cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 43 results. Next

A013698 a(n) = binomial(3*n+2, n-1).

Original entry on oeis.org

1, 8, 55, 364, 2380, 15504, 100947, 657800, 4292145, 28048800, 183579396, 1203322288, 7898654920, 51915526432, 341643774795, 2250829575120, 14844575908435, 97997533741800, 647520696018735, 4282083008118300
Offset: 1

Views

Author

Joachim.Rosenthal(AT)nd.edu (Joachim Rosenthal), Emeric Deutsch

Keywords

Comments

Degree of variety K_{2,n}^1. Also number of double-rises (or odd-level peaks) in all generalized {(1,2),(1,-1)}-Dyck paths of length 3(n+1).
Number of dissections of a convex (2n+2)-gon by n-2 noncrossing diagonals into (2j+2)-gons, 1<=j<=n-1.
a(n) is the number of lattice paths from (0,0) to (3n+1,n-1) avoiding two consecutive up-steps. - Shanzhen Gao, Apr 20 2010

Crossrefs

Cf. A013699 (q=2), A013700 (q=3), A013701 (q=4), A013702 (q=5).

Programs

  • GAP
    List([1..25], n-> Binomial(3*n+2, n-1)) # G. C. Greubel, Mar 21 2019
  • Magma
    [Binomial(3*n+2, n-1): n in [1..25]]; // Vincenzo Librandi, Aug 10 2015
    
  • Maple
    seq(binomial(3*n+2,n-1), n=0..30); # Robert Israel, Aug 09 2015
  • Mathematica
    Table[Binomial[3*n+2, n-1], {n, 25}] (* Arkadiusz Wesolowski, Apr 02 2012 *)
  • PARI
    first(m)=vector(m,n,binomial(3*n+2, n-1)); /* Anders Hellström, Aug 09 2015 */
    
  • Sage
    [binomial(3*n+2, n-1) for n in (1..25)] # G. C. Greubel, Mar 21 2019
    

Formula

G.f.: g/((g-1)^3*(3*g-1)) where g*(1-g)^2 = x. - Mark van Hoeij, Nov 09 2011
a(n) = Sum_{k=0..n-1} binomial(2*n+k+2,k). - Arkadiusz Wesolowski, Apr 02 2012
D-finite with recurrence 2*(2*n+3)*(n+1)*a(n) -n*(67*n+34)*a(n-1) +30*(3*n-1)*(3*n-2)*a(n-2)=0. - R. J. Mathar, Feb 05 2013
a(n+1) = (3*n+5)*(3*n+4)*(3*n+3)*a(n)/((2*n+5)*(2*n+4)*n). - Robert Israel, Aug 09 2015
With offset 0, the o.g.f. equals f(x)*g(x)^5, where f(x) is the o.g.f. for A005809 and g(x) is the o.g.f. for A001764. More generally, f(x)*g(x)^k is the o.g.f. for the sequence binomial(3*n + k,n). Cf. A045721 (k = 1), A025174 (k = 2), A004319 (k = 3), A236194 (k = 4), A165817 (k = -1), A117671 (k = -2). - Peter Bala, Nov 04 2015

A005156 Number of alternating sign 2n+1 X 2n+1 matrices symmetric about the vertical axis (VSASM's); also 2n X 2n off-diagonally symmetric alternating sign matrices (OSASM's).

Original entry on oeis.org

1, 1, 3, 26, 646, 45885, 9304650, 5382618660, 8878734657276, 41748486581283118, 559463042542694360707, 21363742267675013243931852, 2324392978926652820310084179576, 720494439459132215692530771292602232, 636225819409712640497085074811372777428304
Offset: 0

Views

Author

Keywords

Comments

a(n+1) is the Hankel transform of A006013. - Paul Barry, Jan 20 2007
a(n+1) is the Hankel transform of A025174(n+1). - Paul Barry, Apr 14 2008

References

  • D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; p. 201, VS(2n+1).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A005156 := proc(n) local i,j,t1; (-3)^(n^2)*mul( mul( (6*j-3*i+1)/(2*j-i+2*n+1), j=1..n ),i=1..2*n+1); end;
  • Mathematica
    Table[1/2^n Product[((6k-2)!(2k-1)!)/((4k-1)!(4k-2)!),{k,n}],{n,0,20}] (* Harvey P. Dale, Jul 07 2011 *)
  • PARI
    a(n) = prod(k = 0, n-1, (3*k+2)*(6*k+3)!*(2*k+1)!/((4*k+2)!*(4*k+3)!));
    vector(15, n, a(n-1))  \\ Gheorghe Coserea, May 30 2016

Formula

The formula for a(n) (see the Maple code) was conjectured by Robbins and proved by Kuperberg.
a(n) = (1/2^n) * Product_{k=1..n} ((6k-2)!(2k-1)!)/((4k-1)!(4k-2)!) (Razumov/Stroganov).
a(n) ~ exp(1/72) * Pi^(1/6) * 3^(3*n^2 + 3*n/2 + 11/72) / (A^(1/6) * GAMMA(1/3)^(1/3) * n^(5/72) * 2^(4*n^2 + 3*n + 1/9)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Mar 01 2015

A333093 a(n) is equal to the n-th order Taylor polynomial (centered at 0) of c(x)^n evaluated at x = 1, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. of the Catalan numbers A000108.

Original entry on oeis.org

1, 2, 8, 41, 232, 1377, 8399, 52138, 327656, 2077934, 13270633, 85226594, 549837391, 3560702069, 23132584742, 150695482041, 984021596136, 6438849555963, 42208999230224, 277144740254566, 1822379123910857, 11998811140766701, 79095365076843134
Offset: 0

Views

Author

Peter Bala, Mar 07 2020

Keywords

Comments

The sequence satisfies the Gauss congruences: a(n*p^k) == a(n*p^(k-1)) ( mod p^k ) for all prime p and positive integers n and k.
We conjecture that the sequence satisfies the stronger supercongruences a(n*p^k) == a(n*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers n and k. Examples of these congruences are given below.
More generally, for each integer m, we conjecture that the sequence
{a_m(n) : n >= 0}, defined by setting a_m(n) = the n-th order Taylor polynomial of c(x)^(m*n) evaluated at x = 1, satisfies the same supercongruences. For cases, see A099837 (m = -2), A100219 (m = -1), A000012 (m = 0), A333094 (m = 2), A333095 (m = 3), A333096 (m = 4), A333097 (m = 5).

Examples

			n-th order Taylor polynomial of c(x)^n:
  n = 0: c(x)^0 = 1 + O(x)
  n = 1: c(x)^1 = 1 + x + O(x^2)
  n = 2: c(x)^2 = 1 + 2*x + 5*x^2 + O(x^3)
  n = 3: c(x)^3 = 1 + 3*x + 9*x^2 + 28*x^3 + O(x^4)
  n = 4: c(x)^4 = 1 + 4*x + 14*x^2 + 48*x^3 + 165*x^4 + O(x^5)
Setting x = 1 gives a(0) = 1, a(1) = 1 + 1 = 2, a(2) = 1 + 2 + 5 = 8, a(3) = 1 + 3 + 9 + 28 = 41 and a(4) = 1 + 4 + 14 + 48 + 165 = 232.
The triangle of coefficients of the n-th order Taylor polynomial of c(x)^n, n >= 0, in descending powers of x begins
                                        row sums
  n = 0 |   1                               1
  n = 1 |   1   1                           2
  n = 2 |   5   2    1                      8
  n = 3 |  28   9    3   1                 41
  n = 4 | 165  48   14   4   1            232
   ...
This is a Riordan array belonging to the Hitting time subgroup of the Riordan group. The first column sequence [1, 1, 5, 28, 165, ...] = [x^n] c(x)^n = A025174(n).
Examples of supercongruences:
a(13) - a(1) = 3560702069 - 2 = (3^2)*(13^3)*31*37*157 == 0 ( mod 13^3 ).
a(3*7) - a(3) = 11998811140766701 - 41 = (2^2)*5*(7^4)*32213*7756841 == 0 ( mod 7^3 ).
a(5^2) - a(5) = 22794614296746579502 - 1377 = (5^6)*7*53*6491*605796421 == 0 ( mod 5^6 ).
		

Crossrefs

Programs

  • Maple
    seq(add(n/(n+k)*binomial(n+2*k-1,k), k = 0..n), n = 1..25);
    #alternative program
    c:= x -> (1/2)*(1-sqrt(1-4*x))/x:
    G := (x,n) -> series(c(x)^n, x, 51):
    seq(add(coeff(G(x, n), x, k), k = 0..n), n = 0..25);
  • Mathematica
    Table[SeriesCoefficient[((1 + x)^2 * (1 - Sqrt[(1 - 3*x)/(1 + x)]) / (2*x))^n, {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Mar 28 2020 *)

Formula

a(n) = Sum_{k = 0..n} n/(n+k)*binomial(n+2*k-1,k) for n >= 1.
a(n) = [x^n] ( (1 + x)*c(x/(1 + x)) )^n = [x^n] ( (1 + x)*(1 + x*M(x)) )^n, where M(x) = ( 1 - x - sqrt(1 - 2*x - 3*x^2) ) / (2*x^2) is the o.g.f. of the Motzkin numbers A001006.
O.g.f.: ( 1 + x*f'(x)/f(x) )/( 1 - x*f(x) ), where f(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + ... = (1/x)*Revert( x/c(x) ) is the o.g.f. of A001764.
Row sums of the Riordan array ( 1 + x*f'(x)/f(x), x*f(x) ) belonging to the Hitting time subgroup of the Riordan group.
a(n) ~ 3^(3*n + 3/2) / (7 * sqrt(Pi*n) * 2^(2*n+1)). - Vaclav Kotesovec, Mar 28 2020
a(n) = Sum_{k = 0..n} n/(n+2*k)*binomial(n+2*k, k) for n >= 1. - Peter Bala, Apr 20 2024
D-finite with recurrence 2*n*(2*n-1)*(3991*n -21664)*a(n) +(-1329757*n^3 +9119565*n^2 -18270518*n +10657440)*a(n-1) +10*(947050*n^3 -6943257*n^2 +15944396*n -11260008)*a(n-2) +12*(-787878*n^3 +5778161*n^2 -13283386*n +9383340)*a(n-3) +9*(3*n-10)*(3*n-8)*(100503*n -141587)*a(n-4)=0, n>=5. - R. J. Mathar, Nov 22 2024

A117671 a(n) = binomial(3*n+1, n+1).

Original entry on oeis.org

1, 6, 35, 210, 1287, 8008, 50388, 319770, 2042975, 13123110, 84672315, 548354040, 3562467300, 23206929840, 151532656696, 991493848554, 6499270398159, 42671977361650, 280576272201225
Offset: 0

Views

Author

Zerinvary Lajos, Apr 12 2006

Keywords

Comments

a(n) = A258993(2*n+1, n). - Reinhard Zumkeller, Jun 22 2015

Examples

			if n=0 then C(3*0+1,0+1) = C(1,1) = 1.
if n=10 then C(3*10+1,10+1) = C(31,11) = 84672315.
		

Crossrefs

Cf. A025174: binomial(3n-1,n-1), A006013.

Programs

  • Haskell
    a117671 n = a258993 (2 * n + 1) n  -- Reinhard Zumkeller, Jun 22 2015
    
  • Maple
    seq(binomial(3*n+1,n+1),n=0..30); # Robert Israel, Oct 10 2017
  • Mathematica
    Table[Binomial[3n+1,n+1],{n,0,20}] (* Harvey P. Dale, Jul 19 2011 *)
  • PARI
    vector(30, n, n--; binomial(3*n+1, n+1)) \\ Altug Alkan, Nov 04 2015

Formula

G.f.: (2*(-1+Hypergeometric2F1[-(1/3),1/3,-(1/2),(27*x)/4]))/(3*x). - Harvey P. Dale, Jul 19 2011
G.f.: A(x) = B'(x)/B(x)-B'(x)-1/x, where B(x) = 4/3*sin(1/3*asin(sqrt((27*x)/4)))^2. - Vladimir Kruchinin, Nov 26 2014
From Peter Bala, Nov 04 2015: (Start)
With an extra initial term equal to 1, the o.g.f. equals f(x)/g(x)^2, where f(x) is the o.g.f. for A005809 and g(x) is the o.g.f. for A001764.
More generally, f(x)*g(x)^k is the o.g.f. for the sequence binomial(3*n + k,n). Cf. A045721 (k = 1), A025174 (k = 2), A004319 (k = 3), A236194 (k = 4), A013698 (k = 5), A165817 (k = -1). (End)
a(n) = [x^(2*n)] 1/(1 - x)^(n+2). - Ilya Gutkovskiy, Oct 10 2017
a(n+1) = 3*(3*n+2)*(3*n+4)*a(n)/(2*(n+2)*(2*n+1)). - Robert Israel, Oct 10 2017

A264772 Triangle T(n,k) = binomial(3*n - 2*k, 2*n - k), 0 <= k <= n.

Original entry on oeis.org

1, 3, 1, 15, 4, 1, 84, 21, 5, 1, 495, 120, 28, 6, 1, 3003, 715, 165, 36, 7, 1, 18564, 4368, 1001, 220, 45, 8, 1, 116280, 27132, 6188, 1365, 286, 55, 9, 1, 735471, 170544, 38760, 8568, 1820, 364, 66, 10, 1, 4686825, 1081575, 245157, 54264, 11628, 2380, 455, 78, 11, 1
Offset: 0

Views

Author

Peter Bala, Nov 24 2015

Keywords

Comments

Riordan array (f(x), x*g(x)), where g(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + ... is the o.g.f. for A001764 and f(x) = g(x)/(3 - 2*g(x)) = 1 + 3*x + 15*x^2 + 84*x^3 + 495*x^4 + ... is the o.g.f. for A005809.
The even numbered columns give the Riordan array A119301, the odd numbered columns give the Riordan array A144484. A159841 is the array formed from columns 1,4,7,10,....
More generally, if R = (R(n,k))n,k>=0 is a proper Riordan array, m is a nonnegative integer and a > b are integers then the array with (n,k)-th element R((m + 1)*n - a*k, m*n - b*k) is also a Riordan array (not necessarily proper). Here we take R as Pascal's triangle and m = a = 2, b = 1. See A092392, A264773, A264774 and A113139 for further examples.

Examples

			Triangle begins
.n\k.|......0.....1....2....3...4..5...6..7...
----------------------------------------------
..0..|      1
..1..|      3     1
..2..|     15     4    1
..3..|     84    21    5    1
..4..|    495   120   28    6   1
..5..|   3003   715  165   36   7  1
..6..|  18564  4368 1001  220  45  8  1
..7..| 116280 27132 6188 1365 286 55  9  1
...
		

Crossrefs

Cf. A005809 (column 0), A045721 (column 1), A025174 (column 2), A004319 (column 3), A236194 (column 4), A013698 (column 5). Cf. A001764, A007318, A092392, A119301 (C(3n-k,2n)), A144484 (C(3n+1-k,2n+1)), A159841 (C(3n+1,2n+k+1)), A264773, A264774.

Programs

  • Magma
    /* As triangle */ [[Binomial(3*n-2*k, n-k): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Dec 02 2015
  • Maple
    A264772:= proc(n,k) binomial(3*n - 2*k, 2*n - k); end proc:
    seq(seq(A264772(n,k), k = 0..n), n = 0..10);
  • Mathematica
    Table[Binomial[3 n - 2 k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 01 2015 *)

Formula

T(n,k) = binomial(3*n - 2*k, n - k).
O.g.f.: f(x)/(1 - t*x*g(x)), where f(x) = Sum_{n >= 0} binomial(3*n,n)*x^n and g(x) = Sum_{n >= 0} 1/(2*n + 1)*binomial(3*n,n)*x^n.

A060543 Triangle, read by antidiagonals, where T(n,k) = C(n+n*k+k, n*k+k).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 10, 5, 1, 1, 35, 28, 7, 1, 1, 126, 165, 55, 9, 1, 1, 462, 1001, 455, 91, 11, 1, 1, 1716, 6188, 3876, 969, 136, 13, 1, 1, 6435, 38760, 33649, 10626, 1771, 190, 15, 1, 1, 24310, 245157, 296010, 118755, 23751, 2925, 253, 17, 1, 1, 92378, 1562275
Offset: 0

Views

Author

Henry Bottomley, Apr 02 2001

Keywords

Comments

Main diagonal is A108288. Antidiagonal sums is A108289. Inverse binomial transforms of each row give triangle A108290. G.f. of row n multiplied by (1-x)^(n+1) equals g.f. of row n of triangle A108267 (rows sums of A108267 equal (n+1)^n).

Examples

			row 1: (2*n+1)/1!
row 2: (3*n+1)*(3*n+2)/2!
row 3: (4*n+1)*(4*n+2)*(4*n+3)/3!
row 4: (5*n+1)*(5*n+2)*(5*n+3)*(5*n+4)/4!
row 5: (6*n+1)*(6*n+2)*(6*n+3)*(6*n+4)*(6*n+5)/5!.
Table begins:
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...
1,3,5,7,9,11,13,15,17,19,21,23,25,27,...
1,10,28,55,91,136,190,253,325,406,496,...
1,35,165,455,969,1771,2925,4495,6545,...
1,126,1001,3876,10626,23751,46376,82251,...
1,462,6188,33649,118755,324632,749398,...
1,1716,38760,296010,1344904,4496388,...
		

Crossrefs

Cf. A108290, A108267, A108288, A108289, A060544 (row 2), A015219 (row 3).
Rows include A000012, A001700, A025174. Columns include A000012, A005408, A060544. Main diagonal is A060545.

Programs

  • PARI
    T(n,k)=binomial(n+n*k+k,n*k+k)
    
  • PARI
    { i=0; write("b060543.txt", "0 1"); for (m=0, 20, for (k=0, m + 1, n=m - k + 1; write("b060543.txt", i++, " ", binomial(n + n*k + k, n*k + k))); ) } \\ Harry J. Smith, Jul 06 2009

Formula

a(n) = A060539(n, k)/n = A007318(nk, k)/n = A060540(n, k)/A060540(n-1, k).

Extensions

Entry revised by Paul D. Hanna, May 31 2005
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 17 2007

A236194 a(n) = binomial(3n+1, n-1).

Original entry on oeis.org

1, 7, 45, 286, 1820, 11628, 74613, 480700, 3108105, 20160075, 131128140, 854992152, 5586853480, 36576848168, 239877544005, 1575580702584, 10363194502115, 68248282427325, 449972009097765, 2969831763694950, 19619725782651120, 129728497393775280
Offset: 1

Views

Author

Bruno Berselli, Jan 20 2014

Keywords

Comments

This sequence is related to A006013 by a(n)/n = A006013(n)/2.

Crossrefs

Cf. A006013; A025174: C(3n-1, n-1); A117671: C(3n+1, n+1).
Second column of the triangle A159841.
Third column of the triangle A119301.

Programs

  • Magma
    [Binomial(3*n+1,n-1): n in [1..30]];
    
  • Mathematica
    Table[Binomial[3n+1, n-1], {n, 30}]
  • Maxima
    makelist(binomial(3*n+4,n),n,0,40); /* Emanuele Munarini, Oct 14 2014 */
    
  • PARI
    vector(30, n, binomial(3*n+1, n-1)) \\ Altug Alkan, Nov 04 2015
    
  • SageMath
    [binomial(3*n+1,n-1) for n in range(1,31)] # G. C. Greubel, Nov 09 2022

Formula

G.f.: (sqrt(4-27*x)*cos((2/3)*arcsin((3/2)*sqrt(3*x))) + sqrt(3*x)*sin((2/3)*arcsin((3/2)*sqrt(3*x))) - sqrt(4-27*x))/(3*sqrt(4-27*x)*x^2). - Emanuele Munarini, Oct 14 2014
From Peter Bala, Nov 04 2015: (Start)
With offset 0, the o.g.f. equals f(x)*g(x)^4, where f(x) is the o.g.f. for A005809 and g(x) is the o.g.f. for A001764.
More generally, f(x)*g(x)^k is the o.g.f. for the sequence binomial(3*n + k,n). Cf. A045721 (k = 1), A025174 (k = 2), A004319 (k = 3), A013698 (k = 5), A165817 (k = -1), A117671 (k = -2). (End)
a(n) = [x^n] x/(1 - x)^(2*n+3). - Ilya Gutkovskiy, Oct 10 2017
From Karol A. Penson, Mar 02 2024: (Start)
G.f.: ((sqrt(3)*sqrt(x)*i + sqrt(4 - 27*x))*(4*sqrt(4 - 27*x) - 12*i*sqrt(3)*sqrt(x))^(2/3) + (-sqrt(3)*sqrt(x)*i + sqrt(4 - 27*x))*(4*sqrt(4 - 27*x) + 12*i*sqrt(3)*sqrt(x))^(2/3) - 8*sqrt(4 - 27*x))/(24*sqrt(4 - 27*x)*x^2), where i is the imaginary unit, i=sqrt(-1).
G.f.: hypergeometric3F2([5/3,2,7/3],[5/2,3],27*x/4).
G.f. = G satisfies the algebraic equation: 1 + (7*z-1)*G + (27*z-4)*z^2*G^2 + (27*z-4)*z^4*G^3 = 0. (End)

A104978 Triangle read by rows, where the g.f. satisfies A(x, y) = 1 + x*A(x, y)^2 + x*y*A(x, y)^3.

Original entry on oeis.org

1, 1, 1, 2, 5, 3, 5, 21, 28, 12, 14, 84, 180, 165, 55, 42, 330, 990, 1430, 1001, 273, 132, 1287, 5005, 10010, 10920, 6188, 1428, 429, 5005, 24024, 61880, 92820, 81396, 38760, 7752, 1430, 19448, 111384, 352716, 678300, 813960, 596904, 245157, 43263, 4862, 75582, 503880, 1899240, 4476780, 6864396, 6864396, 4326300, 1562275, 246675
Offset: 0

Views

Author

Paul D. Hanna, Mar 30 2005

Keywords

Examples

			The triangle T(n, k) begins:
  [0]    1;
  [1]    1,     1;
  [2]    2,     5,      3;
  [3]    5,    21,     28,     12;
  [4]   14,    84,    180,    165,     55;
  [5]   42,   330,    990,   1430,   1001,    273;
  [6]  132,  1287,   5005,  10010,  10920,   6188,   1428;
  [7]  429,  5005,  24024,  61880,  92820,  81396,  38760,   7752;
  [8] 1430, 19448, 111384, 352716, 678300, 813960, 596904, 245157, 43263;
  ...
The array A(n, k) begins:
  [0]   1,    1,      3,      12,       55,       273,       1428, ...  [A001764]
  [1]   1,    5,     28,     165,     1001,      6188,      38760, ...  [A025174]
  [2]   2,   21,    180,    1430,    10920,     81396,     596904, ...  [A383450]
  [3]   5,   84,    990,   10010,    92820,    813960,    6864396, ...  [A383451]
  [4]  14,  330,   5005,   61880,   678300,   6864396,   65615550, ...
  [5]  42, 1287,  24024,  352716,  4476780,  51482970,  551170620, ...
  [6] 132, 5005, 111384, 1899240, 27457584, 354323970, 4206302100, ...
  [A000108]  |  [A074922][A383452]
         [A002054]
		

Crossrefs

Columns of array: A000108, A002054, A074922, A383452.
Rows of array: A001764, A025174, A383450, A383451.
Cf. A001002 (antidiagonal sums), A001764 (semidiagonal sums), A027307 (row sums), A104979, A383439 (central terms).

Programs

  • Magma
    [Binomial(2*n+k, n+2*k)*Binomial(n+2*k, k)/(n+k+1): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 08 2021
    
  • Maple
    From Peter Luschny, May 04 2025:  (Start)
    T := (n, k) -> (k + 2*n)!/(k!*(n - k)!*(n + k + 1)!):
    seq(print(seq(T(n, k), k = 0..n)), n = 0..10);
    # Alternatively the array:
    A := (n, k) -> (3*k + 2*n)!/(k!*n!*(n + 2*k + 1)!);
    for n from 0 to 8 do seq(A(n, k), k = 0..7) od;  (End)
  • Mathematica
    T[n_, k_]:= Binomial[2n+k, n+2k]*Binomial[n+2k, k]/(n+k+1);
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* Jean-François Alcover, Jan 27 2019 *)
  • PARI
    T(n,k) = local(A=1+x+x*y+x*O(x^n)+y*O(y^k)); for(i=1,n,A=1+x*A^2+x*y*A^3); polcoeff(polcoeff(A,n,x),k,y)
    for(n=0, 10, for(k=0, n, print1(T(n,k),", ")); print(""))
    
  • PARI
    Dy(n, F)=local(D=F); for(i=1, n, D=deriv(D,y)); D
    T(n,k)=local(A=1); A=1+sum(m=1, n+1, x^m/y^(m+1) * Dy(m-1, (y^2+y^3)^m/m!)) +x*O(x^n)+y*O(y^k); polcoeff(polcoeff(A, n,x),k,y)
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print()) \\ Paul D. Hanna, Jun 22 2012
    
  • PARI
    x='x; y='y; z='z; Fxyz = 1 - z + x*z^2 + x*y*z^3;
    seq(N) = {
      my(z0 = 1 + O((x*y)^N), z1 = 0);
      for (k = 1, N^2,
        z1 = z0 - subst(Fxyz, z, z0)/subst(deriv(Fxyz, z), z, z0);
        if (z0 == z1, break()); z0 = z1);
      vector(N, n, Vecrev(polcoeff(z0, n-1, 'x)));
    };
    concat(seq(9)) \\ Gheorghe Coserea, Nov 30 2016
    
  • Sage
    flatten([[binomial(2*n+k, n+2*k)*binomial(n+2*k, k)/(n+k+1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 08 2021

Formula

T(n, k) = binomial(2*n+k, n+2*k)*binomial(n+2*k, k)/(n+k+1).
G.f.: A(x, y) = Sum_{n>=0} x^n/y^(n+1) * d^(n-1)/dy^(n-1) (y^2 + y^3)^n / n!. - Paul D. Hanna, Jun 22 2012
G.f. of row n: 1/y^(n+1) * d^(n-1)/dy^(n-1) (y^2+y^3)^n / n!. - Paul D. Hanna, Jun 22 2012
A(n, k) = T(n + k, k) = (3*k + 2*n)! / (k!*n!*(n + 2*k + 1)!). - Peter Luschny, May 04 2025

A108767 Triangle read by rows: T(n,k) is number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(1,1), d=(1,-2) and have k peaks (i.e., ud's).

Original entry on oeis.org

1, 1, 2, 1, 6, 5, 1, 12, 28, 14, 1, 20, 90, 120, 42, 1, 30, 220, 550, 495, 132, 1, 42, 455, 1820, 3003, 2002, 429, 1, 56, 840, 4900, 12740, 15288, 8008, 1430, 1, 72, 1428, 11424, 42840, 79968, 74256, 31824, 4862, 1, 90, 2280, 23940, 122094, 325584, 465120
Offset: 1

Views

Author

Emeric Deutsch, Jun 24 2005

Keywords

Comments

Row sums yield A001764.
From Peter Bala, Sep 16 2012: (Start)
The number of 2-Dyck paths of order n with k peaks (Cigler). A 2-Dyck path of order n is a lattice path from (0,0) to (2*n,n) with steps (0,1) (North) and (1,0) (East) that never goes below the diagonal {2*i,i} 0 <= i <= n. A peak is a consecutive North East pair.
Row reverse of A120986. Described in A173020 as generalized Runyon numbers R_{n,k}^(2).
(End)
From Alexander Burstein, Jun 15 2020: (Start)
T(n,k) is the number of paths from (0,0) to (3n,0) that stay on or above the horizontal axis, with unit steps u=(1,1) and d=(1,-2), that have n+1-k peaks at even height.
T(n,k) is also the number of paths from (0,0) to (3n,0) that stay on or above the horizontal axis, with unit steps u=(1,1) and d=(1,-2), that have n-k peaks at odd height. (End)
An apparent refinement is A338135. - Tom Copeland, Oct 12 2020

Examples

			T(3,2)=6 because we have uuduuuudd, uuuduuudd, uuuuduudd, uuuudduud, uuuuududd and uuuuuddud.
Triangle starts:
  1;
  1,  2;
  1,  6,   5;
  1, 12,  28,   14;
  1, 20,  90,  120,   42;
  1, 30, 220,  550,  495,  132;
  1, 42, 455, 1820, 3003, 2002, 429;
  ...
		

Crossrefs

Runyon numbers R_{n,k}^(m): A010054 (m=0), A001263 (m=1), this sequence (m=2), A173020 (m=3).

Programs

  • Magma
    A108767:= func< n,k,m | Binomial(n,k)*Binomial(m*n,k-1)/n >;
    [A108767(n,k,2): k in [1..n], n in [1..12]]; // G. C. Greubel, Feb 20 2021
  • Maple
    T:=(n,k)->binomial(n,k)*binomial(2*n,k-1)/n: for n from 1 to 10 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form
  • Mathematica
    T[n_, k_] := Binomial[n, k]*Binomial[2*n, k - 1]/n;
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 11 2017, from Maple *)
  • PARI
    T(n,k) = binomial(n, k)*binomial(2*n, k-1)/n; \\ Andrew Howroyd, Nov 06 2017
    
  • Python
    from sympy import binomial
    def T(n, k): return binomial(n, k)*binomial(2*n, k - 1)//n
    for n in range(1, 21): print([T(n, k) for k in range(1, n + 1)]) # Indranil Ghosh, Nov 07 2017
    
  • R
    T <- function(n, k) {
      choose(n, k)*choose(2*n, k - 1)/n
    } # Indranil Ghosh, Nov 07 2017
    
  • Sage
    def A108767(n,k,m): return binomial(n,k)*binomial(m*n,k-1)/n
    flatten([[A108767(n,k,2) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 20 2021
    

Formula

T(n, k) = binomial(n, k)*binomial(2*n, k-1)/n.
T(n, n) = A000108(n) (the Catalan numbers).
Sum_{k=1..n} k*T(n,k) = A025174(n).
G.f.: T-1, where T = T(t, z) satisfies T = 1 + z*T^2*(T - 1 + t).
From Peter Bala, Oct 22 2008: (Start)
Define a functional I on formal power series of the form f(x) = 1 + ax + bx^2 + ... by the following iterative process. Define inductively f^(1)(x) = f(x) and f^(n+1)(x) = f(x*f^(n)(x)) for n >= 1. Then set I(f(x)) = Limit_{n -> oo} f^(n)(x) in the x-adic topology on the ring of formal power series; the operator I may also be defined by I(f(x)) := 1/x*series reversion of x/f(x).
The o.g.f. for the array of Narayana numbers A001263 is I(1 + t*x + t*x^2 + t*x^3 + ...) = 1 + t*x + (t + t^2)*x^2 + (t + 3*t^2 + t^3)*x^3 + ... . The o.g.f. for the current array is IoI(1 + t*x + t*x^2 + t*x^3 + ...) = 1 + t*x + (t + 2*t^2)*x^2 + (t + 6*t^2 + 5*t^3)*x^3 + ... . Cf. A132081 and A141618. Alternatively, the o.g.f. of this array can be obtained from a single application of I, namely, form I(1 + t*x^2 + t*x^4 + t*x^6 + ...) = 1 + t*x^2 + (t + 2*t^2)*x^4 + (t + 6*t^2 + 5*t^3)*x^6 + ... and then replace x by sqrt(x). This is a particular case of the general result that forming the n-fold composition I^(n)(f(x)) and then replacing x with x^n produces the same result as I(f(x^n)). (End)
O.g.f. is series reversion with respect to x of x/((1+x)*(1+x*u)^2). Cf. A173020. - Peter Bala, Sep 12 2012
n-th row polynomial = x * hypergeom([1 - n, -2*n], [2], x). - Peter Bala, Aug 30 2023

A119301 Triangle read by rows: T(n,k) = binomial(3*n-k,n-k).

Original entry on oeis.org

1, 3, 1, 15, 5, 1, 84, 28, 7, 1, 495, 165, 45, 9, 1, 3003, 1001, 286, 66, 11, 1, 18564, 6188, 1820, 455, 91, 13, 1, 116280, 38760, 11628, 3060, 680, 120, 15, 1, 735471, 245157, 74613, 20349, 4845, 969, 153, 17, 1, 4686825, 1562275, 480700, 134596, 33649, 7315
Offset: 0

Views

Author

Paul Barry, May 13 2006

Keywords

Comments

First column is A005809. Second column is A025174.
Row sums are A045721. Inverse is Riordan array (1-3x,x(1-x)^2), A119302.

Examples

			Triangle begins
  1,
  3, 1,
  15, 5, 1,
  84, 28, 7, 1,
  495, 165, 45, 9, 1,
  3003, 1001, 286, 66, 11, 1,
  18564, 6188, 1820, 455, 91, 13, 1,
  116280, 38760, 11628, 3060, 680, 120, 15, 1
  ...
Horizontal recurrence: T(4,1) = 1*84 + 2*28 + 3*7 + 4*1 = 165. - _Peter Bala_, Dec 29 2014
		

Crossrefs

Programs

  • Maple
    T := proc(n,k) option remember;
    `if`(n = 0, 1, add(i*T(n-1,k-2+i),i=1..n+1-k)) end:
    for n from 0 to 9 do print(seq(T(n,k),k=0..n)) od; # Peter Luschny, Dec 30 2014
  • Mathematica
    Flatten[Table[Binomial[3n-k,n-k],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Jul 28 2012 *)

Formula

G.f. g(x) = 2*sin(arcsin(3*sqrt(3*x)/2)/3)/sqrt(3*x) satisfies g(x) = 1/(1-x*g(x)^2).
Riordan array (1/(1-3*x*g(x)^2),x*g(x)^2) where g(x)=1+x*g(x)^3.
'Horizontal' recurrence equation: T(n,0) = binomial(3*n,n) and for k >= 1, T(n,k) = Sum_{i = 1..n+1-k} i*T(n-1,k-2+i). - Peter Bala, Dec 28 2014
T(n, k) = Sum_{j = 0..n} binomial(n+j-1, j)*binomial(2*n-k-j, n). - Peter Bala, Jun 04 2024
Previous Showing 11-20 of 43 results. Next