cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 301 results. Next

A011117 Triangle of numbers S(x,y) = number of lattice paths from (0,0) to (x,y) that use step set { (0,1), (1,0), (2,0), (3,0), ....} and never pass below y = x.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 7, 11, 1, 4, 12, 28, 45, 1, 5, 18, 52, 121, 197, 1, 6, 25, 84, 237, 550, 903, 1, 7, 33, 125, 403, 1119, 2591, 4279, 1, 8, 42, 176, 630, 1976, 5424, 12536, 20793, 1, 9, 52, 238, 930, 3206, 9860, 26832, 61921, 103049, 1, 10, 63
Offset: 0

Views

Author

Robert Sulanke (sulanke(AT)diamond.idbsu.edu)

Keywords

Comments

When seen as polynomials with descending coefficients: evaluations are A006318 (x=1), A001003 (x=2).
Triangular array in A104219 transposed. - Philippe Deléham, Mar 16 2005
Triangle T(n,k), 0 <= k <= n, defined by: T(0,0) = 1, T(n,k) = T(n-1,k) + Sum_{j=0..k-1} 2^j*T(n-1,k-1-j). - Philippe Deléham, Oct 10 2005

Examples

			Triangle starts:
[0] [1]
[1] [1, 1]
[2] [1, 2,  3]
[3] [1, 3,  7,  11]
[4] [1, 4, 12,  28,  45]
[5] [1, 5, 18,  52, 121,  197]
[6] [1, 6, 25,  84, 237,  550,  903]
[7] [1, 7, 33, 125, 403, 1119, 2591,  4279]
[8] [1, 8, 42, 176, 630, 1976, 5424, 12536, 20793]
[9] [1, 9, 52, 238, 930, 3206, 9860, 26832, 61921, 103049]
		

Crossrefs

Cf. A084938.
Right-hand columns show convolutions of little Schroeder numbers with themselves: A001003, A010683, A010736, A010849.

Programs

  • Mathematica
    f[ x_, y_ ] := f[ x, y ] = Module[ {return}, If[ x == 0, return = 1, If[ y == x-1, return = 0, return = f[ x, y-1 ] + Sum[ f[ k, y ], {k, 0, x-1} ] ] ]; return ]; Do[ Print[ Table[ f[ k, j ], {k, 0, j} ] ], {j, 10, 0, -1} ]
  • Sage
    def A011117_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return 1
            if k==0: return 0
            return prec(n-1,k-1)+sum(prec(n,k+i-1) for i in (2..n-k+1))
        return [prec(n, n-k) for k in (0..n-1)]
    for n in (1..9): print(A011117_row(n)) # Peter Luschny, Mar 16 2016

Formula

S(m, n) = ((n-m+1)/(n+1))*Sum_{i=0..m-1} 2^(m-i-1)*binomial(n+1, i+1)*binomial(m-1, i).
Another version of triangle [1, 0, 0, 0, 0, 0, ...] DELTA [0, 1, 2, 1, 2, 1, 2, 1, 2, 1, ...] = 1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 7, 11, 0, 1, 4, 12, 28, 45, 0, 1, ..., where DELTA is Deléham's operator defined in A084938.
G.f.: 2/(1 + uv - 2v + sqrt(1 - 6uv + u^2v^2)). - Emeric Deutsch, Dec 25 2003
Sum_{k = 0..n} T(n, k) = A006318(n), large Schroeder numbers. - Philippe Deléham, Jul 10 2004. (This is because T(n, k) = number of royal paths (A006318) of length n with exactly n-k Northeast steps lying on the line y=x. - David Callan, Aug 02 2004)
S(n,m) = ((n-m+1)/m)*Sum_{k=1..m} binomial(m,k)*binomial(n+k,k-1), n >= m > 1; S(n,0)=1; S(n,m)=0, n < m. See the corresponding formula for A104219. - Wolfdieter Lang, Mar 16 2009

A026781 a(n) = T(2n,n), T given by A026780.

Original entry on oeis.org

1, 3, 12, 53, 246, 1178, 5768, 28731, 145108, 741392, 3825418, 19907156, 104370554, 550816506, 2924018194, 15603778253, 83661779470, 450479003038, 2435009205992, 13208558795146, 71879906857596, 392320357251928, 2147102400154768, 11780181236675858, 64782405317073968, 357022158144941548
Offset: 0

Views

Author

Keywords

Comments

Number of paths from (0,0) to (n,n) in the directed graph having vertices (i,j) and edges (i,j)-to-(i+1,j) and (i,j)-to-(i,j+1) for i,j>=0 and edges (i,i+h)-to-(i+1,i+h+1) for i>=0, h>=0.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 2*(1-x -Sqrt(1-6*x+x^2))/(4*x -(1 -Sqrt(1-4*x))*(1 -x -Sqrt(1-6*x+x^2))) )); // G. C. Greubel, Nov 02 2019
    
  • Maple
    seq(coeff(series(2*(1-x -sqrt(1-6*x+x^2))/(4*x -(1 -sqrt(1-4*x))*(1 -x -sqrt(1-6*x+x^2))), x, n+1), x, n), n = 0..30); # G. C. Greubel, Nov 02 2019
  • Mathematica
    CoefficientList[Series[2*(1-x -Sqrt[1-6*x+x^2])/(4*x -(1 -Sqrt[1-4*x])*(1 -x -Sqrt[1-6*x+x^2])), {x,0,30}], x] (* G. C. Greubel, Nov 02 2019 *)
  • PARI
    C = (1-sqrt(1-4*x+O(x^51)))/2/x; S = (1-x-sqrt(1-6*x+x^2 +O(x^51) ))/2/x; Vec(S/(1-x*C*S)) /* Max Alekseyev, Jan 13 2015 */
    
  • Sage
    def A026781_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(2*(1-x -sqrt(1-6*x+x^2))/(4*x -(1 -sqrt(1-4*x))*(1 -x -sqrt(1-6*x+x^2)))).list()
    A026781_list(30) # G. C. Greubel, Nov 02 2019

Formula

O.g.f.: S(x)/(1-x*C(x)*S(x)) = (S(x)-C(x))/(x*C(x)), where C(x)=(1-sqrt(1-4x))/(2*x) is o.g.f. for A000108 and S(x)=(1-x-sqrt(1-6*x+x^2))/(2*x) is o.g.f. for A006318. - Max Alekseyev, Jan 13 2015
D-finite with recurrence 2*n*(132*n-445)*(n+2)*(n+1)*a(n) -n*(n+1) *(5587*n^2 -23082*n +12800)*a(n-1) +2*n*(n-1)*(22870*n^2 -114505*n +116854)*a(n-2) +2*(-90081*n^4 +818062*n^3 -2626791*n^2 +3517598*n -1622544)*a(n-3) +4*(85519*n^4 -1071535*n^3 +4986308*n^2 -10177616*n +7647024)*a(n-4) +(-269235*n^4 +4490125*n^3 -27985152*n^2 +77217236*n -79534224)*a(n-5) +4*(2*n-11)*(8203*n^3 -117312*n^2 +557264*n -879984)*a(n-6) -4*(n-6)*(307*n -1414) *(2*n-11) *(2*n-13)*a(n-7)=0. - R. J. Mathar, Feb 20 2020

Extensions

More terms from Max Alekseyev, Jan 13 2015

A034015 Small 3-Schroeder numbers: a(n) = A027307(n+1)/2.

Original entry on oeis.org

1, 5, 33, 249, 2033, 17485, 156033, 1431281, 13412193, 127840085, 1235575201, 12080678505, 119276490193, 1187542872989, 11909326179841, 120191310803937, 1219780566014657, 12440630635406245, 127446349676475425, 1310820823328281561, 13530833791486094769
Offset: 0

Views

Author

Keywords

Comments

Series reversion of x*(Sum_{k>=0} a(k)(-x^2)^k) is Sum_{k odd} C(k)x^k where C() is Catalan numbers A000108.
Series reversion of x*(Sum_{k>=0} a(k)(-x)^k) is A000337(x). (Michael Somos)
This sequence should really have started with a(0)=1, a(1)=1, a(2)=5, a(3)=33, ..., but the present offset is too well-established. - N. J. A. Sloane, Mar 28 2021
This is the number of hypoplactic classes of 2-parking functions of size n+1. - Jun Yan, Apr 13 2024

References

  • Sheng-Liang Yang and Mei-yang Jiang, The m-Schröder paths and m-Schröder numbers, Disc. Math. (2021) Vol. 344, Issue 2, 112209. doi:10.1016/j.disc.2020.112209. See Table 1.

Crossrefs

Part of a family indexed by m: m=2 (A001003), m=3 is this sequence, m=4 is A243675, ....
The sequences listed in Yang-Jiang's Table 1 appear to be A006318, A001003, A027307, A034015, A144097, A243675, A260332, A243676. - N. J. A. Sloane, Mar 28 2021
Apart from the first term, this is A027307/2. - N. J. A. Sloane, Mar 28 2021

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, 4*n+1,
          ((110*n^3+66*n^2-17*n-9) *a(n-1)
           +(n-1)*(2*n-1)*(5*n+3) *a(n-2)) /
          ((2*n+3)*(5*n-2)*(n+1)))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Jun 22 2014
  • Mathematica
    a[n_] := If[n<0, 0, Sum[2^i*Binomial[2*n+2, i]*Binomial[n+1, i+1]/(n+1), {i, 0, n}]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Oct 13 2014, after PARI *)
    a[n_] := Hypergeometric2F1[-n, -2 (n + 1), 2, 2];
    Table[a[n], {n, 0, 20}]  (* Peter Luschny, Nov 08 2021 *)
  • PARI
    a(n)=if(n<0,0,sum(i=0,n,2^i*binomial(2*n+2,i)*binomial(n+1,i+1))/(n+1))

Formula

a(n) = Sum_{i=0..n} Sum_{j=0..i} (-2)^(n-i)*binomial(i,j)*binomial(2i+j, n)*binomial(n+1,i)/(n+1) (conjectured). - Michael D. Weiner, May 25 2017
Yang & Jiang (2021) give an explicit formula for a(n) in Theorems 2.4 and 2.9. - N. J. A. Sloane, Mar 28 2021 [This formula is: a(n) = (1/(n + 1)) * Sum_{k=1..n+1} binomial(2*n + 2, k - 1) * binomial(n + 1, k)*2^(k - 1). - Jun Yan, Apr 13 2024]
a(n) = hypergeom([-n, -2*(n + 1)], [2], 2). - Peter Luschny, Nov 08 2021
a(n) ~ phi^(5*n + 6) / (4 * 5^(1/4) * sqrt(Pi) * n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Nov 08 2021
D-finite with recurrence +2*(2*n+3)*(n+1)*a(n) +(-46*n^2-43*n-9)*a(n-1) +3*(6*n^2-14*n+7)*a(n-2) +(2*n-3)*(n-2)*a(n-3)=0. - R. J. Mathar, Aug 01 2022
Let D(n) be the set of 2-Dyck paths that have n up-steps of size 2 and 2n down-steps of size 1 and never go below the x-axis. For every d in D(n), let peak(d) be the number of peaks in d. Then a(n) = Sum_{d in D(n+1)}2^(peak(d) - 1). - Jun Yan, Apr 13 2024
a(n) = (-1)^(n) * Jacobi_P(n, 1, n+2, -3)/(n+1). - Peter Bala, Sep 08 2024

A071969 a(n) = Sum_{k=0..floor(n/3)} (binomial(n+1, k)*binomial(2*n-3*k, n-3*k)/(n+1)).

Original entry on oeis.org

1, 1, 2, 6, 19, 63, 219, 787, 2897, 10869, 41414, 159822, 623391, 2453727, 9733866, 38877318, 156206233, 630947421, 2560537092, 10435207116, 42689715279, 175243923783, 721649457417, 2980276087005, 12340456995177, 51222441676513, 213090270498764, 888321276659112
Offset: 0

Views

Author

N. J. A. Sloane, Jun 17 2002

Keywords

Comments

Diagonal of A071946. - Emeric Deutsch, Dec 15 2004
Last (largest) number of each row of A071946. - David Scambler, May 15 2012

Crossrefs

Cf. A071946 is the triangle and A119254 has the row sums.

Programs

  • Maple
    A071969 := n->add( binomial(n+1,k)*binomial(2*n-3*k,n-3*k)/(n+1),k=0..floor(n/3));
    Order:=30: g:=solve(series((H-H^2)/(1+H^3),H)=z,H): seq(coeff(g,z^n),n=1..28); # Emeric Deutsch, Dec 15 2004
  • Mathematica
    Table[Sum[Binomial[n+1,k] Binomial[2n-3k,n-3k]/(n+1),{k,0,Floor[n/3]}],{n,0,40}] (* Harvey P. Dale, Jul 20 2022 *)
  • PARI
    a(n)=if(n<0,0,polcoeff(serreverse((x-x^2)/(1+x^3)+x^2*O(x^n)),n+1))

Formula

G.f. (offset 1) is series reversion of (x-x^2)/(1+x^3).

A082298 Expansion of (1-3*x-sqrt(9*x^2-10*x+1))/(2*x).

Original entry on oeis.org

1, 4, 20, 116, 740, 5028, 35700, 261780, 1967300, 15072836, 117297620, 924612532, 7367204260, 59240277988, 480118631220, 3917880562644, 32163325863300, 265446382860420, 2201136740855700, 18329850024033012, 153225552507991140
Offset: 0

Views

Author

Benoit Cloitre, May 10 2003

Keywords

Comments

More generally coefficients of (1-m*x-sqrt(m^2*x^2-(2*m+4)*x+1))/(2*x) are given by a(0)=1 and, for n>0, a(n) = (1/n)*Sum_{k=0..n}(m+1)^k*binomial(n,k)*binomial(n,k-1).
a(n) = number of lattice paths from (0,0) to (n+1,n+1) that consist of steps (i,0) and (0,j) with i,j>=1 and that stay strictly below the diagonal line y=x except at the endpoints. (See Coker reference.) Equivalently, a(n) = number of marked Dyck (n+1)-paths where the vertices in the middle of each UU and each DD are available to be marked (or not): consider the original path as a Dyck path with a mark at each vertex where two horizontal (or two vertical) steps abut. If only the UU vertices are available for marking, then the counting sequence is the little Schroeder number A001003. - David Callan, Jun 07 2006
Hankel transform is 4^C(n+1,2). - Philippe Deléham, Feb 11 2009
a(n) is the number of Schroder paths of semilength n in which the (2,0)-steps come in 3 colors. Example: a(2)=20 because, denoting U=(1,1), H=(2,0), D=(1,-1), we have 3^2=9 paths of shape HH, 3 paths of shape HUD, 3 paths of shape UDH, 3 paths of shape UHD, and 1 path of each of the shapes UDUD, UUDD. - Emeric Deutsch, May 02 2011
(1 + 4x + 20x^2 + 116x^3 + ...) = (1 + 5x + 29x^2 + 185x^3 + ...) * 1/(1 + x + 5x^2 + 29x^3 +185x^4 + ...); where A059231 = (1, 5, 29, 185, 1257, ...) - Gary W. Adamson, Nov 17 2011
The first differences between the row sums of the triangle A226392. - J. M. Bergot, Jun 21 2013

Crossrefs

Programs

  • Magma
    Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!((1-3*x-Sqrt(9*x^2-10*x+1))/(2*x))); // G. C. Greubel, Feb 10 2018
  • Maple
    A082298_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
    for w from 1 to n do a[w] := 4*a[w-1]+add(a[j]*a[w-j-1], j=1..w-1) od;convert(a,list)end: A082298_list(20); # Peter Luschny, May 19 2011
    a := n -> `if`(n=0, 1, 4*hypergeom([1 - n, -n], [2], 4)):
    seq(simplify(a(n)), n=0..20); # Peter Luschny, May 22 2017
  • Mathematica
    gf[x_] = (1 - 3*x - Sqrt[(9*x^2 - 10*x + 1)])/(2*x); CoefficientList[Series[gf[x], {x, 0, 20}], x] (* Jean-François Alcover, Jun 01 2011 *)
  • PARI
    a(n)=if(n<1,1,sum(k=0,n,4^k*binomial(n,k)*binomial(n,k-1))/n)
    

Formula

a(0)=1, n>0 a(n) = (1/n)*Sum_{k=0..n} 4^k*binomial(n, k)*binomial(n, k-1).
a(1)=1, a(n) = 3*a(n-1) + Sum_{i=1..n-1} a(i)*a(n-i). - Benoit Cloitre, Mar 16 2004
a(n) = Sum_{k=0..n} 1/(n+1) Binomial(n+1,k)Binomial(2n-k,n-k)3^k. - David Callan, Jun 07 2006
From Paul Barry, Feb 01 2009: (Start)
G.f.: 1/(1-3x-x/(1-3x-x/(1-3x-x/(1-... (continued fraction);
a(n) = Sum_{k=0..n} binomial(n+k,2k)*3^(n-k)*A000108(k). (End)
a(n) = Sum_{k=0..n} A060693(n,k)*3^k. - Philippe Deléham, Feb 11 2009
D-finite with recurrence: (n+1)*a(n) = 5*(2n-1)*a(n-1)-9*(n-2)*a(n-2). - Paul Barry, Oct 22 2009
G.f.: 1/(1- 4x/(1-x/(1-4x/(1-x/(1-4x/(1-... (continued fraction). - Aoife Hennessy (aoife.hennessy(AT)gmail.com), Dec 02 2009
G.f.: (1-3*x-sqrt(9*x^2-10*x+1))/(2*x) = (1-G(0))/x; G(k) = 1+x*3-x*4/G(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Jan 05 2012
a(n) ~ 3^(2*n+1)/(sqrt(2*Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 14 2012
a(n) = 4*hypergeom([1 - n, -n], [2], 4) for n>0. - Peter Luschny, May 22 2017
G.f. A(x) satisfies: A(x) = (1 + x*A(x)^2) / (1 - 3*x). - Ilya Gutkovskiy, Jun 30 2020
G.f.: (1+2*x*F(x))^2, where F(x) is the g.f. for A099250. - Alexander Burstein, May 11 2021

A023426 a(n) = a(n-1) + Sum_{k=0..n-4} a(k)*a(n-4-k), a(0) = 1. Generalized Catalan Numbers.

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 7, 11, 18, 32, 59, 107, 191, 343, 627, 1159, 2146, 3972, 7373, 13757, 25781, 48437, 91165, 171945, 325096, 616066, 1169667, 2224355, 4236728, 8082374, 15441719, 29542411, 56590472, 108532322, 208387711, 400551615, 770710831, 1484383399
Offset: 0

Views

Author

Keywords

Comments

Number of lattice paths from (0,0) to (n,0) that stay weakly in the first quadrant and such that each step is either U=(2,1),D=(2,-1), or H=(1,0). E.g. a(5)=4 because we have HHHHH, HUD, UDH and UHD. - Emeric Deutsch, Dec 23 2003
Hankel transform is A132380(n+3). - Paul Barry, May 22 2009

Crossrefs

Programs

  • Maple
    a := n -> hypergeom([(1 - n)/4, (2 - n)/4, (3 - n)/4, -n/4], [2, (1 - n)/2, -n/2], 2^6): seq(simplify(a(n)), n = 0..35); # Peter Luschny, Jul 12 2024
  • Mathematica
    Clear[ a ]; a[ 0 ]=1; a[ n_Integer ] := a[ n ]=a[ n-1 ]+Sum[ a[ k ]*a[ n-4-k ], {k, 0, n-4} ];
    CoefficientList[Series[(1-x-Sqrt[(1-x)^2-4*x^4])/(2*x^4), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 01 2014 *)

Formula

G.f.: [1-z-sqrt((1-z)^2-4z^4)]/[2z^4]. - Emeric Deutsch, Dec 23 2003
From Paul Barry, May 22 2009: (Start)
G.f.: 1/(1-x-x^4/(1-x-x^4/(1-x-x^4/(1-x-x^4/(1-... (continued fraction).
G.f.: (1/(1-x))c(x^4/(1-x)^2), c(x) the g.f. of A000108.
a(n) = Sum_{k=0..floor(n/4)} C(n-2k,2k)*A000108(k). (End)
D-finite with recurrence (n+4)*a(n) +(n+4)*a(n-1) -(5*n+8)*a(n-2) +3*n*a(n-3) +4*(2-n)*a(n-4) +12*(3-n)*a(n-5)=0. - R. J. Mathar, Sep 29 2012
a(n) ~ sqrt(3) * 2^(n+3/2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 01 2014
G.f. A(x) satisfies: A(x) = (1 + x^4 * A(x)^2) / (1 - x). - Ilya Gutkovskiy, Jul 20 2021
a(n) = hypergeom([(1 - n)/4, (2 - n)/4, (3 - n)/4, -n/4], [2, (1 - n)/2, -n/2], 64). - Peter Luschny, Jul 12 2024

Extensions

Name extended by a formula from the author in Mathematica by Peter Luschny, Jul 13 2024

A078482 Expansion of g.f. (1 - 3*x + x^2 - sqrt(1 - 6*x + 7*x^2 - 2*x^3 + x^4))/(2*x).

Original entry on oeis.org

0, 1, 2, 6, 20, 70, 254, 948, 3618, 14058, 55432, 221262, 892346, 3630680, 14885042, 61432382, 255025212, 1064190214, 4461325382, 18780710508, 79357572866, 336466650450, 1431007889744, 6103431668830, 26099839562738, 111877997049648, 480635694869218
Offset: 0

Views

Author

N. J. A. Sloane, Jan 04 2003

Keywords

Comments

Number of data structures of a certain wreath product type.
a(n) is also the number of (2-14-3, 3-41-2, 2-4-1-3, 3-1-4-2)-avoiding permutations. - Mireille Bousquet-Mélou, Jul 13 2012
Number of permutations that are separable by a point. And also the number of rectangulations that are guillotine and one-sided. - Manfred Scheucher, May 24 2023

Examples

			G.f.: A(x) = x + 2*x^2 + 6*x^3 + 20*x^4 + 70*x^5 + 254*x^6 + 948*x^7 + ...
From _Paul D. Hanna_, Sep 12 2012: (Start)
The logarithm of the g.f. begins
log(A(x)/x) = (1 + 1/(1-x))*x + (1 + 2^2/(1-x) + 1/(1-x)^2)*x^2/2 +
(1 + 3^2/(1-x) + 3^2/(1-x)^2 + 1/(1-x)^3)*x^3/3 +
(1 + 4^2/(1-x) + 6^2/(1-x)^2 + 4^2/(1-x)^3 + 1/(1-x)^4)*x^4/4 +
(1 + 5^2/(1-x) + 10^2/(1-x)^2 + 10^2/(1-x)^3 + 5^2/(1-x)^4 + 1/(1-x)^5)*x^5/5 + ...
(End)
a(5) = 70 = (1, 1, 2, 6, 20) dot product (1, 1, 3, 9, 29) = (29 + 9 + 6 + 6 + 20). - _Gary W. Adamson_, May 20 2013
		

Crossrefs

Cf. A006318 (separable permutations), A078483.

Programs

  • Mathematica
    CoefficientList[Series[(1 - 3 x + x^2 - Sqrt[1 - 6 x + 7 x^2 - 2 x^3 + x^4]) / (2 x), {x, 0, 40}], x] (* Vincenzo Librandi, May 28 2016 *)
  • Maxima
    a(n):=if n=0 then 0 else sum((binomial(m,n-m+1)* (sum(binomial(m,i)* binomial(2*m-i-2,m-1),i,0,m-1)) *(-1)^(n-m+1))/m,m,1,n+1); /* Vladimir Kruchinin, May 21 2011 */
    
  • PARI
    {a(n)=local(A=x);for(i=1,n,A=x*(1+A)*(1+A/(1-x +x*O(x^n))));polcoeff(A,n)} \\ Paul D. Hanna, Sep 12 2012
    
  • PARI
    {a(n)=polcoeff(x*exp(sum(m=1,n+1,x^m/m*sum(k=0,m,binomial(m,k)^2/(1-x +x*O(x^n))^k))),n)} \\ Paul D. Hanna, Sep 12 2012

Formula

a(n) = Sum_{m=1..n+1} C(m,n-m+1)*(Sum_{i=0..m-1} C(m,i)*C(2*m-i-2,m-1))*(-1)^(n-m+1)/m, n>0, a(0)=0. - Vladimir Kruchinin, May 21 2011
n*(n+1)*a(n) - 3*n*(2n-1)*a(n-1) + 7*n*(n-2)*a(n-2) - n*(2n-7)*a(n-3) + n*(n-5)*a(n-4) = 0. - R. J. Mathar, Jul 08 2012
G.f. satisfies: A(x) = x*(1 + A(x)) * (1 + A(x)/(1-x)). G.f.: x*exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n,k)^2 / (1-x)^k ). - Paul D. Hanna, Sep 12 2012
a(n) ~ sqrt(11*sqrt(2) - 16 + sqrt(16*sqrt(2) - 22)) * 2^(n - 1/2) / (sqrt(Pi) * n^(3/2) * (1 - sqrt(8*sqrt(2) - 11))^(n+1)). - Vaclav Kotesovec, May 17 2024

Extensions

Replaced definition with g.f. given by Atkinson and Still (2002). - N. J. A. Sloane, May 24 2016

A103209 Square array T(n,d) read by antidiagonals: number of structurally-different guillotine partitions of a d-dimensional box in R^d by n hyperplanes.

Original entry on oeis.org

1, 1, 2, 1, 6, 3, 1, 22, 15, 4, 1, 90, 93, 28, 5, 1, 394, 645, 244, 45, 6, 1, 1806, 4791, 2380, 505, 66, 7, 1, 8558, 37275, 24868, 6345, 906, 91, 8, 1, 41586, 299865, 272188, 85405, 13926, 1477, 120, 9, 1, 206098, 2474025, 3080596, 1204245, 229326, 26845
Offset: 1

Views

Author

Ralf Stephan, Jan 27 2005

Keywords

Comments

The columns are the row sums of the inverses of the Riordan arrays ((1-d*x)/(1-x),x(1-d*x)/(1-x)), that is, of the Riordan arrays ((1+x-sqrt(1+2(1-2*d)x+x^2)/(2*d*x),(1+x-sqrt(1+2(1-2*d)x+x^2)/(2*d)). - Paul Barry, May 24 2005

Examples

			1,...1,....1,.....1,......1,......1,.......1,.......1,.......1,
1,...2,....3,.....4,......5,......6,.......7,.......8,.......9,
1,...6,...15,....28,.....45,.....66,......91,.....120,.....153,
1,..22,...93,...244,....505,....906,....1477,....2248,....3249,
1,..90,..645,..2380,...6345,..13926,...26845,...47160,...77265,
1,.394,.4791,.24868,..85405,.229326,..522739,.1059976,.1968633,
1,1806,37275,272188,1204245,3956106,10663471,24958200,52546473,
		

Crossrefs

Second column is A006318 (Schroeder numbers), others are A103210 and A103211. Main diagonal is A292798, diagonal under the main diagonal is A103212.

Programs

  • Maple
    T := (n,k) -> hypergeom([-n, n+1], [2], -k);
    seq(print(seq(simplify(T(n, k)), k=0..9)), n=0..6); # Peter Luschny, May 23 2014
  • Mathematica
    T[0, ] = T[, 0] = 1;
    T[n_, k_] := Sum[Binomial[n+j, 2j] k^j CatalanNumber[j], {j, 0, n}];
    Table[T[n-k+1, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2018, after Paul Barry *)

Formula

T(n, d) = (1/n) * sum[i=0..n-1, C(n, i)*C(n, i+1)*(d-1)^i*d^(n-i) ], T(n, 0)=1.
G.f. of d-th column: [1-z-(z^2-4dz+2z+1)^(1/2)]/(2dz-2z).
T(n, k) = sum{j=0..n, C(n+j, 2j)*k^j*C(j)}, C(n) as in A000108. - Paul Barry, May 21 2005
T(n, k) = hypergeom([-n, n+1], [2], -k). - Peter Luschny, May 23 2014

A349312 G.f. A(x) satisfies: A(x) = (1 + x * A(x)^6) / (1 - x).

Original entry on oeis.org

1, 2, 14, 158, 2106, 30762, 476406, 7683926, 127692530, 2171184146, 37592376734, 660522703886, 11747865153962, 211093333172282, 3826315983647366, 69880933123237958, 1284661783610775010, 23753502514840942882, 441458929706855144494, 8242097867816771820926
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 14 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 19; A[] = 0; Do[A[x] = (1 + x A[x]^6)/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    Table[Sum[Binomial[n + 5 k, 6 k] Binomial[6 k, k]/(5 k + 1), {k, 0, n}], {n, 0, 19}]

Formula

a(n) = Sum_{k=0..n} binomial(n+5*k,6*k) * binomial(6*k,k) / (5*k+1).
a(n) = F([(1+n)/5, (2+n)/5, (3+n)/5, (4+n)/5, 1+n/5, -n], [2/5, 3/5, 4/5, 1, 6/5], -1), where F is the generalized hypergeometric function. - Stefano Spezia, Nov 14 2021
a(n) ~ sqrt(1 + 5*r) / (2^(6/5) * 3^(7/10) * sqrt(5*Pi) * (1-r)^(3/10) * n^(3/2) * r^(n + 1/5)), where r = 0.04941755525635041337247049893940451999923592381716... is the smallest real root of the equation 5^5 * (1-r)^6 = 6^6 * r. - Vaclav Kotesovec, Nov 15 2021

A000090 Expansion of e.g.f. exp((-x^3)/3)/(1-x).

Original entry on oeis.org

1, 1, 2, 4, 16, 80, 520, 3640, 29120, 259840, 2598400, 28582400, 343235200, 4462057600, 62468806400, 936987251200, 14991796019200, 254860532326400, 4587501779660800, 87162533813555200, 1743250676271104000, 36608259566534656000, 805381710463762432000
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of permutations in the symmetric group S_n whose cycle decomposition contains no 3-cycle.

Examples

			a(3) = 4 because the permutations in S_3 that contain no 3-cycles are the trivial permutation and the 3 transpositions.
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 85.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986, page 93, problem 7.

Crossrefs

Programs

  • Maple
    seq(coeff(convert(series(exp((-x^3)/3)/(1-x),x,50),polynom),x,i)*i!,i=0..30);# series expansion A000090:=n->n!*add((-1)^i/(i!*3^i),i=0..floor(n/3));seq(A000090(n),n=0..30); # formula (Pab Ter)
  • Mathematica
    nn=20;Range[0,nn]!CoefficientList[Series[Exp[-x^3/3]/(1-x),{x,0,nn}],x]  (* Geoffrey Critzer, Oct 28 2012 *)
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( exp( -(x^3 / 3) + x*O(x^n)) / (1 - x), n))} /* Michael Somos, Jul 28 2009 */

Formula

a(n) = n! * Sum_{i=0..floor(n/3)} (-1)^i / (i! * 3^i); a(n)/n! ~ Sum_{i >= 0} (-1)^i / (i! * 3^i) = e^(-1/3); a(n) ~ e^(-1/3) * n!; a(n) ~ e^(-1/3) * (n/e)^n * sqrt(2 * Pi * n). - Avi Peretz (njk(AT)netvision.net.il), Apr 22 2001
a(n,k) = n!*floor(floor(n/k)!*k^floor(n/k)/exp(1/k) + 1/2)/(floor(n/k)!*k^floor(n/k)), here k=3, n>=0. - Simon Plouffe from old notes, 1993
E.g.f.: E(x) = exp(-x^3/3)/(1-x)=G(0)/((1-x)^2); G(k) = 1 - x/(1 - x^2/(x^2 + 3*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Feb 11 2012

Extensions

More terms from Pab Ter (pabrlos2(AT)yahoo.com), Oct 22 2005
Entry improved by comments from Michael Somos, Jul 28 2009
Previous Showing 61-70 of 301 results. Next