A079309 a(n) = C(1,1) + C(3,2) + C(5,3) + ... + C(2*n-1,n).
1, 4, 14, 49, 175, 637, 2353, 8788, 33098, 125476, 478192, 1830270, 7030570, 27088870, 104647630, 405187825, 1571990935, 6109558585, 23782190485, 92705454895, 361834392115, 1413883873975, 5530599237775, 21654401079325, 84859704298201, 332818970772253
Offset: 1
Examples
a(4) = C(1,1) + C(3,2) + C(5,3) + C(7,4) = 1 + 3 + 10 + 35 = 49. G.f. = x + 4*x^2 + 14*x^3 + 49*x^4 + 175*x^5 + 637*x^6 + 2353*x^7 + ... From _Gus Wiseman_, Apr 16 2023: (Start) The a(1) = 1 through a(3) = 14 subsets of {1..2n} with median n: {1} {2} {3} {1,3} {1,5} {1,2,3} {2,4} {1,2,4} {1,3,4} {1,3,5} {1,3,6} {2,3,4} {2,3,5} {2,3,6} {1,2,4,5} {1,2,4,6} {1,2,3,4,5} {1,2,3,4,6} {1,2,3,5,6} (End)
Links
- Vincenzo Librandi and Robert Israel, Table of n, a(n) for n = 1..1500 (terms 1..200 from Vincenzo Librandi).
- A. Denise and R. Simion, Two combinatorial statistics on Dyck paths, Discrete Math., 137, 1995, 155-176.
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- R. Witula, Ramanujan type trigonometric formulas, Demonstratio Mathematica, Vol. XLV, No. 4 (2012), 789-796. - From _N. J. A. Sloane_, Jan 01 2013
Crossrefs
Programs
-
Maple
a := n -> add(binomial(2*j, j)/2, j=1..n): seq(a(n), n=1..24); # Zerinvary Lajos, Oct 25 2006 a := n -> add(abs(binomial(-j, -2*j)), j=1..n): seq(a(n), n=1..24); # Zerinvary Lajos, Oct 03 2007 f:= gfun:-rectoproc({n*a(n) +(-5*n+2)*a(n-1) +2*(2*n-1)*a(n-2)=0,a(1)=1,a(2)=4},a(n),remember): map(f, [$1..100]); # Robert Israel, Jun 24 2015
-
Mathematica
Rest[CoefficientList[Series[(1/Sqrt[1-4*x]-1)/(1-x)/2, {x, 0, 20}], x]] (* Vaclav Kotesovec, Feb 13 2014 *) Accumulate[Table[Binomial[2n-1,n],{n,30}]] (* Harvey P. Dale, Jan 06 2021 *)
-
PARI
{a(n) = sum(k=1, n, binomial(2*k - 1, k))}; /* Michael Somos, Feb 14 2006 */
-
PARI
my(x='x+O('x^40)); Vec((1/sqrt(1-4*x)-1)/(1-x)/2) \\ Altug Alkan, Dec 24 2015
Formula
a(n) = (1/2)*(C(2, 1) + C(4, 2) + C(6, 3) + ... + C(2*n, n)) = A066796(n)/2. - Vladeta Jovovic, Feb 12 2003
G.f.: (1/sqrt(1 - 4*x) - 1)/(1 - x)/2. - Vladeta Jovovic, Feb 12 2003
Given g.f. A(x), then x * A(x - x^2) is g.f. of A024495. - Michael Somos, Feb 14 2006
a(n) = A066796(n)/2. - Zerinvary Lajos, Oct 25 2006
a(n) = Sum_{0 <= i <= j <= n} binomial(i+j, i). - Benoit Cloitre, Nov 25 2006
D-finite with recurrence n*a(n) + (-5*n+2)*a(n-1) + 2*(2*n-1)*a(n-2) = 0. - R. J. Mathar, Nov 30 2012
a(n) ~ 2^(2*n+1) / (3*sqrt(Pi*n)). - Vaclav Kotesovec, Feb 13 2014
a(n) = -binomial(2*n+1, n)*hypergeom([1, n+3/2], [n+2], 4) - (i/sqrt(3) + 1)/2. - Peter Luschny, May 18 2018
From Gus Wiseman, Apr 18 2023: (Start)
a(n) = A024718(n) - 1.
a(n) = A231147(2n+1,n).
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(2*n+2-k, n-2*k). - Michael Weselcouch, Jun 17 2025
a(n) = binomial(2*(1+n), n)*hypergeom([1, (1-n)/2, -n/2], [-2*(1+n), 3+n], 4). - Stefano Spezia, Jun 18 2025
Extensions
More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 11 2003
Comments