cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 81 results. Next

A092433 Positive numbers from the children's game "Buzz" or "Sevens": positive integers which are divisible by seven, or which contain a seven as a digit.

Original entry on oeis.org

7, 14, 17, 21, 27, 28, 35, 37, 42, 47, 49, 56, 57, 63, 67, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 84, 87, 91, 97, 98, 105, 107, 112, 117, 119, 126, 127, 133, 137, 140, 147, 154, 157, 161, 167, 168, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 182, 187, 189, 196
Offset: 1

Views

Author

Jim Ferry (jferry(AT)uiuc.edu), Mar 23 2004

Keywords

Comments

Almost all integers are in this sequence: It has asymptotic density 1 since the percentage of n-digit numbers with no digit 7 tends to 0 as n -> oo. - M. F. Hasler, Oct 12 2020
Does not contain 114.

Examples

			7 is the first term, both because it is a multiple of 7 and because it contains a 7. 14 is next, being a multiple of 7. 17 is the third term: it contains a 7.
		

Crossrefs

Cf. A008589 (divisible by 7), A011537 (containing digit 7).
Complement is A376047.

Programs

  • Maple
    isA092433 := proc(n)
        if modp(n,7) = 0 then
            true;
        else
            convert(convert(n,base,10),set) ;
            if 7 in % then
                true;
            else
                false;
            end if;
        end if;
    end proc:
    for n from 1 to 200 do
        if isA092433(n) then
            printf("%d,",n);
        end if;
    end do: # R. J. Mathar, Jul 19 2016
  • Mathematica
    Select[Range[300], Mod[ #, 7] == 0 || MemberQ[IntegerDigits[ # ], 7] &]
  • PARI
    is(n) = n % 7 == 0 || setsearch(Set(digits(n)),7) \\ David A. Corneth, Oct 01 2019, simplified by M. F. Hasler, Oct 12 2020

Formula

Integers n for which the coefficient of x^n is nonzero in x^7 / (1 - x^7) + Sum_{k>=0} x^(7*10^k)*(1 - x^(10^k)) / ((1 - x)*(1 - x^(10^(k+1)))).

A113804 Numbers that are congruent to 4 or 10 mod 14.

Original entry on oeis.org

4, 10, 18, 24, 32, 38, 46, 52, 60, 66, 74, 80, 88, 94, 102, 108, 116, 122, 130, 136, 144, 150, 158, 164, 172, 178, 186, 192, 200, 206, 214, 220, 228, 234, 242, 248, 256, 262, 270, 276, 284, 290, 298, 304, 312, 318, 326, 332, 340, 346, 354, 360
Offset: 1

Views

Author

Giovanni Teofilatto, Jan 22 2006

Keywords

Comments

Fourth row of the 7-rowed array A113807. - Giovanni Teofilatto, Oct 26 2009 [crossref added by Wolfdieter Lang, Dec 15 2011]

Crossrefs

Programs

  • Mathematica
    Select[Range[2,400,2],MemberQ[{4,10},Mod[#,14]]&] (* or *) LinearRecurrence[{1,1,-1},{4,10,18},60] (* Harvey P. Dale, Jan 08 2023 *)
  • PARI
    a(n)=7*n-((-1)^n+7)/2 \\ Charles R Greathouse IV, Dec 27 2011

Formula

From R. J. Mathar, Aug 13 2008: (Start)
a(n) = 7n - ((-1)^n + 7)/2.
G.f.: 2x*(2 + 3x + 2x^2)/((1-x)^2*(1+x)). (End)
a(n) = 14*n - a(n-1) - 14 (with a(1)=4). - Vincenzo Librandi, Aug 01 2010
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(3*Pi/14)*Pi/14. - Amiram Eldar, Dec 30 2021
E.g.f.: 4 + ((14*x - 7)*exp(x) - exp(-x))/2. - David Lovler, Sep 04 2022
a(n) = 2*A047385(n). - Michel Marcus, Sep 05 2022
From Amiram Eldar, Nov 25 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = cosec(Pi/7)/2.
Product_{n>=1} (1 + (-1)^n/a(n)) = tan(3*Pi/14). (End)

Extensions

More terms from Neven Juric, Apr 10 2008

A045642 Palindromic and divisible by 7.

Original entry on oeis.org

0, 7, 77, 161, 252, 343, 434, 525, 595, 616, 686, 707, 777, 868, 959, 1001, 1771, 2002, 2772, 3003, 3773, 4004, 4774, 5005, 5775, 6006, 6776, 7007, 7777, 8008, 8778, 9009, 9779, 10101, 10801, 11011, 11711, 12621, 13531, 14441, 15351, 16261, 16961
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 21000, 7], PalindromeQ] (* Paolo Xausa, Jul 06 2025 *)

Extensions

a(1) = 0 prepended by Paolo Xausa, Jul 07 2025

A047304 Numbers not divisible by 7.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 64, 65, 66
Offset: 1

Views

Author

Keywords

Comments

Numbers that are congruent to {1, 2, 3, 4, 5, 6} mod 7. Different from A020658.
More generally the sequence of numbers not divisible by some fixed integer m >= 2 is given by a(n,m) = n - 1 + floor((n+m-2)/(m-1)). - Benoit Cloitre, Jul 11 2009
Complement of A008589. - Reinhard Zumkeller, Nov 30 2009

Crossrefs

Programs

Formula

a(n) = n - 1 + floor((n+5)/6). - Benoit Cloitre, Jul 11 2009
A109720(a(n)) = 1; A082784(a(n)) = 0. - Reinhard Zumkeller, Nov 30 2009
G.f.: x*(1+x+x^2+x^3+x^4+x^5+x^6) / ( (1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
Sum_{n>=1} (-1)^(n+1)/a(n) = (cot(Pi/7) + tan(Pi/14) - tan(3*Pi/14))*Pi/7. - Amiram Eldar, Dec 31 2021

A134498 a(n) = Fibonacci(7n).

Original entry on oeis.org

0, 13, 377, 10946, 317811, 9227465, 267914296, 7778742049, 225851433717, 6557470319842, 190392490709135, 5527939700884757, 160500643816367088, 4660046610375530309, 135301852344706746049, 3928413764606871165730
Offset: 0

Views

Author

Artur Jasinski, Oct 28 2007

Keywords

Crossrefs

Programs

  • Magma
    [Fibonacci(7*n): n in [0..100]]; // Vincenzo Librandi, Apr 17 2011
    
  • Mathematica
    Table[Fibonacci[7n], {n, 0, 30}]
    {a,b}={0,13};Do[Print[c={a,b}.{1,29}];a=b;b=c,{30}] (* Zak Seidov, Nov 02 2009 *)
  • MuPAD
    numlib::fibonacci(7*n) $ n = 0..25; // Zerinvary Lajos, May 09 2008
    
  • PARI
    a(n)=fibonacci(7*n) \\ Charles R Greathouse IV, Jun 11 2015
  • Sage
    [fibonacci(7*n) for n in range(0, 16)] # Zerinvary Lajos, May 15 2009
    

Formula

G.f.: -13*x / ( -1+29*x+x^2 ). a(n) = 13*A049667(n). - R. J. Mathar, Apr 17 2011
a(n) = A000045(A008589(n)). - Michel Marcus, Nov 08 2013

Extensions

Offset changed from 1 to 0 by Vincenzo Librandi, Apr 17 2011

A319528 a(n) = 8 * sigma(n).

Original entry on oeis.org

8, 24, 32, 56, 48, 96, 64, 120, 104, 144, 96, 224, 112, 192, 192, 248, 144, 312, 160, 336, 256, 288, 192, 480, 248, 336, 320, 448, 240, 576, 256, 504, 384, 432, 384, 728, 304, 480, 448, 720, 336, 768, 352, 672, 624, 576, 384, 992, 456, 744, 576, 784, 432, 960, 576, 960, 640, 720, 480, 1344, 496, 768, 832
Offset: 1

Views

Author

Omar E. Pol, Sep 22 2018

Keywords

Comments

8 times the sum of the divisors of n.
a(n) is also the total number of horizontal rhombuses in the terraces of the n-th level of an irregular stepped pyramid (starting from the top) in which the structure of every 45-degree three-dimensional sector arises after the 45-degree zig-zag folding of every row of the diagram of the isosceles triangle A237593. The top of the pyramid is an eight-pointed star formed by eight rhombuses (see Links section).

Crossrefs

Programs

  • GAP
    List([1..70],n->8*Sigma(n)); # Muniru A Asiru, Sep 28 2018
  • Maple
    with(numtheory): seq(8*sigma(n), n=1..64);
  • Mathematica
    8*DivisorSigma[1,Range[70]] (* Harvey P. Dale, Dec 24 2018 *)
  • PARI
    a(n) = 8 * sigma(n);
    

Formula

a(n) = 8*A000203(n) = 4*A074400(n) = 2*A239050(n).
a(n) = A000203(n) + A319527(n).
Dirichlet g.f.: 8*zeta(s-1)*zeta(s). (After Ilya Gutkovskiy)
Conjecture: a(n) = sigma(7*n) = A283078(n) iff n is not a multiple of 7.
Conjecture is true, since sigma is multiplicative, so if (7,n) = 1 then sigma(7*n) = sigma(7)*sigma(n) = 8*sigma(n). - Charlie Neder, Oct 02 2018

A076309 a(n) = floor(n/10) - 2*(n mod 10).

Original entry on oeis.org

0, -2, -4, -6, -8, -10, -12, -14, -16, -18, 1, -1, -3, -5, -7, -9, -11, -13, -15, -17, 2, 0, -2, -4, -6, -8, -10, -12, -14, -16, 3, 1, -1, -3, -5, -7, -9, -11, -13, -15, 4, 2, 0, -2, -4, -6, -8, -10, -12, -14, 5, 3, 1, -1, -3, -5, -7, -9, -11, -13, 6, 4, 2, 0, -2, -4, -6, -8, -10
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 06 2002

Keywords

Comments

Delete the last digit from n and subtract twice this digit from the shortened number. - N. J. A. Sloane, May 25 2019
(n==0 modulo 7) iff (a(n)==0 modulo 7); applied recursively, this property provides a useful test for divisibility by 7.

Examples

			695591 is not a multiple of 7, as 695591 -> 69559-2*1=69557 -> 6955-2*7=6941 -> 694-2*1=692 -> 69-2*2=65=7*9+2, therefore the answer is NO.
Is 3206 divisible by 7? 3206 -> 320-2*6=308 -> 30-2*8=14=7*2, therefore the answer is YES, indeed 3206=2*7*229.
		

References

  • Paul Erdős and János Surányi. Topics in the Theory of Numbers. New York: Springer, 2003. Problem 6, page 3.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §4.2 Fundamental Operations, p. 121.
  • Karl Menninger, Rechenkniffe, Vandenhoeck & Ruprecht in Goettingen (1961), 79A.

Crossrefs

Programs

  • Haskell
    a076309 n =  n' - 2 * m where (n', m) = divMod n 10
    -- Reinhard Zumkeller, Jun 01 2013
    
  • Mathematica
    Table[Floor[n/10] - 2*Mod[n, 10], {n, 0, 100}] (* G. C. Greubel, Apr 07 2016 *)
  • PARI
    a(n) = n\10 - 2*(n % 10); \\ Michel Marcus, Apr 07 2016

Formula

From R. J. Mathar, Nov 23 2010: (Start)
a(n) = a(n-1) + a(n-10) - a(n-11).
G.f.: x*(-2 -2*x -2*x^2 -2*x^3 -2*x^4 -2*x^5 -2*x^6 -2*x^7 -2*x^8 +19*x^9)/((1+x)*(x^4-x^3+x^2-x+1)*(x^4+x^3+x^2+x+1)*(x-1)^2). (End)

A094053 Triangle read by rows: T(n,k) = k*(n-k), 1 <= k <= n.

Original entry on oeis.org

0, 1, 0, 2, 2, 0, 3, 4, 3, 0, 4, 6, 6, 4, 0, 5, 8, 9, 8, 5, 0, 6, 10, 12, 12, 10, 6, 0, 7, 12, 15, 16, 15, 12, 7, 0, 8, 14, 18, 20, 20, 18, 14, 8, 0, 9, 16, 21, 24, 25, 24, 21, 16, 9, 0, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 0, 11, 20, 27, 32, 35, 36, 35, 32, 27, 20, 11, 0, 12
Offset: 1

Views

Author

Reinhard Zumkeller, May 31 2004

Keywords

Comments

T(n,k) = A003991(n-1,k) for 1 <= k < n;
T(n,k) = T(n,n-1-k) for k < n;
T(n,1) = n-1; T(n,n) = 0; T(n,2) = A005843(n-2) for n > 1;
T(n,3) = A008585(n-3) for n>2; T(n,4) = A008586(n-4) for n > 3;
T(n,5) = A008587(n-5) for n>4; T(n,6) = A008588(n-6) for n > 5;
T(n,7) = A008589(n-7) for n>6; T(n,8) = A008590(n-8) for n > 7;
T(n,9) = A008591(n-9) for n>8; T(n,10) = A008592(n-10) for n > 9;
T(n,11) = A008593(n-11) for n>10; T(n,12) = A008594(n-12) for n > 11;
T(n,13) = A008595(n-13) for n>12; T(n,14) = A008596(n-14) for n > 13;
T(n,15) = A008597(n-15) for n>14; T(n,16) = A008598(n-16) for n > 15;
T(n,17) = A008599(n-17) for n>16; T(n,18) = A008600(n-18) for n > 17;
T(n,19) = A008601(n-19) for n>18; T(n,20) = A008602(n-20) for n > 19;
Row sums give A000292; triangle sums give A000332;
All numbers m > 0 occur A000005(m) times;
A002378(n) = T(A005408(n),n+1) = n*(n+1).
k-th columns are arithmetic progressions with step k, starting with 0. If a zero is prefixed to the sequence, then we get a new table where the columns are again arithmetic progressions with step k, but starting with k, k=0,1,2,...: 1st column = (0,0,0,...), 2nd column = (1,2,3,...), 3rd column = (2,4,6,8,...), etc. - M. F. Hasler, Feb 02 2013
Construct the infinite-dimensional matrix representation of angular momentum operators (J_1,J_2,J_3) in the Jordan-Schwinger form (cf. Harter, Klee, Schwinger). The triangle terms T(n,k) = T(2j,j+m) satisfy: (1/2)T(2j,j+m)^(1/2) = = = i = -i . Matrices for J_1 and J_2 are sparse. These equalities determine the only nonzero entries. - Bradley Klee, Jan 29 2016
T(n+1,k+1) is the number of degrees of freedom of a k-dimensional affine subspace within an n-dimensional vector space. This is most readily interpreted geometrically: e.g. in 3 dimensions a line (1-dimensional subspace) has T(4,2) = 4 degrees of freedom and a plane has T(4,3) = 3. T(n+1,1) = n indicates that points in n dimensions have n degrees of freedom. T(n,n) = 0 for any n as all n-dimensional spaces in an n-dimensional space are equivalent. - Daniel Leary, Apr 29 2020

Examples

			From _M. F. Hasler_, Feb 02 2013: (Start)
Triangle begins:
  0;
  1, 0;
  2, 2, 0;
  3, 4, 3, 0;
  4, 6, 6, 4, 0;
  5, 8, 9, 8, 5, 0;
  (...)
If an additional 0 was added at the beginning, this would become:
  0;
  0, 1;
  0, 2, 2;
  0, 3, 4; 3;
  0, 4, 6, 6, 4;
  0, 5, 8, 9, 8, 5;
  ... (End)
		

Crossrefs

J_3: A114327; J_1^2, J_2^2: A141387, A268759.
Cf. A000292 (row sums), A000332 (triangle sums).
T(n,k) for values of k:
A005843 (k=2), A008585 (k=3), A008586 (k=4), A008587 (k=5), A008588 (k=6), A008589 (k=7), A008590 (k=8), A008591 (k=9), A008592 (k=10), A008593 (k=11), A008594 (k=12), A008595 (k=13), A008596 (k=14), A008597 (k=15), A008598 (k=16), A008599 (k=17), A008600 (k=18), A008601 (k=19), A008602 (k=20).

Programs

  • Magma
    /* As triangle */ [[k*(n-k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Jan 30 2016
    
  • Mathematica
    Flatten[Table[(j - m) (j + m + 1), {j, 0, 10, 1/2}, {m, -j, j}]] (* Bradley Klee, Jan 29 2016 *)
  • PARI
    {for(n=1, 13, for(k=1, n, print1(k*(n - k)," ");); print(););} \\ Indranil Ghosh, Mar 12 2017

A123866 a(n) = n^6 - 1.

Original entry on oeis.org

0, 63, 728, 4095, 15624, 46655, 117648, 262143, 531440, 999999, 1771560, 2985983, 4826808, 7529535, 11390624, 16777215, 24137568, 34012223, 47045880, 63999999, 85766120, 113379903, 148035888, 191102975, 244140624, 308915775, 387420488
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 16 2006

Keywords

Comments

a(n) mod 7 = 0 iff n mod 7 > 0: a(A008589(n))=6; a(A047304(n)) = 0; a(n) mod 7 = 6*(1-A082784(n)).
a(n) = A005563(n-1)*A059826(n) = A068601(n)*A001093(n). - Reinhard Zumkeller, Feb 02 2007

Crossrefs

Programs

Formula

G.f.: x^2*(63 + 287*x + 322*x^2 + 42*x^3 + 7*x^4 - x^5)/(1-x)^7. - Colin Barker, May 08 2012
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7); a(1)=0, a(2)=63, a(3)=728, a(4)=4095, a(5)=15624, a(6)=46655, a(7)=117648. - Harvey P. Dale, Nov 18 2012
Sum_{n>=2} 1/a(n) = 11/12 - Pi*sqrt(3)*tanh(Pi*sqrt(3)/2)/6. - Vaclav Kotesovec, Feb 14 2015
E.g.f.: 1 + (-1 + x + 31*x^2 + 90*x^3 + 65*x^4 + 15*x^5 + x^6)*exp(x). - G. C. Greubel, Aug 08 2019
Product_{n>=2} (1 + 1/a(n)) = 6*Pi^2*sech(sqrt(3)*Pi/2)^2. - Amiram Eldar, Jan 20 2021

A087075 Multiples of 7 with digits grouped in pairs and leading zeros omitted.

Original entry on oeis.org

71, 42, 12, 83, 54, 24, 95, 66, 37, 7, 78, 49, 19, 81, 5, 11, 21, 19, 12, 61, 33, 14, 1, 47, 15, 41, 61, 16, 81, 75, 18, 21, 89, 19, 62, 3, 21, 2, 17, 22, 42, 31, 23, 82, 45, 25, 22, 59, 26, 62, 73, 28, 2, 87, 29, 43, 1, 30, 83, 15, 32, 23, 29, 33, 63, 43, 35, 3, 57, 36, 43, 71
Offset: 1

Views

Author

N. J. A. Sloane, Oct 19 2003

Keywords

Crossrefs

Programs

  • Mathematica
    FromDigits /@ Partition[ Flatten[ IntegerDigits[ Table[ 7n, {n, 1, 60}]]], 2] (* Robert G. Wilson v *)
    (IntegerDigits/@(7 Range[16]))//peek//Flatten//Partition[ #, 2]&// Map[FromDigits, # ]& (* Ken Levasseur *)

Extensions

More terms from Ray Chandler, Oct 20 2003
Previous Showing 21-30 of 81 results. Next