cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 212 results. Next

A009966 Powers of 22.

Original entry on oeis.org

1, 22, 484, 10648, 234256, 5153632, 113379904, 2494357888, 54875873536, 1207269217792, 26559922791424, 584318301411328, 12855002631049216, 282810057883082752, 6221821273427820544, 136880068015412051968, 3011361496339065143296, 66249952919459433152512, 1457498964228107529355264, 32064977213018365645815808, 705429498686404044207947776
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(1, 22), L(1, 22), P(1, 22), T(1, 22). Essentially same as Pisot sequences E(22, 484), L(22, 484), P(22, 484), T(22, 484). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 22-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011

Crossrefs

Programs

Formula

G.f.: 1/(1-22*x). - Philippe Deléham, Nov 23 2008
a(n) = 22^n; a(n) = 22*a(n-1) n>0 a(0)=1. - Vincenzo Librandi, Nov 21 2010
From Elmo R. Oliveira, Jul 08 2025: (Start)
E.g.f.: exp(22*x).
a(n) = A000079(n)*A001020(n) = A009988(n)/A000079(n). (End)

A009981 Powers of 37.

Original entry on oeis.org

1, 37, 1369, 50653, 1874161, 69343957, 2565726409, 94931877133, 3512479453921, 129961739795077, 4808584372417849, 177917621779460413, 6582952005840035281, 243569224216081305397, 9012061295995008299689
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(1, 37), L(1, 37), P(1, 37), T(1, 37). Essentially same as Pisot sequences E(37, 1369), L(37, 1369), P(37, 1369), T(37, 1369). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 37-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
Numbers n such that sigma(37*n) = 37*n + sigma(n). - Jahangeer Kholdi, Nov 23 2013

References

  • C. W. Trigg, The Powers of 37, Journal of Recreational Mathematics, Vol. 12:3 (1979-80), 186-191.

Programs

Formula

G.f.: 1/(1-37*x). - Philippe Deléham, Nov 24 2008
a(n)=37^n; a(n)=37*a(n-1) n>0 a(0)=1. - Vincenzo Librandi, Nov 21 2010

Extensions

Reference added by William Rex Marshall, Nov 13 2010

A168607 a(n) = 3^n + 2.

Original entry on oeis.org

3, 5, 11, 29, 83, 245, 731, 2189, 6563, 19685, 59051, 177149, 531443, 1594325, 4782971, 14348909, 43046723, 129140165, 387420491, 1162261469, 3486784403, 10460353205, 31381059611, 94143178829, 282429536483, 847288609445
Offset: 0

Views

Author

Vincenzo Librandi, Dec 01 2009

Keywords

Comments

Second bisection is A134752.
It appears that if s(n) is a first order rational sequence of the form s(1)=5, s(n)= (2*s(n-1)+1)/(s(n-1)+2),n>1, then s(n)= a(n)/(a(n)-4), n>1. - Gary Detlefs, Nov 16 2010
Mahler exhibits this sequence with n>=1 as a proof that there exists an infinite number of x coprime to 3, such that x belongs to A125293 and x^2 belongs to A005836. - Michel Marcus, Nov 12 2012

Crossrefs

Cf. A008776 (2*3^n), A005051 (8*3^n), A034472 (3^n+1), A000244 (powers of 3), A024023 (3^n-1), A168609 (3^n+4), A168610 (3^n+5), A134752 (3^(2*n-1)+2).

Programs

Formula

a(n) = 3*a(n-1) - 4, a(0) = 3.
a(n+1) - a(n) = A008776(n).
a(n+2) - a(n) = A005051(n).
a(n) = A034472(n)+1 = A000244(n)+2 = A024023(n)+3 = A168609(n)-2 = A168610(n)-3.
G.f.: (3 - 7*x)/((1 - x)*(1 - 3*x)).
a(n) = 4*a(n-1) - 3*a(n-2), a(0) = 3, a(1) = 5. - Vincenzo Librandi, Feb 06 2013
E.g.f.: exp(3*x) + 2*exp(x). - Elmo R. Oliveira, Nov 09 2023

Extensions

Edited by Klaus Brockhaus, Apr 13 2010
Further edited by N. J. A. Sloane, Aug 10 2010

A020707 Pisot sequences E(4,8), L(4,8), P(4,8), T(4,8).

Original entry on oeis.org

4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
Offset: 0

Views

Author

Keywords

Comments

Subsequence of A051916. - Reinhard Zumkeller, Mar 20 2010

Crossrefs

Subsequence of A000079. See A008776 for definitions of Pisot sequences.
Cf. A051916.

Programs

Formula

a(n) = 2^(n+2).
a(n) = 2*a(n-1).
G.f.: 4/(1-2*x). - Philippe Deléham, Nov 23 2008
E.g.f.: 4*exp(2*x). - Stefano Spezia, May 15 2021

A009985 Powers of 41.

Original entry on oeis.org

1, 41, 1681, 68921, 2825761, 115856201, 4750104241, 194754273881, 7984925229121, 327381934393961, 13422659310152401, 550329031716248441, 22563490300366186081, 925103102315013629321, 37929227194915558802161
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(1, 41), L(1, 41), P(1, 41), T(1, 41). Essentially same as Pisot sequences E(41, 1681), L(41, 1681), P(41, 1681), T(41, 1681). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 41-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
Numbers n such that sigma(41*n) = 41*n + sigma(n). - Jahangeer Kholdi, Nov 23 2013

Programs

Formula

G.f.: 1/(1-41*x). - Philippe Deléham, Nov 24 2008
a(n) = 41^n; a(n) = 41*a(n-1), a(0)=1. - Vincenzo Librandi, Nov 21 2010

A009992 Powers of 48: a(n) = 48^n.

Original entry on oeis.org

1, 48, 2304, 110592, 5308416, 254803968, 12230590464, 587068342272, 28179280429056, 1352605460594688, 64925062108545024, 3116402981210161152, 149587343098087735296, 7180192468708211294208, 344649238497994142121984, 16543163447903718821855232
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(1, 48), L(1, 48), P(1, 48), T(1, 48). Essentially same as Pisot sequences E(48, 2304), L(48, 2304), P(48, 2304), T(48, 2304). See A008776 for definitions of Pisot sequences.
If X_1, X_2, ..., X_n is a partition of the set {1,2,...,2*n} into blocks of size 2 then, for n>=1, a(n) is equal to the number of functions f : {1,2,..., 2*n}->{1,2,3,4,5,6,7} such that for fixed y_1,y_2,...,y_n in {1,2,3,4,5,6,7} we have f(X_i)<>{y_i}, (i=1,2,...,n). - Milan Janjic, May 24 2007
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 48-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011

Crossrefs

Cf. A001018 (powers of 8), ..., A001029 (powers of 19), A009964 (powers of 20), ..., A009991 (powers of 47), A087752 (powers of 49).
Cf. A000079 (2^n), A000244 (3^n), A000302 (4^n), A000400 (6^n), A001018 (8^n), A001021 (12^n), A001025 (16^n), A009968 (24^n).

Programs

Formula

G.f.: 1/(1-48*x). - Philippe Deléham, Nov 24 2008
a(n) = 48^n; a(n) = 48*a(n-1), a(0)=1. - Vincenzo Librandi, Nov 21 2010
E.g.f.: exp(48*x). - Muniru A Asiru, Nov 21 2018

Extensions

Edited by M. F. Hasler, Apr 19 2015

A020701 Pisot sequences E(3,5), P(3,5).

Original entry on oeis.org

3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 63245986, 102334155, 165580141
Offset: 0

Views

Author

Keywords

Comments

Number of meaningful differential operations of the (n+1)-th order on the space R^3. - Branko Malesevic, Feb 29 2004
Pisano period lengths: A001175. - R. J. Mathar, Aug 10 2012

Examples

			Meaningful second-order differential operations appear in the form of five compositions as follows: 1. div grad f 2. curl curl F 3. grad div F 4. div curl F (=0) 5. curl grad f (=0)
Meaningful third-order differential operations appear in the form of eight compositions as follows: 1. grad div grad f 2. curl curl curl F 3. div grad div F 4. div curl curl F (=0) 5. div curl grad f (=0) 6. curl curl grad f (=0) 7. curl grad div F (=0) 8. grad div curl F (=0)
		

Crossrefs

Subsequence of A020695 and hence A000045. See A008776 for definitions of Pisot sequences.

Programs

Formula

a(n) = Fib(n+4). a(n) = a(n-1) + a(n-2).
a(n) = A020695(n+1). - R. J. Mathar, May 28 2008
G.f.: (3+2*x)/(1-x-x^2). - Philippe Deléham, Nov 19 2008
a(n) = (2^(-1-n)*((1-sqrt(5))^n*(-7+3*sqrt(5))+(1+sqrt(5))^n*(7+3*sqrt(5))))/sqrt(5). - Colin Barker, Jun 05 2016
E.g.f.: (7*sqrt(5)*sinh(sqrt(5)*x/2) + 15*cosh(sqrt(5)*x/2))*exp(x/2)/5. - Ilya Gutkovskiy, Jun 05 2016

A087752 Powers of 49.

Original entry on oeis.org

1, 49, 2401, 117649, 5764801, 282475249, 13841287201, 678223072849, 33232930569601, 1628413597910449, 79792266297612001, 3909821048582988049, 191581231380566414401, 9387480337647754305649, 459986536544739960976801, 22539340290692258087863249, 1104427674243920646305299201
Offset: 0

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Oct 02 2003

Keywords

Comments

Same as Pisot sequences E(1, 49), L(1, 49), P(1, 49), T(1, 49). Essentially same as Pisot sequences E(49, 2401), L(49, 2401), P(49, 2401), T(49, 2401). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 49-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011

Crossrefs

Bisection of A000420.
Cf. A001018 (powers of 8), ..., A001029 (powers of 19), A009964 (powers of 20), ..., A009992 (powers of 48).

Programs

Formula

G.f.: 1/(1-49*x). - Philippe Deléham, Nov 24 2008
From Vincenzo Librandi, Nov 21 2010: (Start)
a(n) = 49^n.
a(n) = 49*a(n-1), a(0)=1. (End)
From Elmo R. Oliveira, Jul 08 2025: (Start)
E.g.f.: exp(49*x).
a(n) = A000420(A005843(n)). (End)

Extensions

Edited by M. F. Hasler, Apr 19 2015

A275037 T(n,k)=Number of nXk 0..2 arrays with no element equal to any value at offset (0,-1) (-1,-2) or (-2,0) and new values introduced in order 0..2.

Original entry on oeis.org

1, 1, 2, 2, 6, 3, 4, 16, 18, 6, 8, 48, 46, 54, 12, 16, 144, 137, 146, 162, 24, 32, 432, 401, 570, 450, 486, 48, 64, 1296, 1152, 2185, 2334, 1428, 1458, 96, 128, 3888, 3336, 8273, 11624, 9774, 4463, 4374, 192, 256, 11664, 9720, 31495, 57984, 64045, 40572, 14086
Offset: 1

Views

Author

R. H. Hardin, Jul 14 2016

Keywords

Comments

Table starts
...1.....1......2.......4........8.........16..........32...........64
...2.....6.....16......48......144........432........1296.........3888
...3....18.....46.....137......401.......1152........3336.........9720
...6....54....146.....570.....2185.......8273.......31495.......120845
..12...162....450....2334....11624......57984......290927......1465435
..24...486...1428....9774....64045.....421793.....2788663.....18527905
..48..1458...4463...40572...351197....3056856....26631796....233894638
..96..4374..14086..169348..1931619...22207559...255796423...2976710318
.192.13122..44195..704704.10581148..160767947..2451632155..37779884891
.384.39366.139130.2937764.58059378.1166126087.23548292980.480461388679

Examples

			Some solutions for n=4 k=4
..0..1..2..1. .0..1..2..1. .0..1..0..1. .0..1..0..2. .0..1..0..2
..1..0..1..2. .2..0..1..0. .2..0..2..0. .0..1..2..0. .0..2..1..0
..1..2..0..2. .1..0..1..2. .2..0..1..2. .1..2..1..0. .1..0..2..0
..0..1..2..0. .1..2..0..1. .1..2..1..2. .1..2..0..1. .2..0..2..1
		

Crossrefs

Column 1 is A003945(n-2).
Column 2 is A008776(n-1).
Row 1 is A000079(n-2).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) for n>3
k=2: a(n) = 3*a(n-1) for n>2
k=3: [order 16] for n>17
k=4: [order 35] for n>37
k=5: [order 70] for n>74
Empirical for row n:
n=1: a(n) = 2*a(n-1) for n>2
n=2: a(n) = 3*a(n-1) for n>3
n=3: [order 9] for n>10
n=4: [order 17] for n>19
n=5: [order 28] for n>32
n=6: [order 67] for n>72

A005051 a(n) = 8*3^n.

Original entry on oeis.org

8, 24, 72, 216, 648, 1944, 5832, 17496, 52488, 157464, 472392, 1417176, 4251528, 12754584, 38263752, 114791256, 344373768, 1033121304, 3099363912, 9298091736, 27894275208, 83682825624, 251048476872, 753145430616, 2259436291848, 6778308875544, 20334926626632
Offset: 0

Views

Author

Keywords

Comments

For n>=3, a(n-3) is equal to the number of functions f:{1,2,...,n}->{1,2,3} such that for fixed, different x_1, x_2, x_3 in {1,2,...,n} and fixed y_1, y_2, y_3 in {1,2,3} we have f(x_i)<>y_i, (i=1,2,3). - Milan Janjic, May 13 2007

Crossrefs

Programs

Formula

a(n) = 3*a(n-1). G.f.: 8/(1-3*x). - Colin Barker, Jul 02 2012
From Elmo R. Oliveira, Aug 16 2024: (Start)
E.g.f.: 8*exp(3*x).
a(n) = 8*A000244(n) = 4*A008776(n). (End)
Previous Showing 41-50 of 212 results. Next