cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 43 results. Next

A008456 12th powers: a(n) = n^12.

Original entry on oeis.org

0, 1, 4096, 531441, 16777216, 244140625, 2176782336, 13841287201, 68719476736, 282429536481, 1000000000000, 3138428376721, 8916100448256, 23298085122481, 56693912375296, 129746337890625, 281474976710656, 582622237229761
Offset: 0

Views

Author

Keywords

Comments

Numbers which are square, cubic and quartic. - Doug Bell, Jun 03 2017

Crossrefs

a(n) = A123868(n) + 1.
Cf. A000290 (squares), A000578 (cubes), A000583 (4th powers), A001014 (6th powers), A008454 (10th powers), A008455 (11th powers), A010801 (13th powers).
Cf. A013670 (zeta(12)).

Programs

Formula

Multiplicative with a(p^e) = p^(12*e). - David W. Wilson, Aug 01 2001
a(n) = A000290(n)^6 = A000578(n)^4 = A000583(n)^3 = A001014(n)^2. - Doug Bell, Jun 03 2017
From Amiram Eldar, Oct 08 2020: (Start)
Sum_{n>=1} 1/a(n) = zeta(12) = 691*Pi^12/638512875 (A013670).
Sum_{n>=1} (-1)^(n+1)/a(n) = 2047*zeta(12)/2048 = 1414477*Pi^12/1307674368000. (End)
a(n) = 13*a(n-1)-78*a(n-2)+286*a(n-3)-715*a(n-4)+1287*a(n-5)-1716*a(n-6)+1716*a(n-7)-1287*a(n-8)+715*a(n-9)-286*a(n-10)+78*a(n-11)-13*a(n-12)+a(n-13). - Wesley Ivan Hurt, Dec 02 2021
Intersection of A000578 and A000583; i.e., cubes and 4th powers. - M. F. Hasler, Jul 03 2025

A003992 Square array read by upwards antidiagonals: T(n,k) = n^k for n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 9, 8, 1, 0, 1, 5, 16, 27, 16, 1, 0, 1, 6, 25, 64, 81, 32, 1, 0, 1, 7, 36, 125, 256, 243, 64, 1, 0, 1, 8, 49, 216, 625, 1024, 729, 128, 1, 0, 1, 9, 64, 343, 1296, 3125, 4096, 2187, 256, 1, 0, 1, 10, 81, 512, 2401, 7776, 15625, 16384, 6561, 512, 1, 0
Offset: 0

Views

Author

Keywords

Comments

If the array is transposed, T(n,k) is the number of oriented rows of n colors using up to k different colors. The formula would be T(n,k) = [n==0] + [n>0]*k^n. The generating function for column k would be 1/(1-k*x). For T(3,2)=8, the rows are AAA, AAB, ABA, ABB, BAA, BAB, BBA, and BBB. - Robert A. Russell, Nov 08 2018
T(n,k) is the number of multichains of length n from {} to [k] in the Boolean lattice B_k. - Geoffrey Critzer, Apr 03 2020

Examples

			Rows begin:
[1, 0,  0,   0,    0,     0,      0,      0, ...],
[1, 1,  1,   1,    1,     1,      1,      1, ...],
[1, 2,  4,   8,   16,    32,     64,    128, ...],
[1, 3,  9,  27,   81,   243,    729,   2187, ...],
[1, 4, 16,  64,  256,  1024,   4096,  16384, ...],
[1, 5, 25, 125,  625,  3125,  15625,  78125, ...],
[1, 6, 36, 216, 1296,  7776,  46656, 279936, ...],
[1, 7, 49, 343, 2401, 16807, 117649, 823543, ...], ...
		

Crossrefs

Main diagonal is A000312. Other diagonals include A000169, A007778, A000272, A008788. Antidiagonal sums are in A026898.
Cf. A099555.
Transpose is A004248. See A051128, A095884, A009999 for other versions.
Cf. A277504 (unoriented), A293500 (chiral).

Programs

  • Magma
    [[(n-k)^k: k in [0..n]]: n in [0..10]]; // G. C. Greubel, Nov 08 2018
  • Mathematica
    Table[If[k == 0, 1, (n - k)^k], {n, 0, 11}, {k, 0, n}]//Flatten
  • PARI
    T(n,k) = (n-k)^k \\ Charles R Greathouse IV, Feb 07 2017
    

Formula

E.g.f.: Sum T(n,k)*x^n*y^k/k! = 1/(1-x*exp(y)). - Paul D. Hanna, Oct 22 2004
E.g.f.: Sum T(n,k)*x^n/n!*y^k/k! = e^(x*e^y). - Franklin T. Adams-Watters, Jun 23 2006

Extensions

More terms from David W. Wilson
Edited by Paul D. Hanna, Oct 22 2004

A010801 13th powers: a(n) = n^13.

Original entry on oeis.org

0, 1, 8192, 1594323, 67108864, 1220703125, 13060694016, 96889010407, 549755813888, 2541865828329, 10000000000000, 34522712143931, 106993205379072, 302875106592253, 793714773254144, 1946195068359375, 4503599627370496, 9904578032905937, 20822964865671168
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000290 (squares), A000578 (cubes), A000583 (4th powers), A000584 (5th powers), A008455 (11th powers), A013671 (zeta(11)).

Programs

Formula

a(n) mod 10 = n mod 10. - Reinhard Zumkeller, Dec 06 2004
Totally multiplicative with a(p) = p^13 for primes p. Multiplicative with a(p^e) = p^(13*e). - Jaroslav Krizek, Nov 01 2009
G.f.: x*(x^12 + 8178*x^11 + 1479726*x^10 + 45533450*x^9 + 423281535*x^8 + 1505621508*x^7 + 2275172004*x^6 + 1505621508*x^5 + 423281535*x^4 + 45533450*x^3 + 1479726*x^2 + 8178*x + 1) / (x - 1)^14. - Colin Barker, Sep 25 2014
From Amiram Eldar, Oct 08 2020: (Start)
Sum_{n>=1} 1/a(n) = zeta(13) (A013671).
Sum_{n>=1} (-1)^(n+1)/a(n) = 4095*zeta(13)/4096. (End)

A079395 a(n) = prime(n)^11.

Original entry on oeis.org

2048, 177147, 48828125, 1977326743, 285311670611, 1792160394037, 34271896307633, 116490258898219, 952809757913927, 12200509765705829, 25408476896404831, 177917621779460413, 550329031716248441
Offset: 1

Views

Author

Jon Perry, Jan 06 2003

Keywords

Examples

			2^11 = 2048.
		

Crossrefs

Subsequence of A008455.
Cf. A013669.

Programs

Formula

From Amiram Eldar, Jan 24 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = zeta(11)/zeta(22).
Product_{n>=1} (1 - 1/a(n)) = 1/zeta(11) = 1/A013669. (End)

A010803 15th powers: a(n) = n^15.

Original entry on oeis.org

0, 1, 32768, 14348907, 1073741824, 30517578125, 470184984576, 4747561509943, 35184372088832, 205891132094649, 1000000000000000, 4177248169415651, 15407021574586368, 51185893014090757, 155568095557812224
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A013673 (zeta(15)).
Cf. A000290 (squares), A000578 (cubes), A000583 (4th powers), A000584 (5th powers), A001015 (7th powers), A008455 (11th powers).

Programs

Formula

Totally multiplicative with a(p) = p^15 for prime p. Multiplicative with a(p^e) = p^(15e). - Jaroslav Krizek, Nov 01 2009
From Ilya Gutkovskiy, Feb 27 2017: (Start)
Dirichlet g.f.: zeta(s-15).
Sum_{n>=1} 1/a(n) = zeta(15) = A013673. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = 16383*zeta(15)/16384. - Amiram Eldar, Oct 08 2020

A022527 Nexus numbers: a(n) = (n+1)^11 - n^11.

Original entry on oeis.org

1, 2047, 175099, 4017157, 44633821, 313968931, 1614529687, 6612607849, 22791125017, 68618940391, 185311670611, 457696700077, 1049152023349, 2257404775627, 4600190689711, 8942430185041, 16679710263217, 29996513771599, 52221848818987, 88309741101781
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 54.

Crossrefs

Column k=10 of A047969.
Cf. A008455 (n^11).

Programs

Formula

G.f.: -(x^10 + 2036*x^9 + 152637*x^8 + 2203488*x^7 + 9738114*x^6 + 15724248*x^5 + 9738114*x^4 + 2203488*x^3 + 152637*x^2 + 2036*x + 1) / (x - 1)^11. - Colin Barker, Dec 22 2012
a(n) = A008455(n+1) - A008455(n). - Michel Marcus, Feb 28 2018
G.f.: polylog(-11, x)*(1-x)/x. See the g.f. of the rows of A008292 by Vladeta Jovovic, Sep 02 2002. - Wolfdieter Lang, May 10 2021

A211184 Numbers k such that (k+1)^11 - k^11 is prime.

Original entry on oeis.org

5, 7, 9, 13, 34, 40, 63, 69, 85, 168, 170, 183, 207, 223, 247, 275, 291, 306, 322, 337, 344, 352, 381, 391, 397, 400, 404, 469, 473, 492, 570, 574, 579, 590, 597, 673, 680, 696, 736, 764, 786, 805, 827, 890, 915, 947, 1006, 1023, 1025, 1039
Offset: 1

Views

Author

Vladimir Pletser, Feb 02 2013

Keywords

Crossrefs

Cf. A008455 (11th powers), A189055 (resulting primes).

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[(# + 1)^11 - #^11] &] (* T. D. Noe, Feb 04 2013 *)
  • PARI
    isok(k) = isprime((k+1)^11 - k^11); \\ Michel Marcus, Mar 12 2022

A016787 a(n) = (3*n + 1)^11.

Original entry on oeis.org

1, 4194304, 1977326743, 100000000000, 1792160394037, 17592186044416, 116490258898219, 584318301411328, 2384185791015625, 8293509467471872, 25408476896404831, 70188843638032384, 177917621779460413, 419430400000000000, 929293739471222707, 1951354384207722496
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(3*n+1)^11: n in [0..20]]; // Vincenzo Librandi, Sep 29 2011
  • Mathematica
    Table[(3*n + 1)^11, {n, 0, 30}] (* Amiram Eldar, Mar 30 2022 *)

Formula

From Amiram Eldar, Mar 30 2022: (Start)
a(n) = A016777(n)^11.
Sum_{n>=0} 1/a(n) = 7388*Pi^11/(2511058725*sqrt(3)) + 88573*zeta(11)/177147. (End)
a(n) = 12*a(n-1) - 66*a(n-2) + 220*a(n-3) - 495*a(n-4) + 792*a(n-5) - 924*a(n-6) + 792*a(n-7) - 495*a(n-8) + 220*a(n-9) - 66*a(n-10) + 12*a(n-11) - a(n-12). - Wesley Ivan Hurt, Apr 12 2023

A036089 Centered cube numbers: (n+1)^11 + n^11.

Original entry on oeis.org

1, 2049, 179195, 4371451, 53022429, 411625181, 2340123799, 10567261335, 39970994201, 131381059609, 385311670611, 1028320041299, 2535168764725, 5841725563701, 12699321029039, 26241941903791, 51864082352049
Offset: 0

Views

Author

Keywords

Comments

Never prime, as a(n) = (2*n+1) * (n^10 + 5*n^9 + 25*n^8 + 70*n^7 + 130*n^6 + 166*n^5 + 148*n^4 + 91*n^3 + 37*n^2 + 9*n + 1). - Jonathan Vos Post, Aug 26 2011

Crossrefs

Programs

  • Magma
    [(n+1)^11+n^11: n in [0..20]]; // Vincenzo Librandi, Aug 27 2011
    
  • PARI
    Vec((1 + x)*(1 + 2036*x + 152637*x^2 + 2203488*x^3 + 9738114*x^4 + 15724248*x^5 + 9738114*x^6 + 2203488*x^7 + 152637*x^8 + 2036*x^9 + x^10) / (1 - x)^12 + O(x^40)) \\ Colin Barker, Feb 06 2020

Formula

From Colin Barker, Feb 06 2020: (Start)
G.f.: (1 + x)*(1 + 2036*x + 152637*x^2 + 2203488*x^3 + 9738114*x^4 + 15724248*x^5 + 9738114*x^6 + 2203488*x^7 + 152637*x^8 + 2036*x^9 + x^10) / (1 - x)^12.
a(n) = 12*a(n-1) - 66*a(n-2) + 220*a(n-3) - 495*a(n-4) + 792*a(n-5) - 924*a(n-6) + 792*a(n-7) - 495*a(n-8) + 220*a(n-9) - 66*a(n-10) + 12*a(n-11) - a(n-12) for n>11.
(End)

A010802 14th powers: a(n) = n^14.

Original entry on oeis.org

0, 1, 16384, 4782969, 268435456, 6103515625, 78364164096, 678223072849, 4398046511104, 22876792454961, 100000000000000, 379749833583241, 1283918464548864, 3937376385699289, 11112006825558016, 29192926025390625, 72057594037927936, 168377826559400929, 374813367582081024
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A013672 (zeta(14)), A001015 (n^7).
Cf. A000290, (squares), A000578, (cubes), A000583, (4th powers), A000584, (5th powers), A008455 (11th powers).

Programs

Formula

Totally multiplicative with a(p) = p^14 for prime p. Multiplicative with a(p^e) = p^(14e). - Jaroslav Krizek, Nov 01 2009
From Ilya Gutkovskiy, Feb 27 2017: (Start)
Dirichlet g.f.: zeta(s-14).
Sum_{n>=1} 1/a(n) = 2*Pi^14/18243225 = A013672. (End)
a(n) = A001015(n)^2. - Michel Marcus, Feb 28 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = 8191*zeta(14)/8192 = 8191*Pi^14/74724249600. - Amiram Eldar, Oct 08 2020
Previous Showing 11-20 of 43 results. Next