cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 102 results. Next

A015306 Gaussian binomial coefficient [ n,5 ] for q = -3.

Original entry on oeis.org

1, -182, 49777, -11662040, 2869444942, -694405675964, 168973319623174, -41041673208656120, 9974653139743515223, -2423717068608654822146, 588973263031690760850991, -143119691677080990521708240
Offset: 5

Views

Author

Olivier Gérard, Dec 11 1999

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Gaussian binomial coefficient [n, k]_q for q = -3: A015251 (k = 2), A015268 (k = 3), A015288 (k = 4), this sequence (k = 5), A015324 (k = 6), A015340 (k = 7), A015357 (k = 8), A015375 (k = 9), A015388 (k = 10).
Gaussian binomial coefficients [n,5]: A015305 (q=-2), this sequence (q=-3), A015308 (q=-4), A015309 (q=-5), A015310 (q=-6), A015312 (q=-7), A015313 (q=-8), A015315 (q=-9), A015316 (q=-10), A015317 (q=-11), A015319 (q=-12), A015321 (q=-13).

Programs

  • GAP
    List([5..25], n-> (1 -61*(-3)^(n-4) +610*(-3)^(2*n-7) - 610*(-3)^(3*n-9) +61*(-3)^(4*n-10) -(-3)^(5*n-10))/17489920); # G. C. Greubel, Sep 21 2019
  • Magma
    [(1 - 61*(-3)^(n-4) + 610*(-3)^(2*n-7) - 610*(-3)^(3*n-9) + 61*(-3)^(4*n-10) - (-3)^(5*n-10))/17489920: n in [5..25]]; // G. C. Greubel, Sep 21 2019
    
  • Maple
    seq((1 - 61*(-3)^(n-4) + 610*(-3)^(2*n-7) - 610*(-3)^(3*n-9) + 61*(-3)^(4*n-10) - (-3)^(5*n-10))/17489920, n=5..25); # G. C. Greubel, Sep 21 2019
  • Mathematica
    Table[QBinomial[n, 5, -3], {n, 5, 20}] (* Vincenzo Librandi, Oct 29 2012 *)
  • PARI
    a(n) = (1 - 61*(-3)^(n-4) + 610*(-3)^(2*n-7) - 610*(-3)^(3*n-9) + 61*(-3)^(4*n-10) - (-3)^(5*n-10))/17489920 \\ G. C. Greubel, Sep 21 2019
    
  • Sage
    [gaussian_binomial(n,5,-3) for n in range(5,17)] # Zerinvary Lajos, May 27 2009
    

Formula

G.f.: x^5/((1-x)*(1+3*x)*(1-9*x)*(1+27*x)*(1-81*x)*(1+243*x)). - R. J. Mathar, Aug 03 2016
From G. C. Greubel, Sep 21 2019: (Start)
a(n) = (1 - 61*(-3)^(n-4) + 610*(-3)^(2*n-7) - 610*(-3)^(3*n-9) + 61*(-3)^(4*n-10) - (-3)^(5*n-10))/17489920.
E.g.f.: exp(-243*x)*(-1 +1830*exp(216*x) -44469*exp(240*x) +59049*exp(244 *x) -16470*exp(252*x) +61*exp(324*x))/1032762286080. (End)
G.f. with offset 0: exp(Sum_{n >= 1} A015518(6*n)/A015518(n) * (-x)^n/n) = 1 - 182*x + 49777*x^2 - .... - Peter Bala, Jun 29 2025

A015577 a(n+1) = 8*a(n) + 9*a(n-1), a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 8, 73, 656, 5905, 53144, 478297, 4304672, 38742049, 348678440, 3138105961, 28242953648, 254186582833, 2287679245496, 20589113209465, 185302018885184, 1667718169966657, 15009463529699912, 135085171767299209, 1215766545905692880, 10941898913151235921
Offset: 0

Views

Author

Keywords

Comments

Binomial transform is A011557, with a leading zero. - Paul Barry, Jul 09 2003
Number of walks of length n between any two distinct nodes of the complete graph K_10. Example: a(2) = 8 because the walks of length 2 between the nodes A and B of the complete graph ABCDEFGHIJ are: ACB, ADB, AEB, AFB, AGB, AHB, AIB and AJB. - Emeric Deutsch, Apr 01 2004
The ratio a(n+1)/a(n) converges to 9 as n approaches infinity. - Felix P. Muga II, Mar 09 2014

Crossrefs

Programs

Formula

From Paul Barry, Jul 09 2003: (Start)
G.f.: x/((1+x)*(1-9*x)).
E.g.f. exp(4*x)*sinh(5*x)/5.
a(n) = (9^n - (-1)^n)/10. (End)
a(n) = 9^(n-1)-a(n-1). - Emeric Deutsch, Apr 01 2004
a(n) = round(9^n/10). - Mircea Merca, Dec 28 2010

Extensions

Extended by T. D. Noe, May 23 2011

A105723 a(n) = 3^n - (-1)^n.

Original entry on oeis.org

0, 4, 8, 28, 80, 244, 728, 2188, 6560, 19684, 59048, 177148, 531440, 1594324, 4782968, 14348908, 43046720, 129140164, 387420488, 1162261468, 3486784400, 10460353204, 31381059608, 94143178828, 282429536480, 847288609444, 2541865828328, 7625597484988
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 18 2005

Keywords

Crossrefs

Programs

Formula

a(n) = A102345(n) - 2*(-1)^n; (a(n) + A102345(n))/2 = A000244(n);
A007814(a(n)) = A085058(n-1) for n > 0.
E.g.f.: exp(3*x) - exp(-x). - G. C. Greubel, Nov 21 2018
G.f.: 4*x/((1+x)*(1-3*x)). - R. J. Mathar, Mar 08 2021
a(n) = 4*A015518(n). - R. J. Mathar, Mar 08 2021

Extensions

Corrected by T. D. Noe, Dec 11 2006

A239473 Triangle read by rows: signed version of A059260: coefficients for expansion of partial sums of sequences a(n,x) in terms of their binomial transforms (1+a(.,x))^n ; Laguerre polynomial expansion of the truncated exponential.

Original entry on oeis.org

1, 0, 1, 1, -1, 1, 0, 2, -2, 1, 1, -2, 4, -3, 1, 0, 3, -6, 7, -4, 1, 1, -3, 9, -13, 11, -5, 1, 0, 4, -12, 22, -24, 16, -6, 1, 1, -4, 16, -34, 46, -40, 22, -7, 1, 0, 5, -20, 50, -80, 86, -62, 29, -8, 1, 1, -5, 25, -70, 130, -166, 148, -91, 37, -9, 1, 0, 6, -30, 95, -200, 296, -314, 239, -128, 46, -10, 1
Offset: 0

Views

Author

Tom Copeland, Mar 19 2014

Keywords

Comments

With T the lower triangular array above and the Laguerre polynomials L(k,x) = Sum_{j=0..k} (-1)^j binomial(k, j) x^j/j!, the following identities hold:
(A) Sum_{k=0..n} (-1)^k L(k,x) = Sum_{k=0..n} T(n,k) x^k/k!;
(B) Sum_{k=0..n} x^k/k! = Sum_{k=0..n} T(n,k) L(k,-x);
(C) Sum_{k=0..n} x^k = Sum_{k=0..n} T(n,k) (1+x)^k = (1-x^(n+1))/(1-x).
More generally, for polynomial sequences,
(D) Sum_{k=0..n} P(k,x) = Sum_{k=0..n} T(n,k) (1+P(.,x))^k,
where, e.g., for an Appell sequence, such as the Bernoulli polynomials, umbrally, (1+ Ber(.,x))^k = Ber(k,x+1).
Identity B follows from A through umbral substitution of j!L(j,-x) for x^j in A. Identity C, related to the cyclotomic polynomials for prime index, follows from B through the Laplace transform.
Integrating C gives Sum_{k=0..n} T(n,k) (2^(k+1)-1)/(k+1) = H(n+1), the harmonic numbers.
Identity A >= 0 for x >= 0 (see MathOverflow link for evaluation in terms of Hermite polynomials).
From identity C, W(m,n) = (-1)^n Sum_{k=0..n} T(n,k) (2-m)^k = number of walks of length n+1 between any two distinct vertices of the complete graph K_m for m > 2.
Equals A112468 with the first column of ones removed. - Georg Fischer, Jul 26 2023

Examples

			Triangle begins:
   1
   0    1
   1   -1    1
   0    2   -2    1
   1   -2    4   -3    1
   0    3   -6    7   -4    1
   1   -3    9  -13   11   -5    1
   0    4  -12   22  -24   16   -6    1
   1   -4   16  -34   46  -40   22   -7    1
   0    5  -20   50  -80   86  -62   29   -8    1
   1   -5   25  -70  130 -166  148  -91   37   -9    1
		

Crossrefs

For column 2: A001057, A004526, A008619, A140106.
Column 3: A002620, A087811.
Column 4: A002623, A173196.
Column 5: A001752.
Column 6: A001753.
Cf. Bottomley's cross-references in A059260.
Embedded in alternating antidiagonals of T are the reversals of arrays A071921 (A225010) and A210220.

Programs

  • Magma
    [[(&+[(-1)^(j+k)*Binomial(j,k): j in [0..n]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Feb 06 2018
    
  • Maple
    A239473 := proc(n,k)
        add(binomial(j,k)*(-1)^(j+k),j=k..n) ;
    end proc; # R. J. Mathar, Jul 21 2016
  • Mathematica
    Table[Sum[(-1)^(j+k)*Binomial[j,k], {j,0,n}], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 06 2018 *)
  • PARI
    for(n=0,10, for(k=0,n, print1(sum(j=0,n, (-1)^(j+k)*binomial(j, k)), ", "))) \\ G. C. Greubel, Feb 06 2018
    
  • Sage
    Trow = lambda n: sum((x-1)^j for j in (0..n)).list()
    for n in (0..10): print(Trow(n)) # Peter Luschny, Jul 09 2019

Formula

T(n, k) = Sum_{j=0..n} (-1)^(j+k) * binomial(j, k).
E.g.f: (exp(t) - (x-1)*exp((x-1)*t))/(2-x).
O.g.f. (n-th row): (1-(x-1)^(n+1))/(2-x).
Associated operator identities:
With D=d/dx, :xD:^n=x^n*D^n, and :Dx:^n=D^n*x^n, then bin(xD,n)= binomial(xD,n)=:xD:^n/n! and L(n,-:xD:)=:Dx:^n/n!=bin(xD+n,n)=(-1)^n bin(-xD-1,n),
A-o) Sum_{k=0..n} (-1)^k L(k,-:xD:) = Sum_{k=0..n} :-Dx:^k/k!
= Sum_{k=0..n} T(n,k) :-xD:^k/k! = Sum_{k=0..n} (-1)^k T(n,k)bin(xD,k)
B-o) Sum_{k=0..n} :xD:^k/k! = Sum_{k=0..n}, T(n,k) L(k,-:xD:)
= Sum_{k=0..n} T(n,k) :Dx:^k/k! = Sum_{k=0..n}, bin(xD,k).
Associated binomial identities:
A-b) Sum_{k=0..n} (-1)^k bin(s+k,k) = Sum_{k=0..n} (-1)^k T(n,k) bin(s,k)
= Sum_{k=0..n} bin(-s-1,k) = Sum{k=0..n} T(n,k) bin(-s-1+k,k)
B-b) Sum_{k=0..n} bin(s,k) = Sum_{k=0..n} T(n,k) bin(s+k,k)
= Sum_{k=0..n} (-1)^k bin(-s-1+k,k)
= Sum_{k=0..n} (-1)^k T(n,k) bin(-s-1,k).
In particular, from B-b with s=n, Sum_{k=0..n} T(n,k) bin(n+k,k) = 2^n. From B-b with s=0, row sums are all 1.
From identity C with x=-2, the unsigned row sums are the Jacobsthal sequence, i.e., Sum_{k=0..n} T(n,k) (1+(-2))^k = (-1)^n A001045(n+1); for x=2, the Mersenne numbers A000225; for x=-3, A014983 or signed A015518; for x=3, A003462; for x=-4, A014985 or signed A015521; for x=4, A002450; for x=-5, A014986 or signed A015531; and for x=5, A003463; for x=-6, A014987 or signed A015540; and for x=6, A003464.
With -s-1 = m = 0,1,2,..., B-b gives finite differences (recursions):
Sum_{k=0..n} (-1)^k T(n,k) bin(m,k) = Sum_{k=0..n} (-1)^k bin(m+k,k) = T(n+m,m), i.e., finite differences of the columns of T generate shifted columns of T. The columns of T are signed, shifted versions of sequences listed in the cross-references. Since the finite difference is an involution, T(n,k) = Sum_{j=0..k} (-1)^j T(n+j,j) bin(k,j)}. Gauss-Newton interpolation can be applied to give a generalized T(n,s) for s noninteger.
From identity C, S(n,m) = Sum_{k=0..n} T(n,k) bin(k,m) = 1 for m < n+1 and 0 otherwise, i.e., S = T*P, where S = A000012, as a lower triangular matrix and P = Pascal = A007318, so T = S*P^(-1), where P^(-1) = A130595, the signed Pascal array (see A132440), the inverse of P, and T^(-1) = P*S^(-1) = P*A167374 = A156644.
U(n,cos(x)) = e^(-n*i*x)*Sum_{k=0..n} T(n,k)*(1+e^(2*i*x))^k = sin((n+1)x)/sin(x), where U is the Chebyschev polynomial of the second kind A053117 and i^2 = -1. - Tom Copeland, Oct 18 2014
From Tom Copeland, Dec 26 2015: (Start)
With a(n,x) = e^(nx), the partial sums are 1+e^x+...+e^(nx) = Sum_{k=0..n} T(n,k) (1+e^x)^k = [ x / (e^x-1) ] [ e^((n+1)x) -1 ] / x = [ (x / (e^x-1)) e^((n+1)x) - (x / (e^x-1)) ] / x = Sum_{k>=0} [ (Ber(k+1,n+1) - Ber(k+1,0)) / (k+1) ] * x^k/k!, where Ber(n,x) are the Bernoulli polynomials (cf. Adams p. 140). Evaluating (d/dx)^m at x=0 of these expressions gives relations among the partial sums of the m-th powers of the integers, their binomial transforms, and the Bernoulli polynomials.
With a(n,x) = (-1)^n e^(nx), the partial sums are 1-e^x+...+(-1)^n e^(nx) = Sum_{k=0..n} T(n,k) (1-e^x)^k = [ (-1)^n e^((n+1)x) + 1 ] / (e^x+1) = [ (-1)^n (2 / (e^x+1)) e^((n+1)x) + (2 / (e^x+1)) ] / 2 = (1/2) Sum_{k>=0} [ (-1)^n Eul(k,n+1) + Eul(k,0) ] * x^k/k!, where Eul(n,x) are the Euler polynomials. Evaluating (d/dx)^m at x=0 of these expressions gives relations among the partial sums of signed m-th powers of the integers; their binomial transforms, related to the Stirling numbers of the second kind and face numbers of the permutahedra; and the Euler polynomials. (End)
As in A059260, a generator in terms of bivariate polynomials with the coefficients of this entry is given by (1/(1-y))*1/(1 + (y/(1-y))*x - (1/(1-y))*x^2) = 1 + y + (x^2 - x*y + y^2) + (2*x^2*y - 2*x*y^2 + y^3) + (x^4 - 2*x^3*y + 4*x^2*y^2 - 3*x*y^3 + y^4) + ... . This is of the form -h2 * 1 / (1 + h1*x + h2*x^2), related to the bivariate generator of A049310 with h1 = y/(1-y) and h2 = -1/(1-y) = -(1+h1). - Tom Copeland, Feb 16 2016
From Tom Copeland, Sep 05 2016: (Start)
Letting P(k,x) = x in D gives Sum_{k=0..n} T(n,k)*Sum_{j=0..k} binomial(k,j) = Sum_{k=0..n} T(n,k) 2^k = n + 1.
The quantum integers [n+1]q = (q^(n+1) - q^(-n-1)) / (q - q^(-1)) = q^(-n)*(1 - q^(2*(n+1))) / (1 - q^2) = q^(-n)*Sum{k=0..n} q^(2k) = q^(-n)*Sum_{k=0..n} T(n,k)*(1 + q^2)^k. (End)
T(n, k) = [x^k] Sum_{j=0..n} (x-1)^j. - Peter Luschny, Jul 09 2019
a(n) = -n + Sum_{k=0..n} A341091(k). - Thomas Scheuerle, Jun 17 2022

Extensions

Inverse array added by Tom Copeland, Mar 26 2014
Formula re Euler polynomials corrected by Tom Copeland, Mar 08 2024

A015268 Gaussian binomial coefficient [ n,3 ] for q = -3.

Original entry on oeis.org

1, -20, 610, -15860, 433771, -11662040, 315323620, -8509702520, 229798289941, -6204226946060, 167517069529030, -4522934399547980, 122119467087816511, -3297223466672052080, 89025052902439936840, -2403676254645238280240
Offset: 3

Views

Author

Olivier Gérard, Dec 11 1999

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Gaussian binomial coefficient [n, k]_q for q = -3: A015251 (k = 2), this sequence (k = 3), A015288 (k = 4), A015306 (k = 5), A015324 (k = 6), A015340 (k = 7), A015357 (k = 8), A015375 (k = 9), A015388 (k = 10).
Cf. A015518.

Programs

  • Magma
    [(-1+7*3^(2*n-3)+(-1)^n*3^(n-2)*(7-3^(2*n-1)))/896: n in [3..18]]; // Bruno Berselli, Oct 29 2012
    
  • Mathematica
    Table[QBinomial[n, 3, -3], {n, 3, 20}] (* Vincenzo Librandi, Oct 28 2012 *)
  • Maxima
    makelist(coeff(taylor(1/((1-x)*(1+3*x)*(1-9*x)*(1+27*x)), x, 0, n), x, n), n, 0, 15); /* Bruno Berselli, Oct 29 2012 */
  • SageMath
    [gaussian_binomial(n,3,-3) for n in range(3,19)] # Zerinvary Lajos, May 27 2009
    

Formula

G.f.: x^3/((1-x)*(1+3*x)*(1-9*x)*(1+27*x)). - Bruno Berselli, Oct 29 2012
a(n) = (-1 + 7*3^(2n-3) + (-1)^n*3^(n-2)*(7-3^(2n-1)))/896. - Bruno Berselli, Oct 29 2012
G.f.: x^3 * exp(Sum_{n >= 1} A015518(4*n)/A015518(n) * (-x)^n/n) = x^3 * (1 - 20*x + 610*x^2 - ...). - Peter Bala, Jun 29 2025

A015324 Gaussian binomial coefficient [ n,6 ] for q = -3.

Original entry on oeis.org

1, 547, 448540, 315323620, 232740363922, 168973319623174, 123350523324917020, 89881489830655851460, 65533580739687859229563, 47771556642163840723529281, 34826053765400471578213696840
Offset: 6

Views

Author

Olivier Gérard, Dec 11 1999

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Gaussian binomial coefficient [n, k]_q for q = -3: A015251 (k = 2), A015268 (k = 3), A015288 (k = 4), A015306 (k = 5), this sequence (k = 6), A015340 (k = 7), A015357 (k = 8), A015375 (k = 9), A015388 (k = 10).

Programs

  • Mathematica
    Table[QBinomial[n, 6, -3], {n, 6, 20}] (* Vincenzo Librandi, Oct 29 2012 *)
  • Sage
    [gaussian_binomial(n,6,-3) for n in range(6,17)] # Zerinvary Lajos, May 27 2009

Formula

G.f.: x^6 / ( (x-1)*(27*x+1)*(81*x-1)*(729*x-1)*(9*x-1)*(3*x+1)*(243*x+1) ). - R. J. Mathar, Aug 04 2016
G.f. with offset 0: exp(Sum_{n >= 1} A015518(7*n)/A015518(n) * (-x)^n/n) = 1 + 547*x + 448540*x^2 + .... - Peter Bala, Jun 29 2025

A015340 Gaussian binomial coefficient [ n,7 ] for q = -3.

Original entry on oeis.org

1, -1640, 4035220, -8509702520, 18843459775162, -41041673208656120, 89881489830655851460, -196480936769813691291560, 429769342296322230713871283, -939857780045414554730512966640
Offset: 7

Views

Author

Olivier Gérard, Dec 11 1999

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Gaussian binomial coefficient [n, k]_q for q = -3: A015251 (k = 2), A015268 (k = 3), A015288 (k = 4), A015306 (k = 5), A015324 (k = 6), this sequence (k = 7), A015357 (k = 8), A015375 (k = 9), A015388 (k = 10).

Programs

  • Mathematica
    Table[QBinomial[n, 7, -3], {n, 7, 20}] (* Vincenzo Librandi, Oct 29 2012 *)
  • Sage
    [gaussian_binomial(n,7,-3) for n in range(7,17)] # Zerinvary Lajos, May 27 2009

Formula

G.f.: x^7 / ( (x-1)*(27*x+1)*(81*x-1)*(729*x-1)*(9*x-1)*(2187*x+1)*(3*x+1)*(243*x+1) ). - R. J. Mathar, Sep 02 2016
G.f. with offset 0: exp(Sum_{n >= 1} A015518(8*n)/A015518(n) * (-x)^n/n) = 1 - 1640*x + 4035220*x^2 - .... - Peter Bala, Jun 29 2025

A039300 Number of distinct quadratic residues mod 3^n.

Original entry on oeis.org

1, 2, 4, 11, 31, 92, 274, 821, 2461, 7382, 22144, 66431, 199291, 597872, 1793614, 5380841, 16142521, 48427562, 145282684, 435848051, 1307544151, 3922632452, 11767897354, 35303692061, 105911076181, 317733228542, 953199685624
Offset: 0

Views

Author

Keywords

Comments

Number of distinct n-digit suffixes of base 3 squares.
In general, for any odd prime p, the number s of quadratic residues mod p^n is given by s = (p^(n+1) + p + 2)/(2p + 2) for even n and s = (p^(n+1) + 2*p + 1)/(2p + 2) for odd n, see A000224. - Lekraj Beedassy, Jan 07 2005

References

  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 324.

Crossrefs

Programs

  • GAP
    List([0..30], n-> (3^(n+1) +6 -(-1)^n)/8); # G. C. Greubel, Jul 14 2019
  • Magma
    [(3^(n+1) + 6 + (-1)^(n+1))/8: n in [0..30]]; // Vincenzo Librandi, Apr 21 2012
    
  • Maple
    A039300 := proc(n)
        floor((3^n+3)*3/8) ;
    end proc:
    seq(A039300(n),n=0..30) ; # R. J. Mathar, Sep 28 2017
  • Mathematica
    CoefficientList[Series[(1-x-3x^2)/((1-x)(1+x)(1-3x)),{x,0,30}],x] (* Vincenzo Librandi, Apr 21 2012 *)
    Table[Floor((3^n+3)*3/8),{n,0,30}] (* Bruno Berselli, Apr 21 2012 *)
    CoefficientList[Series[1/8 E^-x (-1 + 6 E^(2 x) + 3 E^(4 x)), {x, 0, 30}], x]*Table[k!, {k, 0, 30}] (* Stefano Spezia, Sep 04 2018 *)
  • PARI
    {a(n) = if(n<0, 0, 3^n*3\8 + 1)}; /* Michael Somos,Mar 27 2005 */
    
  • PARI
    {a(n) = if(n<1, n==0, 3*a(n-1) - 2 + n%2)}; /* Michael Somos, Mar 27 2005 */
    
  • Sage
    [(3^(n+1) +6 -(-1)^n)/8 for n in (0..30)] # G. C. Greubel, Jul 14 2019
    

Formula

a(n) = floor(3*(3^n + 3)/8).
a(n) = A033113(n) + 1.
a(n) = (3^(n+1) + 6 + (-1)^(n+1))/8. - Lekraj Beedassy, Jan 07 2005
G.f.: (1 - x - 3*x^2)/((1 - x)*(1 + x)*(1 - 3*x)). - Michael Somos, Mar 27 2005
a(n) = 2*a(n-1) + 3*a(n-2) - 3 with n > 1, a(0) = 1, a(1) = 1. - Zerinvary Lajos, Dec 14 2008
a(n) = 3*a(n-1) + a(n-2) - 3*a(n-3). Vincenzo Librandi, Apr 21 2012
a(n) = A000224(3^n). - R. J. Mathar, Sep 28 2017
E.g.f.: (1/8)*exp(-x)*(-1+6*exp(2*x)+3*exp(4*x)). - Stefano Spezia, Sep 04 2018

A053524 a(n) = (6^n - (-2)^n)/8.

Original entry on oeis.org

0, 1, 4, 28, 160, 976, 5824, 35008, 209920, 1259776, 7558144, 45349888, 272097280, 1632587776, 9795518464, 58773127168, 352638730240, 2115832446976, 12694994550784, 76169967566848, 457019804876800, 2742118830309376, 16452712979759104
Offset: 0

Views

Author

Keywords

Comments

The ratio a(n+1)/a(n) converges to 6 as n approaches infinity. - Felix P. Muga II, Mar 10 2014

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.1(b).
  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, pp. 194-196.

Crossrefs

Cf. A015518.

Programs

Formula

E.g.f.: (exp(6*x) - exp(-2*x))/8.
a(n) = 2^(n-3) * (3^n - (-1)^n) = 2^(n-3)*A105723(n).
a(n) = 4*a(n-1) + 12*a(n-2), with a(0)=0, a(1)=1.
G.f.: x / ((1+2*x)*(1-6*x)). - Colin Barker, Mar 11 2014

A062160 Square array T(n,k) = (n^k - (-1)^k)/(n+1), n >= 0, k >= 0, read by falling antidiagonals.

Original entry on oeis.org

0, 1, 0, -1, 1, 0, 1, 0, 1, 0, -1, 1, 1, 1, 0, 1, 0, 3, 2, 1, 0, -1, 1, 5, 7, 3, 1, 0, 1, 0, 11, 20, 13, 4, 1, 0, -1, 1, 21, 61, 51, 21, 5, 1, 0, 1, 0, 43, 182, 205, 104, 31, 6, 1, 0, -1, 1, 85, 547, 819, 521, 185, 43, 7, 1, 0, 1, 0, 171, 1640, 3277, 2604, 1111, 300, 57, 8, 1, 0, -1, 1, 341, 4921, 13107, 13021, 6665, 2101, 455, 73, 9, 1, 0
Offset: 0

Views

Author

Henry Bottomley, Jun 08 2001

Keywords

Comments

For n >= 1, T(n, k) equals the number of walks of length k between any two distinct vertices of the complete graph K_(n+1). - Peter Bala, May 30 2024

Examples

			From _Seiichi Manyama_, Apr 12 2019: (Start)
Square array begins:
   0, 1, -1,  1,  -1,    1,    -1,      1, ...
   0, 1,  0,  1,   0,    1,     0,      1, ...
   0, 1,  1,  3,   5,   11,    21,     43, ...
   0, 1,  2,  7,  20,   61,   182,    547, ...
   0, 1,  3, 13,  51,  205,   819,   3277, ...
   0, 1,  4, 21, 104,  521,  2604,  13021, ...
   0, 1,  5, 31, 185, 1111,  6665,  39991, ...
   0, 1,  6, 43, 300, 2101, 14706, 102943, ... (End)
		

Crossrefs

Related to repunits in negative bases (cf. A055129 for positive bases).
Main diagonal gives A081216.
Cf. A109502.

Programs

  • Maple
    seq(print(seq((n^k - (-1)^k)/(n+1), k = 0..10)), n = 0..10); # Peter Bala, May 31 2024
  • Mathematica
    T[n_,k_]:=(n^k - (-1)^k)/(n+1); Join[{0},Table[Reverse[Table[T[n-k,k],{k,0,n}]],{n,12}]]//Flatten (* Stefano Spezia, Feb 20 2024 *)

Formula

T(n, k) = n^(k-1) - n^(k-2) + n^(k-3) - ... + (-1)^(k-1) = n^(k-1) - T(n, k-1) = n*T(n, k-1) - (-1)^k = (n - 1)*T(n, k-1) + n*T(n, k-2) = round[n^k/(n+1)] for n > 1.
T(n, k) = (-1)^(k+1) * resultant( n*x + 1, (x^k-1)/(x-1) ). - Max Alekseyev, Sep 28 2021
G.f. of row n: x/((1+x) * (1-n*x)). - Seiichi Manyama, Apr 12 2019
E.g.f. of row n: (exp(n*x) - exp(-x))/(n+1). - Stefano Spezia, Feb 20 2024
From Peter Bala, May 31 2024: (Start)
Binomial transform of the m-th row: Sum_{k = 0..n} binomial(n, k)*T(m, k) = (m + 1)^(n-1) for n >= 1.
Let R(m, x) denote the g.f. of the m-th row of the square array. Then R(m_1, x) o R(m_2, x) = R(m_1 + m_2 + m_1*m_2, x), where o denotes the black diamond product of power series as defined by Dukes and White. Cf. A109502.
T(m_1 + m_2 + m_1*m_2, k) = Sum_{i = 0..k} Sum_{j = i..k} binomial(k, i)* binomial(k-i, j-i)*T(m_1, j)*T(m_2, k-i). (End)
Previous Showing 51-60 of 102 results. Next