cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 784 results. Next

A059590 Numbers obtained by reinterpreting base-2 representation of n in the factorial base: a(n) = Sum_{k>=0} A030308(n,k)*A000142(k+1).

Original entry on oeis.org

0, 1, 2, 3, 6, 7, 8, 9, 24, 25, 26, 27, 30, 31, 32, 33, 120, 121, 122, 123, 126, 127, 128, 129, 144, 145, 146, 147, 150, 151, 152, 153, 720, 721, 722, 723, 726, 727, 728, 729, 744, 745, 746, 747, 750, 751, 752, 753, 840, 841, 842, 843, 846, 847, 848, 849, 864, 865
Offset: 0

Views

Author

Henry Bottomley, Jan 24 2001

Keywords

Comments

Numbers that are sums of distinct factorials (0! and 1! not treated as distinct).
Complement of A115945; A115944(a(n)) > 0; A115647 is a subsequence. - Reinhard Zumkeller, Feb 02 2006
A115944(a(n)) = 1. - Reinhard Zumkeller, Dec 04 2011
From Tilman Piesk, Jun 04 2012: (Start)
The inversion vector (compare A007623) of finite permutation a(n) (compare A055089, A195663) has only zeros and ones. Interpreted as a binary number it is 2*n (or n when the inversion vector is defined without the leading 0).
The inversion set of finite permutation a(n) interpreted as a binary number (compare A211362) is A211364(n).
(End)

Examples

			128 is in the sequence since 5! + 3! + 2! = 128.
a(22) = 128. a(22) = a(6) + (1 + floor(log(16) / log(2)))! = 8 + 5! = 128. Also, 22 = 10110_2. Therefore, a(22) = 1 * 5! + 0 * 4! + 1 * 3! + 1 + 2! + 0 * 0! = 128. - _David A. Corneth_, Aug 21 2016
		

Crossrefs

Indices of zeros in A257684.
Cf. A275736 (left inverse).
Cf. A025494, A060112 (subsequences).
Subsequence of A060132, A256450 and A275804.
Other sequences that are built by replacing 2^k in the binary representation with other numbers: A029931 (naturals), A089625 (primes), A022290 (Fibonacci), A197433 (Catalans), A276091 (n*n!), A275959 ((2n)!/2). Cf. also A276082 & A276083.

Programs

  • Haskell
    import Data.List (elemIndices)
    a059590 n = a059590_list !! n
    a059590_list = elemIndices 1 $ map a115944 [0..]
    -- Reinhard Zumkeller, Dec 04 2011
    
  • Maple
    [seq(bin2facbase(j),j=0..64)]; bin2facbase := proc(n) local i; add((floor(n/(2^i)) mod 2)*((i+1)!),i=0..floor_log_2(n)); end;
    floor_log_2 := proc(n) local nn,i; nn := n; for i from -1 to n do if(0 = nn) then RETURN(i); fi; nn := floor(nn/2); od; end;
    # next Maple program:
    a:= n-> (l-> add(l[j]*j!, j=1..nops(l)))(Bits[Split](n)):
    seq(a(n), n=0..57);  # Alois P. Heinz, Aug 12 2025
  • Mathematica
    a[n_] :=  Reverse[id = IntegerDigits[n, 2]].Range[Length[id]]!; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Jun 19 2012, after Philippe Deléham *)
  • PARI
    a(n) = if(n>0, a(n-msb(n)) + (1+logint(n,2))!, 0)
    msb(n) = 2^#binary(n)>>1
    {my(b = binary(n)); sum(i=1,#b,b[i]*(#b+1-i)!)} \\ David A. Corneth, Aug 21 2016
    
  • Python
    def facbase(k, f):
        return sum(f[i] for i, bi in enumerate(bin(k)[2:][::-1]) if bi == "1")
    def auptoN(N): # terms up to N factorial-base digits; 13 generates b-file
        f = [factorial(i) for i in range(1, N+1)]
        return list(facbase(k, f) for k in range(2**N))
    print(auptoN(5)) # Michael S. Branicky, Oct 15 2022

Formula

G.f. 1/(1-x) * Sum_{k>=0} (k+1)!*x^2^k/(1+x^2^k). - Ralf Stephan, Jun 24 2003
a(n) = Sum_{k>=0} A030308(n,k)*A000142(k+1). - Philippe Deléham, Oct 15 2011
From Antti Karttunen, Aug 19 2016: (Start)
a(0) = 0, a(2n) = A153880(a(n)), a(2n+1) = 1+A153880(a(n)).
a(n) = A225901(A276091(n)).
a(n) = A276075(A019565(n)).
a(A275727(n)) = A276008(n).
A275736(a(n)) = n.
A276076(a(n)) = A019565(n).
A007623(a(n)) = A007088(n).
(End)
a(n) = a(n - mbs(n)) + (1 + floor(log(n) / log(2)))!. - David A. Corneth, Aug 21 2016

Extensions

Name changed (to emphasize the functional nature of the sequence) with the old definition moved to the comments by Antti Karttunen, Aug 21 2016

A104326 Dual Zeckendorf representation of n or the maximal (binary) Fibonacci representation. Also list of binary vectors not containing 00.

Original entry on oeis.org

0, 1, 10, 11, 101, 110, 111, 1010, 1011, 1101, 1110, 1111, 10101, 10110, 10111, 11010, 11011, 11101, 11110, 11111, 101010, 101011, 101101, 101110, 101111, 110101, 110110, 110111, 111010, 111011, 111101, 111110, 111111, 1010101
Offset: 0

Views

Author

Ron Knott, Mar 01 2005

Keywords

Comments

Whereas the Zeckendorf (binary) rep (A014417) has no consecutive 1's (no two consecutive Fibonacci numbers in a set whose sum is n), the Dual Zeckendorf Representation has no consecutive 0's. Also called the Maximal (Binary) Fibonacci Representation, the Zeckendorf rep. being the Minimal in terms of number of 1's in the binary representation.
Also known as the lazy Fibonacci representation of n. - Glen Whitney, Oct 21 2017

Examples

			As a sum of Fibonacci numbers (A000045) [using 1 at most once], 13 is 13=8+5=8+3+2.
The largest set here is 8+3+2 or, in base Fibonacci, 10110 so a(13)=10110(fib).
The Zeckendorf representation would be the smallest set or {13}=100000(fib).
		

Crossrefs

Cf. A007088 (binary vectors), A014417, A095791, A104324.
A003754 gives the numbers corresponding to the binary digit strings seen here.

Programs

  • Maple
    dualzeckrep:=proc(n)local i,z;z:=zeckrep(n);i:=1; while i<=nops(z)-2 do if z[i]=1 and z[i+1]=0 and z[i+2]=0 then z[i]:=0; z[i+1]:=1;z[i+2]:=1; if i>3 then i:=i-2 fi else i:=i+1 fi od; if z[1]=0 then z:=subsop(1=NULL,z) fi; z end proc: seq(dualzeckrep(n),n=0..20) ;
    # alternative
    A104326 := proc(n)
        local L,itr,rec,i ;
        # first compute the usual Zeckendorf rep as in A014417
        L := convert(A014417(n),base,10) ;
        for itr from 1 do
            rec := false ;
            # try to recombine 001 -> 110
            for i from 3 to nops(L) do
                if op(i,L) = 1 and op(i-1,L) =0 and op(i-2,L) =0 then
                    rec := true ;
                    L := subsop(i=0,L) ;
                    L := subsop(i-1=1,L) ;
                    L := subsop(i-2=1,L) ;
                end if;
            end do:
            if op(-1,L) = 0 then
                L := subsop(-1=NULL,L) ;
            end if;
            if rec = false then
                break ;
            end if;
        end do:
        add( op(i,L)*10^(i-1),i=1..nops(L)) ;
    end proc:
    seq(A104326(n),n=0..20) ; # R. J. Mathar, Aug 28 2025
  • Mathematica
    fb[n_] := Module[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k--]; fr]; a[n_] := Module[{v = fb[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] == 1 && v[[i + 1]] == 0 && v[[i + 2]] == 0, v[[i]] = 0; v[[i + 1]] = 1; v[[i + 2]] = 1; If[i > 2, i -= 3]]; i++]; i = Position[v, ?(# > 0 &)]; If[i == {}, 0, FromDigits[v[[i[[1, 1]] ;; -1]]]]]; Array[a, 34, 0] (* _Amiram Eldar, Oct 31 2019 after Robert G. Wilson v at A014417 and the Maple code *)
    Map[FromDigits, Select[IntegerString[Range[0, 255], 2], StringFreeQ[#, "00"] &]] (* Paolo Xausa, Apr 05 2024 *)

Formula

a(n) = A007088(A003754(n+1)).

Extensions

Index in formula corrected, missing parts of the maple code recovered, and sequence extended by R. J. Mathar, Oct 23 2010
Definition expanded and Duchêne, Fraenkel et al. reference added by N. J. A. Sloane, Aug 07 2018

A004290 Least positive multiple of n that when written in base 10 uses only 0's and 1's.

Original entry on oeis.org

1, 10, 111, 100, 10, 1110, 1001, 1000, 111111111, 10, 11, 11100, 1001, 10010, 1110, 10000, 11101, 1111111110, 11001, 100, 10101, 110, 110101, 111000, 100, 10010, 1101111111, 100100, 1101101, 1110, 111011, 100000, 111111, 111010
Offset: 1

Views

Author

Keywords

Comments

It is easy to show that a(n) always exists and in fact has at most n digits [Wu, 2014]. - N. J. A. Sloane, Jun 13 2014
a(n) = min{A007088(k): k > 0 and A007088(k) mod n = 0}. - Reinhard Zumkeller, Jan 10 2012
a(10^k) = 10^k and a(10^k - 1) = (10^(9k) - 1) / 9 for all k. Is a(n) < a(10^k - 1) for all n < 10^k - 1? - David Radcliffe, Aug 01 2025

Crossrefs

Programs

  • Haskell
    a004290 0 = 0
    a004290 n = head [x | x <- tail a007088_list, mod x n == 0]
    -- Reinhard Zumkeller, Jan 10 2012
    
  • Maple
    f:= proc(n)
    local L,x,m,r,k,j;
    if n<2 then return n fi;
    for x from 2 to n-1 do L[0,x]:= 0 od:
    L[0,0]:= 1: L[0,1]:= 1;
    for m from 1 do
       if L[m-1,(-10^m) mod n] = 1 then break fi;
       L[m,0]:= 1;
       for k from 1 to n-1 do
         L[m,k]:= max(L[m-1,k],L[m-1,k-10^m mod n])
       od;
    od;
    r:= 10^m; k:= -10^m mod n;
    for j from m-1 by -1 to 1 do
        if L[j-1,k] = 0 then
          r:= r + 10^j; k:= k - 10^j mod n;
        fi
    od;
    if k = 1 then r:= r + 1 fi;
    r
    end proc:
    seq(f(n),n=1..100); # Robert Israel, Feb 09 2016
  • Mathematica
    a[n_] := For[k = 1, True, k++, b = FromDigits[ IntegerDigits[k, 2] ]; If[Mod[b, n] == 0, Return[b]]]; a[0] = 0; Table[a[n], {n, 0, 34}] (* Jean-François Alcover, Jun 14 2013, after Reinhard Zumkeller *)
    With[{c=Rest[Union[FromDigits/@Flatten[Table[Tuples[{1,0},i],{i,10}], 1]]]}, Join[{0},Flatten[ Table[ Select[c,Divisible[#,n]&,1],{n,40}]]]] (* Harvey P. Dale, Dec 07 2013 *)
  • PARI
    a(n) = {if( n==0, return (0)); my(m = n); while (vecmax(digits(m)) != 1, m+=n); m;} \\ Michel Marcus, Feb 09 2016, May 27 2020
    
  • PARI
    apply( {A004290(n)=for(k=1,2^n,(t=fromdigits(binary(k)))%n||return(t))}, [1..44]) \\ M. F. Hasler, Mar 04 2025
  • Python
    def A004290(n):
        if n > 0:
            for i in range(1,2**n):
                x = int(bin(i)[2:])
                if not x % n:
                    return x
        return 0
    # Chai Wah Wu, Dec 30 2014
    

Formula

a(n) = n*A079339(n). - Jonathan Sondow, Jun 15 2014

Extensions

Initial 0 deleted and offset corrected by N. J. A. Sloane, Jan 31 2024

A051179 a(n) = 2^(2^n) - 1.

Original entry on oeis.org

1, 3, 15, 255, 65535, 4294967295, 18446744073709551615, 340282366920938463463374607431768211455, 115792089237316195423570985008687907853269984665640564039457584007913129639935
Offset: 0

Views

Author

Alan DeKok (aland(AT)ox.org)

Keywords

Comments

In a tree with binary nodes (0, 1 children only), the maximum number of unique child nodes at level n.
Number of binary trees (each vertex has 0, or 1 left, or 1 right, or 2 children) such that all leaves are at level n. Example: a(1) = 3 because we have (i) root with a left child, (ii) root with a right child and (iii) root with two children. a(n) = A000215(n) - 2. - Emeric Deutsch, Jan 20 2004
Similarly, this is also the number of full balanced binary trees of height n. (There is an obvious 1-to-1 correspondence between the two sets of trees.) - David Hobby (hobbyd(AT)newpaltz.edu), May 02 2010
Partial products of A000215.
The first 5 terms n (only) have the property that phi(n)=(n+1)/2, where phi(n) = A000010(n) is Euler's totient function. - Lekraj Beedassy, Feb 12 2007
If A003558(n) is of the form 2^n and A179480(n+1) is even, then (2^(A003558(n)) - 1) is in A051179. Example: A003558(25) = 8 with A179480(25) = 4, even. Then (2^8 - 1) = 255. - Gary W. Adamson, Aug 20 2012
For any odd positive a(0), the sequence defined by a(n) = a(n-1) * (a(n-1) + 2) gives a constructive proof that there exist integers with at least n distinct prime factors, e.g., a(n), since omega(a(n)) >= n. As a corollary, this gives a constructive proof of Euclid's theorem stating that there are infinitely many primes. - Daniel Forgues, Mar 07 2017
From Sergey Pavlov, Apr 24 2017: (Start)
I conjecture that, for n > 7, omega(a(n)) > omega(a(n-1)) > n.
It seems that the largest prime divisor p(n+1) of a(n+1) is always bigger than the largest prime divisor of a(n): p(n+1) > p(n). For 3 < n < 8, p(n+1) > 100 * p(n).
(End)
It appears that a(n) is the integer whose bits indicate the possible subset sums of the first n powers of two. For another example, see the calculation for primes at A368491 - Yigit Oktar, Mar 20 2025

Examples

			15 = 3*5; 255 = 3*5*17; 65535 = 3*5*17*257; ... - _Daniel Forgues_, Mar 07 2017
		

References

  • M. Aigner and G. M. Ziegler, Proofs from The Book, Springer-Verlag, Berlin, 1999; see p. 4.

Crossrefs

Programs

Formula

a(n) = A000215(n) - 2.
a(n) = (a(n-1) + 1)^2 - 1, a(0) = 1. [ or a(n) = a(n-1)(a(n-1) + 2) ].
1 = 2/3 + 4/15 + 16/255 + 256/65535 + ... = Sum_{n>=0} A001146(n)/a(n+1) with partial sums: 2/3, 14/15, 254/255, 65534/65535, ... - Gary W. Adamson, Jun 15 2003
a(n) = b(n-1) where b(1)=1, b(n) = Product_{k=1..n-1} (b(k) + 2). - Benoit Cloitre, Sep 13 2003
A136308(n) = A007088(a(n)). - Jason Kimberley, Dec 19 2012
A000215(n) = a(n+1) / a(n). - Daniel Forgues, Mar 07 2017
Sum_{n>=0} 1/a(n) = A048649. - Amiram Eldar, Oct 27 2020

A020330 Numbers whose base-2 representation is the juxtaposition of two identical strings.

Original entry on oeis.org

3, 10, 15, 36, 45, 54, 63, 136, 153, 170, 187, 204, 221, 238, 255, 528, 561, 594, 627, 660, 693, 726, 759, 792, 825, 858, 891, 924, 957, 990, 1023, 2080, 2145, 2210, 2275, 2340, 2405, 2470, 2535, 2600, 2665, 2730, 2795, 2860, 2925, 2990, 3055, 3120, 3185, 3250
Offset: 1

Views

Author

David W. Wilson, Melia Aldridge (ma38(AT)spruce.evansville.edu)

Keywords

Comments

All differences are in union of A000051 and A001576. - Vladimir Shevelev, Dec 07 2013

Examples

			36 is a term because 36 = 100100_2, which is 100 followed by 100.
		

Crossrefs

Subsequence of A121016.
Column k=0 of A246830, column k=1 of A246834.

Programs

  • Haskell
    a020330 n = foldr (\d v -> 2 * v + d) 0 (bs ++ bs) where
       bs = a030308_row n
    -- Reinhard Zumkeller, Feb 19 2013
    
  • Magma
    [n+2*n*2^Floor(Log(2, n)): n in [1..50]]; // Vincenzo Librandi, Apr 05 2018
    
  • Maple
    a:= n-> (l-> Bits[Join]([l[],l[]]))(Bits[Split](n)):
    seq(a(n), n=1..50);  # Alois P. Heinz, Aug 24 2024
  • Mathematica
    Table[n + 2 n 2^Floor[Log[2, n]], {n, 50}] (* T. D. Noe, Dec 10 2013 *)
    FromDigits[#, 2] & /@ (# <> # & /@ IntegerString[Range@100, 2]) (* Hans Rudolf Widmer, Aug 24 2024 *)
  • PARI
    a(n)=n+n<<#binary(n) \\ Charles R Greathouse IV, Mar 29 2013
    
  • PARI
    is(n)=my(L=#binary(n)\2); n>>L==bitand(n,2^L-1) \\ Charles R Greathouse IV, Mar 29 2013
    
  • Python
    def a(n): return int(bin(n)[2:]*2, 2)
    print([a(n) for n in range(1, 51)]) # Michael S. Branicky, Mar 10 2021
    
  • Python
    def A020330(n): return (n<Chai Wah Wu, Feb 28 2023

Formula

a(n) = n + 2*n*2^floor(log_2(n)). - Ralf Stephan, Dec 07 2004
Sum_{n>=1} 1/a(n) = A330157. - Amiram Eldar, Oct 22 2020
a(n) = n * (2^A070939(n) + 1). - Jianing Song, Apr 10 2021

A159918 Number of ones in binary representation of n^2.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 2, 3, 1, 3, 3, 5, 2, 4, 3, 4, 1, 3, 3, 5, 3, 6, 5, 3, 2, 5, 4, 6, 3, 5, 4, 5, 1, 3, 3, 5, 3, 6, 5, 7, 3, 5, 6, 7, 5, 8, 3, 4, 2, 5, 5, 5, 4, 8, 6, 7, 3, 6, 5, 7, 4, 6, 5, 6, 1, 3, 3, 5, 3, 6, 5, 7, 3, 6, 6, 9, 5, 7, 7, 5, 3, 6, 5, 8, 6, 7, 7, 7, 5, 9, 8, 5, 3, 6, 4, 5, 2, 5, 5, 6, 5, 9, 5, 7, 4
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 25 2009

Keywords

Comments

The binary weight (A000120) of n^2.
a(n) = 0 iff n = 0. a(n) = 1 iff n = 2^k for some k >= 0. a(n) = 2 iff n = 3*2^k for some k >= 0. Szalay proves that a(n) = 3 iff n = 7*2^k, 23*2^k, or 2^a + 2^b for k >= 0 and a > b >= 0. It seems that a(n) = 4 iff n = 13*2^k, 15*2^k, 47*2^k, or 111*2^k but this has not been proven! Any other n with a(n) = 4 are greater than 10^50, and there are finitely many odd solutions. - Charles R Greathouse IV, Jan 20 2022

References

  • L. Szalay, The equations 2^n ± 2^m ± 2^l = z^2, Indagationes Mathematicae (N.S.) 13, no. 1 (2002), pp. 131-142.

Crossrefs

Programs

Formula

a(n) = A000120(A000290(n)); a(A077436(n)) = A000120(A077436(n)).
Lindström shows that lim sup wt(m^2)/log_2 m = 2. - N. J. A. Sloane, Oct 11 2013
a(n) = [x^(n^2)] (1/(1 - x))*Sum_{k>=0} x^(2^k)/(1 + x^(2^k)). - Ilya Gutkovskiy, Mar 27 2018

A089633 Numbers having no more than one 0 in their binary representation.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 7, 11, 13, 14, 15, 23, 27, 29, 30, 31, 47, 55, 59, 61, 62, 63, 95, 111, 119, 123, 125, 126, 127, 191, 223, 239, 247, 251, 253, 254, 255, 383, 447, 479, 495, 503, 507, 509, 510, 511, 767, 895, 959, 991, 1007, 1015, 1019, 1021, 1022, 1023
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 01 2004

Keywords

Comments

Complement of A158582. - Reinhard Zumkeller, Apr 16 2009
Also union of A168604 and A030130. - Douglas Latimer, Jul 19 2012
Numbers of the form 2^t - 2^k - 1, 0 <= k < t.
n is in the sequence if and only if 2*n+1 is in the sequence. - Robert Israel, Dec 14 2018
Also the least binary rank of a strict integer partition of n, where the binary rank of a partition y is given by Sum_i 2^(y_i-1). - Gus Wiseman, May 24 2024

Examples

			From _Tilman Piesk_, May 09 2012: (Start)
This may also be viewed as a triangle:             In binary:
                  0                                         0
               1     2                                 01       10
             3    5    6                          011      101      110
           7   11   13   14                  0111     1011     1101     1110
        15   23   27   29   30          01111    10111    11011    11101    11110
      31  47   55   59   61   62
   63   95  111  119  123  125  126
Left three diagonals are A000225,  A055010, A086224. Right diagonal is A000918. Central column is A129868. Numbers in row n (counted from 0) have n binary 1s. (End)
From _Gus Wiseman_, May 24 2024: (Start)
The terms together with their binary expansions and binary indices begin:
   0:      0 ~ {}
   1:      1 ~ {1}
   2:     10 ~ {2}
   3:     11 ~ {1,2}
   5:    101 ~ {1,3}
   6:    110 ~ {2,3}
   7:    111 ~ {1,2,3}
  11:   1011 ~ {1,2,4}
  13:   1101 ~ {1,3,4}
  14:   1110 ~ {2,3,4}
  15:   1111 ~ {1,2,3,4}
  23:  10111 ~ {1,2,3,5}
  27:  11011 ~ {1,2,4,5}
  29:  11101 ~ {1,3,4,5}
  30:  11110 ~ {2,3,4,5}
  31:  11111 ~ {1,2,3,4,5}
  47: 101111 ~ {1,2,3,4,6}
  55: 110111 ~ {1,2,3,5,6}
  59: 111011 ~ {1,2,4,5,6}
  61: 111101 ~ {1,3,4,5,6}
  62: 111110 ~ {2,3,4,5,6}
(End)
		

Crossrefs

Cf. A181741 (primes), union of A081118 and A000918, apart from initial -1.
For least binary index (instead of rank) we have A001511.
Applying A019565 (Heinz number of binary indices) gives A077011.
For greatest binary index we have A029837 or A070939, opposite A070940.
Row minima of A118462 (binary ranks of strict partitions).
For sum instead of minimum we have A372888, non-strict A372890.
A000009 counts strict partitions, ranks A005117.
A048675 gives binary rank of prime indices, distinct A087207.
A048793 lists binary indices, product A096111, reverse A272020.
A277905 groups all positive integers by binary rank of prime indices.

Programs

  • Haskell
    a089633 n = a089633_list !! (n-1)
    a089633_list = [2 ^ t - 2 ^ k - 1 | t <- [1..], k <- [t-1,t-2..0]]
    -- Reinhard Zumkeller, Feb 23 2012
    
  • Maple
    seq(seq(2^a-1-2^b,b=a-1..0,-1),a=1..11); # Robert Israel, Dec 14 2018
  • Mathematica
    fQ[n_] := DigitCount[n, 2, 0] < 2; Select[ Range[0, 2^10], fQ] (* Robert G. Wilson v, Aug 02 2012 *)
  • PARI
    {insq(n) = local(dd, hf, v); v=binary(n);hf=length(v);dd=sum(i=1,hf,v[i]);if(dd<=hf-2,-1,1)}
    {for(w=0,1536,if(insq(w)>=0,print1(w,", ")))}
    \\ Douglas Latimer, May 07 2013
    
  • PARI
    isoka(n) = #select(x->(x==0), binary(n)) <= 1; \\ Michel Marcus, Dec 14 2018
    
  • Python
    from itertools import count, islice
    def A089633_gen(): # generator of terms
        return ((1<A089633_list = list(islice(A089633_gen(),30)) # Chai Wah Wu, Feb 10 2023
    
  • Python
    from math import isqrt, comb
    def A089633(n): return (1<<(a:=(isqrt((n<<3)+1)-1>>1)+1))-(1<Chai Wah Wu, Dec 19 2024

Formula

A023416(a(n)) <= 1; A023416(a(n)) = A023532(n-2) for n>1;
A000120(a(u)) <= A000120(a(v)) for uA000120(a(n)) = A003056(n).
a(0)=0, n>0: a(n+1) = Min{m>n: BinOnes(a(n))<=BinOnes(m)} with BinOnes=A000120.
If m = floor((sqrt(8*n+1) - 1) / 2), then a(n) = 2^(m+1) - 2^(m*(m+3)/2 - n) - 1. - Carl R. White, Feb 10 2009
A029931(a(n)) = n and A029931(m) != n for m < a(n). - Reinhard Zumkeller, Feb 28 2014
A265705(a(n),k) = A265705(a(n),a(n)-k), k = 0 .. a(n). - Reinhard Zumkeller, Dec 15 2015
a(A014132(n)-1) = 2*a(n-1)+1 for n >= 1. - Robert Israel, Dec 14 2018
Sum_{n>=1} 1/a(n) = A065442 + A160502 = 3.069285887459... . - Amiram Eldar, Jan 09 2024
A019565(a(n)) = A077011(n). - Gus Wiseman, May 24 2024

A010062 a(0)=1; thereafter a(n+1) = a(n) + number of 1's in binary representation of a(n).

Original entry on oeis.org

1, 2, 3, 5, 7, 10, 12, 14, 17, 19, 22, 25, 28, 31, 36, 38, 41, 44, 47, 52, 55, 60, 64, 65, 67, 70, 73, 76, 79, 84, 87, 92, 96, 98, 101, 105, 109, 114, 118, 123, 129, 131, 134, 137, 140, 143, 148, 151, 156, 160, 162, 165, 169, 173, 178, 182, 187, 193, 196, 199, 204
Offset: 0

Views

Author

Leonid Broukhis, Mar 15 1996

Keywords

Comments

Sequence A230297 (and A157845 without initial term) converted from binary to decimal, cf. formula. - M. F. Hasler, Nov 18 2019

Examples

			a(7) = 14 because a(6) = 12, which is 1100 in binary (having 2 on bits), and 12 + 2 = 14.
a(8) = 17 because a(7) = 14, which is 1110 in binary (having 3 on bits), and 14 + 3 = 17.
		

Crossrefs

First row of A228083.
For the base-10 analog see A004207.
Cf. A000120, A010061, A092391, A229167, A096303, A229743, A229744, A230297 (this sequence written in binary), A230298 (read mod 2).
See A230088 for partial sums.
Equals A028897 o A230297 = A028897 o A157845 (up to offset); see also A007088.

Programs

Formula

a(n) = (n/2)*log n + O(n*sqrt(log n * loglog n)), where log means log_2. In particular, a(n) ~ (n/2)*log n. [Stolarsky]
a(n + 1) = A092391(a(n)) = a(n) + A000120(a(n)). - Reinhard Zumkeller, May 27 2012, May 08 2004; corrected thanks to a notice by Lambert Herrgesell
a(n) = A028897(A230297(n)) = A028897(A157845(n+1)). - M. F. Hasler, Nov 18 2019

Extensions

More terms from Benoit Cloitre, Jun 02 2002
Stolarsky reference from Matthew C. Russell, Oct 08 2013

A043529 Number of distinct base-2 digits of n.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

Keywords

Comments

Also, if prefixed by 0, the trajectory of 0 under repeated applications of the morphism 0 -> 0,1, 1 -> 1,2, 2 -> 2,2. This is a word that is pure uniform morphic, but neither primitive morphic nor recurrent. - N. J. A. Sloane, Jul 15 2018

References

  • Dekking, Michel, Michel Mendes France, and Alf van der Poorten. "Folds." The Mathematical Intelligencer, 4.3 (1982): 130-138 & front cover, and 4:4 (1982): 173-181 (printed in two parts). See Observaion 1.8.

Crossrefs

Factor of A160466. Cf. A007456 and A081729. - Johannes W. Meijer, May 24 2009
Sequences mentioned in the Allouche et al. "Taxonomy" paper, listed by example number: 1: A003849, 2: A010060, 3: A010056, 4: A020985 and A020987, 5: A191818, 6: A316340 and A273129, 18: A316341, 19: A030302, 20: A063438, 21: A316342, 22: A316343, 23: A003849 minus its first term, 24: A316344, 25: A316345 and A316824, 26: A020985 and A020987, 27: A316825, 28: A159689, 29: A049320, 30: A003849, 31: A316826, 32: A316827, 33: A316828, 34: A316344, 35: A043529, 36: A316829, 37: A010060.

Programs

  • Maple
    A043529 := proc(n): if type(ln(n+1)/ln(2), integer) then 1 else 2 fi: end proc: seq(A043529(n), n=0..90); # Johannes W. Meijer, Sep 14 2012
  • Mathematica
    (* Needs version >= 10.2. *)
    SubstitutionSystem[{0 -> {0, 1}, 1 -> {1, 2}, 2 -> {2, 2}}, 0, 7] // Last // Rest (* Jean-François Alcover, Apr 06 2020 *)
    Table[Length[Union[IntegerDigits[n,2]]],{n,0,90}] (* Harvey P. Dale, Aug 04 2024 *)

Formula

This is 2 unless n = 2^k - 1 for some k in which case it is 1.
a(n) = 2 - A036987(n). - Antti Karttunen, Nov 19 2017

Extensions

First term added and offset changed by Johannes W. Meijer, May 15 2009

A078822 Number of distinct binary numbers contained as substrings in the binary representation of n.

Original entry on oeis.org

1, 1, 3, 2, 4, 4, 5, 3, 5, 5, 5, 6, 7, 7, 7, 4, 6, 6, 6, 7, 7, 6, 8, 8, 9, 9, 9, 9, 10, 10, 9, 5, 7, 7, 7, 8, 7, 8, 9, 9, 9, 9, 7, 9, 11, 10, 11, 10, 11, 11, 11, 11, 12, 11, 11, 12, 13, 13, 13, 13, 13, 13, 11, 6, 8, 8, 8, 9, 8, 9, 10, 10, 9, 8, 10, 11, 11, 12, 12, 11, 11, 11, 11, 12, 10, 8
Offset: 0

Views

Author

Reinhard Zumkeller, Dec 08 2002

Keywords

Comments

For n>0: 0A070939(n)+1, 0A070939(n). - Reinhard Zumkeller, Mar 07 2008
Row lengths in triangle A119709. - Reinhard Zumkeller, Aug 14 2013

Examples

			n=10 -> '1010' contains 5 different binary numbers: '0' (b0bb or bbb0), '1' (1bbb or bb1b), '10' (10bb or bb10), '101' (101b) and '1010' itself, therefore a(10)=5.
		

Crossrefs

Programs

  • Haskell
    a078822 = length . a119709_row
    import Numeric (showIntAtBase)
    -- Reinhard Zumkeller, Aug 13 2013, Sep 14 2011
    
  • Maple
    a:= n-> (s-> nops({seq(seq(parse(s[i..j]), i=1..j),
            j=1..length(s))}))(""||(convert(n, binary))):
    seq(a(n), n=0..85);  # Alois P. Heinz, Jan 20 2021
  • Mathematica
    a[n_] := (id = IntegerDigits[n, 2]; nd = Length[id]; Length[ Union[ Flatten[ Table[ id[[j ;; k]], {j, 1, nd}, {k, j, nd}], 1] //. {0, b__} :> {b}]]); Table[ a[n], {n, 0, 85}] (* Jean-François Alcover, Dec 01 2011 *)
  • PARI
    a(n) = {if (n==0, 1, vb = binary(n); vf = []; for (i=1, #vb, for (j=1, #vb - i + 1, pvb = vector(j, k, vb[i+k-1]); f = subst(Pol(pvb), x, 2); vf = Set(concat(vf, f)); ); ); #vf); } \\ Michel Marcus, May 08 2016; corrected Jun 13 2022
    
  • Python
    def a(n): return 1 if n == 0 else len(set(((((2<>i for i in range(n.bit_length()) for l in range(n.bit_length()-i)))
    print([a(n) for n in range(64)]) # Michael S. Branicky, Jul 28 2022

Formula

For k>0: a(2^k-2) = 2*(k-1)+1, a(2^k-1) = k, a(2^k) = k+2;
for k>1: a(2^k+1) = k+2;
for k>0: a(2^k-1) = A078824(2^k-1), a(2^k) = A078824(2^k).
Previous Showing 61-70 of 784 results. Next