7, 10, 16, 19, 15, 30, 47, 56, 21, 50, 95, 146, 174, 28, 77, 170, 311, 471, 561, 36, 112, 280, 586, 1043, 1562, 1859, 45, 156, 434, 1015, 2044, 3564, 5291, 6292, 55, 210, 642, 1652, 3682, 7204, 12363, 18226, 21658, 66, 275, 915, 2562, 6230, 13392, 25623
Offset: 2

Views

Author

Wolfdieter Lang, Jan 13 2006

Keywords

Comments

This is the second floor (k=2) of a pyramid of numbers, called X(1,1,k=2,n,m) with n>=m+1>=2. One could use offset n>=1 and add a zero main diagonal.
The column sequences give for n>=m+1 and m=1..7: A000217, A005581, A024191, A115129, A115130, A115132, A115133.
The diagonal sequences give for M:=n-m=1..3: A071716, A071726, A115134.

Examples

			[3];[6,7];[10,16,19];[15,30,47,56];...
Main diagonal (n-m=1) example: a(3,2)= 7 = 5 + 2 because
A115126(3,2)=5 and A115126(2,2)=2.
Subdiagonal (n-m>1) example: a(4,2)= 16 = 9 + 7 because
A115126(4,2)=9 and a(3,2)=7.
		

Crossrefs

Row sums give A115128.

Formula

a(n,m)= b(n,m) + b(n-1,m) with b(n,m):=A115126(n,m) if n=m+1 (main diagonal), A115126(n,m) + a(n,-1,m) if n>m+1 (subdiagonals) and 0 if n

A005584 Coefficients of Chebyshev polynomials.

Original entry on oeis.org

2, 13, 49, 140, 336, 714, 1386, 2508, 4290, 7007, 11011, 16744, 24752, 35700, 50388, 69768, 94962, 127281, 168245, 219604, 283360, 361790, 457470, 573300, 712530, 878787, 1076103, 1308944, 1582240, 1901416, 2272424, 2701776, 3196578, 3764565, 4414137, 5154396
Offset: 1

Keywords

Comments

If X is an n-set and Y a fixed 2-subset of X then a(n-6) is equal to the number of (n-6)-subsets of X intersecting Y. - Milan Janjic, Jul 30 2007
a(n-1) = risefac(n+1,6)/6! - risefac(n+1,4)/4! is for n >=1 also the number of independent components of a symmetric traceless tensor of rank 6 and dimension n. Here risefac is the rising factorial. Put a(0) = 0. - Wolfdieter Lang, Dec 10 2015

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 797.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

G.f.: x*(2-x) / (1-x)^7.
a(n) = binomial(n+5, n-1) + binomial(n+4, n-1) = 1/720*n*(n+11)*(n+4)*(n+3)*(n+2)*(n+1).
a(n) = binomial(n,6) + 2*binomial(n,5), n >= 5. - Zerinvary Lajos, Jul 26 2006
a(n+1) = A127672(12+n, n), n >= 0, where A127672 gives the coefficients of Chebyshev's C polynomials. See the Abramowitz-Stegun reference. - Wolfdieter Lang, Dec 10 2015
From G. C. Greubel, Aug 27 2019: (Start)
a(n) = (n+11)*Pochhammer(n, 5)/6!.
E.g.f.: x*(1440 +3240*x +1920*x^2 +420*x^3 +36*x^4 +x^5)*exp(x)/6!. (End)
From Amiram Eldar, Feb 17 2023: (Start)
Sum_{n>=1} 1/a(n) = 1303391/2134440.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4160*log(2)/77 - 78994697/2134440. (End)

Extensions

More terms from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 07 1999

A159920 Sums of the antidiagonals of Sundaram's sieve (A159919).

Original entry on oeis.org

4, 14, 32, 60, 100, 154, 224, 312, 420, 550, 704, 884, 1092, 1330, 1600, 1904, 2244, 2622, 3040, 3500, 4004, 4554, 5152, 5800, 6500, 7254, 8064, 8932, 9860, 10850, 11904, 13024, 14212, 15470, 16800, 18204, 19684, 21242, 22880, 24600, 26404
Offset: 2

Author

Russell Walsmith, Apr 26 2009

Keywords

Comments

For every n >= 2, a(n) is the sum of numbers in the (n-1)-th antidiagonal of the Sundaram sieve. (It is not clear why the offset was set to 2 rather than 1.) Thus, if T(j, k) is the element in row j and column k of the Sundaram sieve, we have a(n) = Sum_{i = 1..n-1} T(i, n-i) = Sum_{i = 1..n-1} (2*i*(n-i) + i + (n-i)) = (n - 1)*n*(n + 4)/3 for the sum of the numbers in the (n-1)-th antidiagonal. - Petros Hadjicostas, Jun 19 2019

Examples

			For n = 5, (4*5*9)/3 = 60. Indeed, T(1, 4) + T(2, 3) + T(3, 2) + T(4, 1) = 13 + 17 + 17 + 13 = 60 for the sum of the terms in the 4th antidiagonal of the Sundaram sieve.
		

Crossrefs

Programs

Formula

a(n) = (n - 1)*n*(n + 4)/3.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = 2*A005581(n), n > 1.
a(n) = Sum_{i=1..n-1} i*(i + 3). - Wesley Ivan Hurt, Oct 19 2013
From G. C. Greubel, Oct 03 2022: (Start)
G.f.: 2*x^2*(2 - x)/(1-x)^4.
E.g.f.: (1/3)*x^2*(6 + x)*exp(x). (End)
a(n) = 2*A097900(n)/(n-2)! for n >= 2. - Cullen M. Vaney, Jul 14 2025

A332662 Put-and-count: An enumeration of N X N where N = {0, 1, 2, ...}. The terms are interleaved x and y coordinates. Or: A row-wise storage scheme for sequences of regular triangles.

Original entry on oeis.org

0, 0, 0, 1, 1, 0, 2, 0, 0, 2, 1, 1, 2, 1, 3, 0, 4, 0, 5, 0, 0, 3, 1, 2, 2, 2, 3, 1, 4, 1, 5, 1, 6, 0, 7, 0, 8, 0, 9, 0, 0, 4, 1, 3, 2, 3, 3, 2, 4, 2, 5, 2, 6, 1, 7, 1, 8, 1, 9, 1, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 0, 5, 1, 4, 2, 4, 3, 3, 4, 3, 5, 3, 6, 2, 7, 2
Offset: 0

Author

Peter Luschny, Feb 18 2020

Keywords

Comments

Other enumerations of N X N designed with storage allocation for extensible arrays in mind include A319514 and A319571.

Examples

			Illustrating the linear storage layout of a sequence of regular triangles.
(A) [ 0], [ 2,  3], [ 7,  8,  9], [16, 17, 18, 19], [30, 31, 32, 33, 34], ...
(B) [ 1], [ 5,  6], [13, 14, 15], [26, 27, 28, 29], ...
(C) [ 4], [11, 12], [23, 24, 25], ...
(D) [10], [21, 22], ...
(E) [20], ...
...
The first column is A000292.
The start values of all partial rows (in ascending order) are 0 plus A014370.
The start values of the partial rows in the first row are A005581 (without first 0).
The start values of the partial rows on the main diagonal are A331987.
The end values of all partial rows (in ascending order) are A332023.
The end values of the partial rows in the first row are A062748.
The end values of the partial rows on the main diagonal are A332698.
		

Crossrefs

A332663 (x-coordinates), A056559 (y-coordinates).

Programs

  • Julia
    function a_list(N)
        a = Int[]
        for n in 1:N
            i = 0
            for j in ((k:-1:1) for k in 1:n)
                t = n - j[1]
                for m in j
                    push!(a, i, t)
                    i += 1
    end end end; a end
    a_list(5) |> println
  • Maple
    count := (k, A) -> ListTools:-Occurrences(k, A): t := n -> n*(n+1)/2:
    PutAndCount := proc(N) local L, n, v, c, seq; L := NULL; seq := NULL;
    for n from 1 to N do
       for v from 0 to t(n)-1 do
         # How often did you see v in this sequence before?
         c := count(v, [seq]);
         L := L, v, c; seq := seq, v;
    od od; L end:  PutAndCount(6);
    # Returning 'seq' instead of 'L' gives the x-coordinates (A332663).
  • Mathematica
    t[n_] := n*(n+1)/2;
    PutAndCount[N_] := Module[{L, n, v, c, seq},
    L = {}; seq = {};
    For[n = 1, n <= N, n++,
       For[v = 0, v <= t[n]-1, v++,
          c = Count[seq, v];
          L = Join[L, {v, c}]; seq = Append[seq, v]
    ]]; L];
    PutAndCount[6] (* Jean-François Alcover, Oct 13 2024, after Maple program *)

A005715 Coefficient of x^7 in expansion of (1+x+x^2)^n.

Original entry on oeis.org

4, 30, 126, 393, 1016, 2304, 4740, 9042, 16236, 27742, 45474, 71955, 110448, 165104, 241128, 344964, 484500, 669294, 910822, 1222749, 1621224, 2125200, 2756780, 3541590, 4509180, 5693454, 7133130, 8872231, 10960608, 13454496
Offset: 4

Keywords

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Magma
    I:=[4, 30, 126, 393, 1016, 2304, 4740, 9042]; [n le 8 select I[n] else 8*Self(n-1)-28*Self(n-2)+56*Self(n-3)-70*Self(n-4)+56*Self(n-5)-28*Self(n-6)+8*Self(n-7)-Self(n-8): n in [1..40]]; // Vincenzo Librandi, Jun 16 2012
    
  • Magma
    /* By definition: */ P:=PolynomialRing(Integers()); [ Coefficients((1+x+x^2)^n)[8]: n in [4..33] ]; // Bruno Berselli, Jun 17 2012
  • Maple
    A005715:=(z-2)*(z**2-2)/(z-1)**8; # Conjectured by Simon Plouffe in his 1992 dissertation.
    A005715 := n -> GegenbauerC(`if`(7A005715(n)), n=4..20); # Peter Luschny, May 10 2016
  • Mathematica
    CoefficientList[Series[(x-2)*(x^2-2)/(1-x)^8,{x,0,40}],x] (* Vincenzo Librandi, Jun 16 2012 *)

Formula

a(n) = binomial(n, 4)*(n^3+27*n^2+116*n-120)/210, n >= 4.
G.f.: (x^4)*(x-2)*(x^2-2)/(1-x)^8. (Numerator polynomial is N3(7, x) from A063420).
a(n) = A027907(n, 7), n >= 4 (eighth column of trinomial coefficients).
a(n) = A111808(n,7) for n>6. - Reinhard Zumkeller, Aug 17 2005
a(n) = 8*a(n-1) -28*a(n-2) +56*a(n-3) -70*a(n-4) +56*a(n-5) -28*a(n-6) +8*a(n-7) -a(n-8). Vincenzo Librandi, Jun 16 2012
a(n) = 4*binomial(n,4) + 10*binomial(n,5) + 6*binomial(n,6) + binomial(n,7) (see our comment in A026729). - Vladimir Shevelev and Peter J. C. Moses, Jun 22 2012
a(n) = GegenbauerC(N, -n, -1/2) where N = 7 if 7Peter Luschny, May 10 2016

Extensions

More terms from Vladeta Jovovic, Oct 02 2000

A014370 If n = binomial(b,2) + binomial(c,1), b > c >= 0 then a(n) = binomial(b+1,3) + binomial(c+1,2).

Original entry on oeis.org

1, 2, 4, 5, 7, 10, 11, 13, 16, 20, 21, 23, 26, 30, 35, 36, 38, 41, 45, 50, 56, 57, 59, 62, 66, 71, 77, 84, 85, 87, 90, 94, 99, 105, 112, 120, 121, 123, 126, 130, 135, 141, 148, 156, 165, 166, 168, 171, 175, 180, 186, 193, 201, 210, 220, 221, 223, 226, 230, 235, 241, 248, 256, 265, 275, 286
Offset: 1

Keywords

Examples

			The triangle starts:
  1
  2 4
  5 7 10
  11 13 16 20
  21 23 26 30 35
		

References

  • W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge, 1993, p. 159.

Crossrefs

Cf. A002260, A000292 (main diagonal), A000217, A014368, A014369, A006046, A050407 (1st column), A005581 (subdiagonal), A071239 (row sums), A212013.

Programs

  • Maple
    a := 0: for i from 1 to 15 do for j from 1 to i do a := a+j: printf(`%d,`,a); od:od:
  • Mathematica
    A014370[n_, k_] := Binomial[n + 1, 3] + Binomial[k + 1, 2];
    Table[A014370[n, k], {n, 12}, {k, n}] (* Paolo Xausa, Mar 11 2025 *)

Formula

a(n) = Sum_{m = 1..n} b(m), b(m) = 1,1,2,1,2,3,1,2,3,4,... = A002260. - Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de)
a(n*(n+1)/2+m) = n*(n+1)*(n+2)/6 + m*(m+1)/2 = A000292(n)+ A000217(m), m = 0...n+1, n = 1, 2, 3.. - Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de)
a(n) = a(n-1) + A002260(n). As a triangle with n >= k >= 1: a(n, k) = a(n-1, k) + (n-1)*n/2 = a(n, k-1) + k = (n^3-n+3k^2+3k)/6. - Henry Bottomley, Nov 14 2001
a(n) = b(n) * (b(n) + 1) * (b(n) + 2) / 6 + c(n) * (c(n) + 1) / 2, where b(n) = [sqrt(2 * n) - 1/2] and c(n) = n - b(n) * (b(n) + 1) / 2. - Robert A. Stump (bee_ess107(AT)msn.com), Sep 20 2002
As a triangle, T(n,k) = binomial(n+1, 3) + binomial(k+1,2). - Franklin T. Adams-Watters, Jan 27 2014

Extensions

More terms from James Sellers, Feb 05 2000

A176145 a(n) = n*(n-3)*(n^2-7*n+14)/8.

Original entry on oeis.org

0, 1, 5, 18, 49, 110, 216, 385, 638, 999, 1495, 2156, 3015, 4108, 5474, 7155, 9196, 11645, 14553, 17974, 21965, 26586, 31900, 37973, 44874, 52675, 61451, 71280, 82243, 94424, 107910, 122791, 139160, 157113, 176749, 198170, 221481, 246790, 274208, 303849
Offset: 3

Author

Michel Lagneau, Apr 10 2010

Keywords

Comments

Number of points of intersection of diagonals of a general convex n-polygon. (both inside and outside the polygon).
n(n-3)/2 (n >= 3) is the number of diagonals of an n-gon (A080956). The number of points (inside or outside), distinct of tops, where these diagonals intersect is : (1/2)( n(n-3)/2)(n(n-3)/2 - 2(n-4) -1) = n(n-3)(n^2 - 7n + 14) / 8.

Examples

			For n=3, a(3) = 0 (no diagonals in triangle),
For n=4, a(4) = 1 (2 diagonals => 1 point of intersection),
For n=5, a(5) = 5 (5 diagonals => 5 points of intersection),
For n=6, a(6) = 18 (9 diagonals => 18 points of intersection).
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 797.

Programs

  • Magma
    [n*(n-3)*(n^2 - 7*n + 14) / 8: n in [3..60]]; // Vincenzo Librandi, May 21 2011
    
  • Maple
    for n from 3 to 50 do: x:=n*(n-3)*(n^2 - 7*n +14)/8 : print(x):od:
  • Mathematica
    Table[n*(n - 3)*(n^2 - 7*n + 14)/8, {n, 3, 42}] (* Bobby Milazzo, Jun 24 2013 *)
    Drop[CoefficientList[Series[x^4(1+3x^2-x^3)/(1-x)^5,{x,0,50}],x],3] (* or *) LinearRecurrence[{5,-10,10,-5,1},{0,1,5,18,49},50] (* Harvey P. Dale, Mar 14 2022 *)
  • PARI
    vector(100,n,(n+2)*(n-1)*(n^2-3*n+4)/8) \\ Derek Orr, Jan 21 2015

Formula

G.f.: x^4*(1+3*x^2-x^3)/(1-x)^5. [Colin Barker, Jan 31 2012]
a(n) = 5*a(n-1) -10*a(n-2) +10*a(n-3) -5*a(n-4) + a(n-5), with a(3)= 0, a(4)= 1, a(5)=5, a(6)= 18, a(7) = 49. [Bobby Milazzo, Jun 24 2013]
a(n) = Sum_{k=(n-3)..(n-2)*(n-3)/2} k. - J. M. Bergot, Jan 21 2015

Extensions

Edited by N. J. A. Sloane, Apr 19 2010

A185874 Second accumulation array of A051340, by antidiagonals.

Original entry on oeis.org

1, 3, 4, 6, 11, 10, 10, 21, 26, 20, 15, 34, 48, 50, 35, 21, 50, 76, 90, 85, 56, 28, 69, 110, 140, 150, 133, 84, 36, 91, 150, 200, 230, 231, 196, 120, 45, 116, 196, 270, 325, 350, 336, 276, 165, 55, 144, 248, 350, 435, 490, 504, 468, 375, 220, 66, 175, 306, 440, 560, 651, 700, 696, 630, 495, 286, 78, 209, 370, 540, 700, 833, 924, 960, 930, 825, 638, 364, 91, 246, 440, 650, 855, 1036, 1176, 1260, 1275, 1210, 1056, 806, 455, 105, 286, 516, 770, 1025, 1260, 1456, 1596, 1665, 1650, 1540, 1326, 1001, 560
Offset: 1

Author

Clark Kimberling, Feb 05 2011

Keywords

Comments

A member of the accumulation chain: A051340 < A141419 < A185874 < A185875 < A185876 < ... (See A144112 for the definition of accumulation array.)

Examples

			Northwest corner:
.   1,   3,   6,   10,   15,   21,   28,   36,   45,   55, ...
.   4,  11,  21,   34,   50,   69,   91,  116,  144,  175, ...
.  10,  26,  48,   76,  110,  150,  196,  248,  306,  370, ...
.  20,  50,  90,  140,  200,  270,  350,  440,  540,  650, ...
.  35,  85, 150,  230,  325,  435,  560,  700,  855, 1025, ...
.  56, 133, 231,  350,  490,  651,  833, 1036, 1260, 1505, ...
.  84, 196, 336,  504,  700,  924, 1176, 1456, 1764, 2100, ...
. 120, 276, 468,  696,  960, 1260, 1596, 1968, 2376, 2820, ...
. 165, 375, 630,  930, 1275, 1665, 2100, 2580, 3105, 3675, ...
. 220, 495, 825, 1210, 1650, 2145, 2695, 3300, 3960, 4675, ...
...
		

Crossrefs

Row 1 to 5: A000217, A115056, 2*A140096, 10*A000096, 5*A059845.
Column 1 to 3: A000292, A051925, A267370 and 3*A005581.
Main diagonal: A117066.

Programs

  • Mathematica
    f[n_, k_] := (1/12)*k*n*(1 + n)*(1 + 3*k + 2*n);
    TableForm[Table[f[n, k], {n, 1, 10}, {k, 1, 15}]]
    Table[f[n - k + 1, k], {n, 14}, {k, n, 1, -1}] // Flatten

Formula

T(n,k) = k*n*(n+1)*(2*n+3*k+1)/12 for k>=1, n>=1.

Extensions

Edited by Bruno Berselli, Jan 14 2016

A267370 Partial sums of A140091.

Original entry on oeis.org

0, 6, 21, 48, 90, 150, 231, 336, 468, 630, 825, 1056, 1326, 1638, 1995, 2400, 2856, 3366, 3933, 4560, 5250, 6006, 6831, 7728, 8700, 9750, 10881, 12096, 13398, 14790, 16275, 17856, 19536, 21318, 23205, 25200, 27306, 29526, 31863, 34320, 36900, 39606, 42441, 45408, 48510
Offset: 0

Author

Bruno Berselli, Jan 13 2016

Keywords

Comments

After 0, this sequence is the third column of the array in A185874.
Sequence is related to A051744 by A051744(n) = n*a(n)/3 - Sum_{i=0..n-1} a(i) for n>0.

Examples

			The sequence is also provided by the row sums of the following triangle (see the fourth formula above):
.  0;
.  1,  5;
.  4,  7, 10;
.  9, 11, 13, 15;
. 16, 17, 18, 19, 20;
. 25, 25, 25, 25, 25, 25;
. 36, 35, 34, 33, 32, 31, 30;
. 49, 47, 45, 43, 41, 39, 37, 35;
. 64, 61, 58, 55, 52, 49, 46, 43, 40;
. 81, 77, 73, 69, 65, 61, 57, 53, 49, 45, etc.
First column is A000290.
Second column is A027690.
Third column is included in A189834.
Main diagonal is A008587; other parallel diagonals: A016921, A017029, A017077, A017245, etc.
Diagonal 1, 11, 25, 43, 65, 91, 121, ... is A161532.
		

Crossrefs

Cf. similar sequences of the type n*(n+1)*(n+k)/2: A002411 (k=0), A006002 (k=1), A027480 (k=2), A077414 (k=3, with offset 1), A212343 (k=4, without the initial 0), this sequence (k=5).

Programs

  • Magma
    [n*(n+1)*(n+5)/2: n in [0..50]];
  • Mathematica
    Table[n (n + 1) (n + 5)/2, {n, 0, 50}]
    LinearRecurrence[{4,-6,4,-1},{0,6,21,48},50] (* Harvey P. Dale, Jul 18 2019 *)
  • PARI
    vector(50, n, n--; n*(n+1)*(n+5)/2)
    
  • Sage
    [n*(n+1)*(n+5)/2 for n in (0..50)]
    

Formula

O.g.f.: 3*x*(2 - x)/(1 - x)^4.
E.g.f.: x*(12 + 9*x + x^2)*exp(x)/2.
a(n) = n*(n + 1)*(n + 5)/2.
a(n) = Sum_{i=0..n} n*(n - i) + 5*i, that is: a(n) = A002411(n) + A028895(n). More generally, Sum_{i=0..n} n*(n - i) + k*i = n*(n + 1)*(n + k)/2.
a(n) = 3*A005581(n+1).
a(n+1) - 3*a(n) + 3*a(n-1) = 3*A105163(n) for n>0.
From Amiram Eldar, Jan 06 2021: (Start)
Sum_{n>=1} 1/a(n) = 163/600.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/5 - 253/600. (End)

A059036 In a triangle of numbers (such as that in A059032, A059033, A059034) how many entries lie above position (n,k)? Answer: T(n,k) = (n+1)*(k+1)-1 (n >= 0, k >= 0).

Original entry on oeis.org

0, 1, 1, 2, 3, 2, 3, 5, 5, 3, 4, 7, 8, 7, 4, 5, 9, 11, 11, 9, 5, 6, 11, 14, 15, 14, 11, 6, 7, 13, 17, 19, 19, 17, 13, 7, 8, 15, 20, 23, 24, 23, 20, 15, 8, 9, 17, 23, 27, 29, 29, 27, 23, 17, 9, 10, 19, 26, 31, 34, 35, 34, 31, 26, 19, 10, 11, 21, 29, 35, 39, 41
Offset: 0

Author

N. J. A. Sloane, Feb 13 2001

Keywords

Examples

			As an infinite triangular array:
  0
  1   1
  2   3   2
  3   5   5   3
  4   7   8   7   4
  5   9  11  11   9   5
As an infinite square array (matrix):
  0   1   2   3   4   5
  1   3   5   7   9  11
  2   5   8  11  14  17
  3   7  11  15  19  23
  4   9  14  19  24  29
  5  11  17  23  29  35
		

Crossrefs

T(n, k) = A003991(n, k) - 1.

Programs

Formula

T(n, k) = max(T(n-1, k-1), T(n-1, k)) + min(k, n-k+1). - Jon Perry, Aug 05 2004
E.g.f.: exp(x+y)(x+y+xy) (as a square array read by antidiagonals). - Paul Barry, Sep 24 2004
From Michael Somos, Jul 28 2015: (Start)
Row sums = Sum_{k=0..n} T(n-k, k) = A005581(n+1).
T(n, k) = T(k, n) = T(-2-n, -2-k) for all n, k in Z.
Sum_{n, k >= 0} x^T(n, k) = f(x) / x where f() is the g.f. for A000005. (End)
Previous Showing 21-30 of 49 results. Next