cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 67 results. Next

A005235 Fortunate numbers: least m > 1 such that m + prime(n)# is prime, where p# denotes the product of all primes <= p.

Original entry on oeis.org

3, 5, 7, 13, 23, 17, 19, 23, 37, 61, 67, 61, 71, 47, 107, 59, 61, 109, 89, 103, 79, 151, 197, 101, 103, 233, 223, 127, 223, 191, 163, 229, 643, 239, 157, 167, 439, 239, 199, 191, 199, 383, 233, 751, 313, 773, 607, 313, 383, 293, 443, 331, 283, 277, 271, 401, 307, 331
Offset: 1

Views

Author

Keywords

Comments

Reo F. Fortune conjectured that a(n) is always prime.
You might be searching for Fortunate Primes, which is an alternative name for this sequence. It is not the official name yet, because it is possible, although unlikely, that not all the terms are primes. - N. J. A. Sloane, Sep 30 2020
The first 500 terms are primes. - Robert G. Wilson v. The first 2000 terms are primes. - Joerg Arndt, Apr 15 2013
The strong form of Cramér's conjecture implies that a(n) is a prime for n > 1618, as previously noted by Golomb. - Charles R Greathouse IV, Jul 05 2011
a(n) is the smallest m such that m > 1 and A002110(n) + m is prime. For every n, a(n) must be greater than prime(n+1) - 1. - Farideh Firoozbakht, Aug 20 2003
If a(n) < prime(n+1)^2 then a(n) is prime. According to Cramér's conjecture a(n) = O(prime(n)^2). - Thomas Ordowski, Apr 09 2013
Conjectures from Pierre CAMI, Sep 08 2017: (Start)
If all terms are prime, then lim_{N->oo} (Sum_{n=1..N} primepi(a(n))) / (Sum_{n=1..N} n) = 3/2, and primepi(a(n))/n < 6 for all n.
Limit_{N->oo} (Sum_{n=1..N} a(n)) / (Sum_{n=1..N} prime(n)) = Pi/2.
a(n)/prime(n) < 8 for all n. (End)
Conjecture: Limit_{N->oo} (Sum_{n=1..N} a(n)) / (Sum_{n=1..N} prime(n)) = 3/2. - Alain Rocchelli, Dec 24 2022
The name "Fortunate numbers" was coined by Golomb (1981) after the New Zealand social anthropologist Reo Franklin Fortune (1903 - 1979). According to Golomb, Fortune's conjecture first appeared in print in Martin Gardner's Mathematical Games column in 1980. - Amiram Eldar, Aug 25 2020

Examples

			a(4) = 13 because P_4# = 2*3*5*7 = 210, plus one is 211, the next prime is 223 and the difference between 210 and 223 is 13.
		

References

  • Martin Gardner, The Last Recreations, Chapter 12: Strong Laws of Small Primes, Springer-Verlag, 1997, pp. 191-205, especially pp. 194-195.
  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer, 1994, Section A2, p. 11.
  • Stephen P. Richards, A Number For Your Thoughts, 1982, p. 200.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 114-115.
  • David Wells, Prime Numbers: The Most Mysterious Figures In Math, Hoboken, New Jersey: John Wiley & Sons (2005), pp. 108-109.

Crossrefs

Programs

  • Haskell
    a005235 n = head [m | m <- [3, 5 ..], a010051'' (a002110 n + m) == 1]
    -- Reinhard Zumkeller, Apr 02 2014
    
  • Maple
    Primorial:= 2:
    p:= 2:
    A[1]:= 3:
    for n from 2 to 100 do
      p:= nextprime(p);
      Primorial:= Primorial * p;
      A[n]:= nextprime(Primorial+p+1)-Primorial;
    od:
    seq(A[n],n=1..100); # Robert Israel, Dec 02 2015
  • Mathematica
    NPrime[n_Integer] := Module[{k}, k = n + 1; While[! PrimeQ[k], k++]; k]; Fortunate[n_Integer] := Module[{p, q}, p = Product[Prime[i], {i, 1, n}] + 1; q = NPrime[p]; q - p + 1]; Table[Fortunate[n], {n, 60}]
    r[n_] := (For[m = (Prime[n + 1] + 1)/2, ! PrimeQ[Product[Prime[k], {k, n}] + 2 m - 1], m++]; 2 m - 1); Table[r[n], {n, 60}]
    FN[n_] := Times @@ Prime[Range[n]]; Table[NextPrime[FN[k] + 1] - FN[k], {k, 60}] (* Jayanta Basu, Apr 24 2013 *)
    NextPrime[#]-#+1&/@(Rest[FoldList[Times,1,Prime[Range[60]]]]+1) (* Harvey P. Dale, Dec 15 2013 *)
  • PARI
    a(n)=my(P=prod(k=1,n,prime(k)));nextprime(P+2)-P \\ Charles R Greathouse IV, Jul 15 2011; corrected by Jean-Marc Rebert, Jul 28 2015
    
  • Python
    from sympy import nextprime, primorial
    def a(n): psharp = primorial(n); return nextprime(psharp+1) - psharp
    print([a(n) for n in range(1, 59)]) # Michael S. Branicky, Jan 15 2022
  • Sage
    def P(n): return prod(nth_prime(k) for k in range(1, n + 1))
    it = (P(n) for n in range(1, 31))
    print([next_prime(Pn + 2) - Pn for Pn in it]) # F. Chapoton, Apr 28 2020
    

Formula

If x(n) = 1 + Product_{i=1..n} prime(i), q(n) = least prime > x(n), then a(n) = q(n) - x(n) + 1.
a(n) = 1 + the difference between the n-th primorial plus one and the next prime.
a(n) = A035345(n) - A002110(n). - Jonathan Sondow, Dec 02 2015

A057588 Kummer numbers: -1 + product of first n consecutive primes.

Original entry on oeis.org

1, 5, 29, 209, 2309, 30029, 510509, 9699689, 223092869, 6469693229, 200560490129, 7420738134809, 304250263527209, 13082761331670029, 614889782588491409, 32589158477190044729, 1922760350154212639069, 117288381359406970983269, 7858321551080267055879089
Offset: 1

Views

Author

Mario Velucchi (mathchess(AT)velucchi.it), Oct 05 2000

Keywords

Comments

a(n) is congruent to -1 modulo the first n primes. - Michael Engling, Mar 31 2011
Named after the German mathematician Ernst Eduard Kummer (1810-1893). - Amiram Eldar, Jun 19 2021
Subsequence of A048103. Proof: For all primes p, when i >= A000720(p), neither p itself nor p^p divides a(i), but neither does p^p divide a(i) when i < A000720(p), as p^p > -1 + A034386(p). - Antti Karttunen, Nov 17 2024

Crossrefs

Subsequence of A048103.

Programs

  • Haskell
    a057588 = (subtract 1) . product . (flip take a000040_list)
    -- Reinhard Zumkeller, Mar 27 2013
    
  • Maple
    seq(mul(ithprime(k), k=1..n) - 1, n=1..100); # Muniru A Asiru, Jan 19 2018
  • Mathematica
    Table[Product[Prime[k], {k, 1, n}] - 1, {n, 1, 18}] (* Artur Jasinski, Jan 01 2007 *)
    FoldList[Times,1,Prime[Range[20]]]-1  (* Harvey P. Dale, Apr 17 2011 *)
    Table[ChineseRemainder[PadRight[{},n,-1],Prime[Range[n]]],{n,20}] (* Harvey P. Dale, Jul 01 2017 *)
  • PARI
    a(n) = prod(k=1, n, prime(k)) - 1; \\ Michel Marcus, Oct 02 2015
    
  • Python
    from sympy import primorial
    def A057588(n): return primorial(n)-1 # Chai Wah Wu, Feb 25 2023

Formula

a(n) = A002110(n) - 1. - Altug Alkan, Oct 02 2015
a(n) = A006862(n) - 2. - Antti Karttunen, Nov 17 2024

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Oct 05 2000

A018239 Primorial primes: primes of the form 1 + product of first k primes, for some k.

Original entry on oeis.org

2, 3, 7, 31, 211, 2311, 200560490131
Offset: 1

Views

Author

Keywords

Comments

Prime numbers that are the sum of two primorial numbers. - Juri-Stepan Gerasimov, Nov 08 2010

Examples

			From _M. F. Hasler_, Jun 23 2019: (Start)
a(1) = 2 = 1 + product of the first 0 primes (i.e., the empty product = 1).
a(2) = 3 = 1 + 2 = 1 + product of the first prime (= 2).
a(3) = 7 = 1 + 2*3 = 1 + product of the first two primes.
a(4) = 31 = 1 + 2*3*5 = 1 + product of the first three primes.
a(5) = 211 = 1 + 2*3*5*7 = 1 + product of the first four primes.
a(6) = 2311 = 1 + 2*3*5*7*11 = 1 + product of the first five primes.
Then the product of the first 6, 7, ..., 9 or 10 primes does not yield a primorial prime, the next one is:
a(7) = 200560490131 = 1 + 2*3*5*7*11*13*17*19*23*29*31 = 1 + product of the first eleven primes,
and so on. See A014545 = (0, 1, 2, 3, 4, 5, 11, 75, 171, 172, ...) for the k's that yield a term. (End)
		

References

  • F. Iacobescu, Smarandache Partition Type and Other Sequences, Bull. Pure Appl. Sciences, Vol. 16E, No. 2 (1997), pp. 237-240.

Crossrefs

Primes in A006862 (primorials plus 1).
A005234 and A014545 (which are the main entries for this sequence) give more terms.
Cf. A002110.

Programs

  • Mathematica
    Select[FoldList[Times, 1, Prime[Range[200]]] + 1, PrimeQ] (* Loreno Heer (helohe(AT)bluewin.ch), Jun 29 2004 *)
  • PARI
    P=1;print1(2); forprime(p=2,1e6, if(isprime(1+P*=p), print1(", "P+1))) \\ Charles R Greathouse IV, Apr 28 2015

Formula

a(n) = 1 + A002110(A014545(n)), where A002110(k) is the product of the first k primes. - M. F. Hasler, Jun 23 2019

Extensions

Edited by N. J. A. Sloane at the suggestion of Vladeta Jovovic, Jun 18 2007
Name edited by M. F. Hasler, Jun 23 2019

A369054 Number of representations of n as a sum (p*q + p*r + q*r) with three odd primes p <= q <= r.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1
Offset: 0

Views

Author

Antti Karttunen, Jan 20 2024

Keywords

Comments

Number of solutions to n = x', where x' is the arithmetic derivative of x (A003415), and x is a product of three odd primes (not all necessarily distinct, A046316).
See the conjecture in A369055.

Examples

			a(27) = 1 as 27 can be expressed in exactly one way in the form (p*q + p*r + q*r), with p, q, r all being 3 in this case, as 27 = (3*3 + 3*3 + 3*3).
a(311) = 5 as 311 = (3*5 + 3*37 + 5*37) = (3*7 + 3*29 + 7*29) = (3*13 + 3*17 + 13*17) = (5*7 + 5*23 + 7*23) = (7*11 + 7*13 + 11*13). Expressed in the terms of arithmetic derivatives, of the A099302(311) = 8 antiderivatives of 311 [366, 430, 494, 555, 609, 663, 805, 1001], only the last five are products of three odd primes: 555 = 3*5*37, 609 = 3*7*29, 663 = 3*13*17, 805 = 5*7*23, 1001 = 7 * 11 * 13.
		

Crossrefs

Cf. A369055 [quadrisection, a(4n-1)], and its trisections A369460 [= a((12*n)-9)], A369461 [= a((12*n)-5)], A369462 [= a((12*n)-1)].
Cf. A369251 (positions of terms > 0), A369464 (positions of 0's).
Cf. A369063 (positions of records), A369064 (values of records).
Cf. A369241 [= a(2^n - 1)], A369242 [= a(n!-1)], A369245 [= a(A006862(n))], A369247 [= a(3*A057588(n))].

Programs

  • PARI
    \\ Use this for building up a list up to a certain n. We iterate over weakly increasing triplets of odd primes:
    A369054list(up_to) = { my(v = [3,3,3], ip = #v, d, u = vector(up_to)); while(1, d = ((v[1]*v[2]) + (v[1]*v[3]) + (v[2]*v[3])); if(d > up_to, ip--, ip = #v; u[d]++); if(!ip, return(u)); v[ip] = nextprime(1+v[ip]); for(i=1+ip,#v,v[i]=v[i-1])); };
    v369054 = A369054list(100001);
    A369054(n) = if(!n,n,v369054[n]);
    
  • PARI
    \\ Use this for computing the value of arbitrary n. We iterate over weakly increasing pairs of odd primes:
    A369054(n) = if(3!=(n%4),0, my(v = [3,3], ip = #v, r, c=0); while(1, r = (n-(v[1]*v[2])) / (v[1]+v[2]); if(r < v[2], ip--, ip = #v; if(1==denominator(r) && isprime(r),c++)); if(!ip, return(c)); v[ip] = nextprime(1+v[ip]); for(i=1+ip,#v,v[i]=v[i-1])));

Formula

a(n) = Sum_{i=1..A002620(n)} A369058(i)*[A003415(i)==n], where [ ] is the Iverson bracket.
For n >= 2, a(n) <= A099302(n).

A005234 Primes p such that 1 + product of primes up to p is prime.

Original entry on oeis.org

2, 3, 5, 7, 11, 31, 379, 1019, 1021, 2657, 3229, 4547, 4787, 11549, 13649, 18523, 23801, 24029, 42209, 145823, 366439, 392113, 4328927, 5256037, 6369619, 7351117, 9562633
Offset: 1

Views

Author

Keywords

Comments

Conjecture: if p# + 1 is a prime number, then the next prime is less than p# + exp(1)*p. - Arkadiusz Wesolowski, Feb 20 2013
Conjecture: if p# + 1 is a prime, then the next prime is less than p# + p^2. - Thomas Ordowski, Apr 07 2013

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 134.
  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 211, p. 61, Ellipses, Paris 2008.
  • H. Dubner, A new primorial prime, J. Rec. Math., 21 (No. 4, 1989), 276.
  • R. K. Guy, Unsolved Problems in Number Theory, Section A2.
  • F. Le Lionnais, Les Nombres Remarquables, Paris, Hermann, 1983, p. 109, 1983.
  • Paulo Ribenboim, The New Book of Prime Number Records, p. 13.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 4-5.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 112.

Crossrefs

Cf. A006862 (Euclid numbers).
Cf. A014545 (Primorial plus 1 prime indices: n such that 1 + (Product of first n primes) is prime).
Cf. A018239 (Primorial plus 1 primes).

Programs

  • Magma
    [p:p in PrimesUpTo(3000)|IsPrime(&*PrimesUpTo(p)+1)]; // Marius A. Burtea, Mar 25 2019
  • Maple
    N:= 5000: # to get all terms <= N
    Primes:= select(isprime, [$2..N]):
    P:= 1: count:= 0:
    for n from 1 to nops(Primes) do
       P:= P*Primes[n];
       if isprime(P+1) then
         count:= count+1; A[count]:= Primes[n]
       fi
    od:
    seq(A[i],i=1..count); # Robert Israel, Nov 03 2015
  • Mathematica
    (* This program is not convenient for large values of p *) p = pp = 1; Reap[While[p < 5000, p = NextPrime[p]; pp = pp*p; If[PrimeQ[1 + pp], Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Dec 31 2012 *)
    With[{p = Prime[Range[200]]}, p[[Flatten[Position[Rest[FoldList[Times, 1, p]] + 1, ?PrimeQ]]]]] (* _Eric W. Weisstein, Nov 03 2015 *)
  • PARI
    is(n)=isprime(n) && ispseudoprime(prod(i=1,primepi(n),prime(i))+1) \\ Charles R Greathouse IV, Feb 20 2013
    
  • PARI
    is(n)=isprime(n) && ispseudoprime(factorback(primes([2,n]))+1) \\ M. F. Hasler, May 31 2018
    

Formula

a(n) = A000040(A014545(n+1)). - M. F. Hasler, May 31 2018

Extensions

42209 sent in by Chris Nash (chrisnash(AT)cwix.com).
145823 discovered and sent in by Arlin Anderson (starship1(AT)gmail.com) and Don Robinson (donald.robinson(AT)itt.com), Jun 01 2000
366439, 392113 from Eric W. Weisstein, Mar 13 2004 (based on information in A014545)
a(23) from Jeppe Stig Nielsen, Aug 08 2024
a(24) from Jeppe Stig Nielsen, Sep 01 2024
a(25) from Jeppe Stig Nielsen, Sep 24 2024
a(26) from Jeppe Stig Nielsen, Nov 10 2024
a(27) from Jeppe Stig Nielsen, Aug 21 2025

A002585 Largest prime factor of 1 + (product of first n primes).

Original entry on oeis.org

3, 7, 31, 211, 2311, 509, 277, 27953, 703763, 34231, 200560490131, 676421, 11072701, 78339888213593, 13808181181, 18564761860301, 19026377261, 525956867082542470777, 143581524529603, 2892214489673, 16156160491570418147806951, 96888414202798247, 1004988035964897329167431269
Offset: 1

Views

Author

Keywords

Comments

Based on Euclid's proof that there are infinitely many primes.
The products of the first primes are called primorial numbers. - Franklin T. Adams-Watters, Jun 12 2014

References

  • M. Kraitchik, On the divisibility of factorials, Scripta Math., 14 (1948), 24-26 (but beware errors).
  • M. Kraitchik, Introduction à la Théorie des Nombres. Gauthier-Villars, Paris, 1952, p. 2.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    FactorInteger[#][[-1,1]]&/@Rest[FoldList[Times,1,Prime[Range[30]]]+1] (* Harvey P. Dale, Apr 10 2012 *)
  • PARI
    a(n)=my(f=factor(prod(i=1,n,prime(i))+1)[,1]); f[#f] \\ Charles R Greathouse IV, Feb 07 2017

Formula

a(n) = A006530(A006862(n)). - Amiram Eldar, Feb 13 2020

Extensions

More terms from Labos Elemer, May 02 2000
More terms from Robert G. Wilson v, Mar 24 2001
Terms up to a(81) in b-file added by Sean A. Irvine, Apr 19 2014
Terms a(82)-a(87) in b-file added by Amiram Eldar, Feb 13 2020
Terms a(88)-a(98) in b-file added by Max Alekseyev, Aug 26 2021

A054988 Number of prime divisors of 1 + (product of first n primes), with multiplicity.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 2, 2, 3, 1, 3, 3, 2, 3, 4, 4, 2, 2, 4, 2, 3, 2, 4, 3, 2, 4, 4, 3, 3, 5, 3, 6, 2, 3, 2, 5, 4, 4, 2, 6, 3, 4, 3, 5, 6, 7, 2, 6, 3, 5, 3, 4, 2, 6, 5, 4, 5, 3, 5, 5, 5, 3, 3, 5, 5, 6, 3, 4, 4, 7, 5, 3, 4, 1, 2, 5, 5, 5, 4, 5, 3, 5, 4, 6, 5, 8
Offset: 1

Views

Author

Arne Ring (arne.ring(AT)epost.de), May 30 2000

Keywords

Comments

Prime divisors are counted with multiplicity. - Harvey P. Dale, Oct 23 2020
It is an open question as to whether omega(p#+1) = bigomega(p#+1) = a(n); that is, as to whether the Euclid numbers are squarefree. Any square dividing p#+1 must exceed 2.5*10^15 (see Vardi, p. 87). - Sean A. Irvine, Oct 21 2023

Examples

			a(6)=2 because 2*3*5*7*11*13+1 = 30031 = 59 * 509.
		

References

  • Ilan Vardi, Computational Recreations in Mathematica, Addison-Wesley, 1991.

Crossrefs

Programs

  • Maple
    A054988 := proc(n)
        numtheory[bigomega](1+mul(ithprime(i),i=1..n)) ;
    end proc:
    seq(A054988(n),n=1..20) ; # R. J. Mathar, Mar 09 2022
  • Mathematica
    a[q_] := Module[{x, n}, x=FactorInteger[Product[Table[Prime[i], {i, q}][[j]], {j, q}]+1]; n=Length[x]; Sum[Table[x[[i]][[2]], {i, n}][[j]], {j, n}]]
    PrimeOmega[#+1]&/@FoldList[Times,Prime[Range[90]]] (* Harvey P. Dale, Oct 23 2020 *)
  • PARI
    a(n) = bigomega(1+prod(k=1, n, prime(k))); \\ Michel Marcus, Mar 07 2022

Formula

a(n) = Omega(1 + Product_{k=1..n} prime(k)). - Wesley Ivan Hurt, Mar 06 2022
a(n) = A001222(A006862(n)). - Michel Marcus, Mar 07 2022
a(n) = 1 iff n is in A014545. - Bernard Schott, Mar 07 2022

Extensions

More terms from Robert G. Wilson v, Mar 24 2001
a(44)-a(81) from Charles R Greathouse IV, May 07 2011
a(82)-a(87) from Amiram Eldar, Oct 03 2019

A104365 a(n) = A104350(n) + 1.

Original entry on oeis.org

2, 3, 7, 13, 61, 181, 1261, 2521, 7561, 37801, 415801, 1247401, 16216201, 113513401, 567567001, 1135134001, 19297278001, 57891834001, 1099944846001, 5499724230001, 38498069610001, 423478765710001, 9740011611330001
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[Times, Array[FactorInteger[#][[-1, 1]] &, 30]] + 1 (* Amiram Eldar, Apr 08 2024 *)

Formula

a(n) = (a(n-1) - 1) * A006530(n) + 1 for n>1, a(1) = 0;

A113165 Numbers that divide primorial numbers plus one (p#+1).

Original entry on oeis.org

2, 3, 7, 19, 31, 59, 61, 73, 97, 131, 139, 149, 167, 173, 181, 211, 223, 271, 277, 307, 313, 317, 331, 347, 463, 467, 509, 571, 601, 673, 809, 827, 877, 881, 953, 983, 997, 1031, 1033, 1039, 1051, 1063, 1069, 1109, 1259, 1279, 1283, 1291, 1297, 1361, 1381
Offset: 1

Views

Author

Keywords

Comments

The smallest composite member of the sequence is 1843 (19 * 97), which divides 17#+1 (19 * 97 * 277). Based on Euclid's proof that there are infinitely many primes.

Examples

			59 is in the sequence because 13#+1 = 30031 = 59 * 509.
		

Crossrefs

Cf. A002110 (primorials), A018239 (primorial primes), A000945 (Euclid-Mullin sequence), A006862 (primorials plus one).

Programs

  • PARI
    n=0;for(i=2,1e5,p=Mod(1,i);forprime(q=2,factor(i)[1,1],if(p==-1,print(n++," ",i);break());p*=q)) \\ Jeppe Stig Nielsen, Mar 25 2017

A058233 Primes p such that p#+1 is divisible by the next prime after p.

Original entry on oeis.org

2, 17, 1459, 2999
Offset: 1

Views

Author

Carlos Rivera, Dec 01 2000

Keywords

Comments

No additional terms through the 100000th prime. - Harvey P. Dale, Mar 12 2014
a(5) > prime(1400000) = 22182343. - Robert Price, Apr 02 2018

Examples

			2*3*5*7*11*13*17+1 is divisible by 19.
		

Crossrefs

Programs

  • Mathematica
    primorial[n_] := Product[ Prime[k], {k, 1, PrimePi[n]}]; Select[ Prime[ Range[1000]], Divisible[ primorial[#] + 1, NextPrime[#]] &] (* Jean-François Alcover, Aug 19 2013 *)
    Module[{prs=Prime[Range[500]]},Transpose[Select[Thread[{Rest[ FoldList[ Times, 1,prs]], prs}], Divisible[ First[#]+1, NextPrime[Last[#]]]&]][[2]]] (* Harvey P. Dale, Mar 12 2014 *)
  • Python
    from sympy import nextprime
    A058233_list, p, q, r = [], 2, 3, 2
    for _ in range(10**3):
        if (r+1) % q == 0:
            A058233_list.append(p)
        r *= q
        p, q = q, nextprime(q) # Chai Wah Wu, Sep 27 2021
Previous Showing 11-20 of 67 results. Next