cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A001764 a(n) = binomial(3*n,n)/(2*n+1) (enumerates ternary trees and also noncrossing trees).

Original entry on oeis.org

1, 1, 3, 12, 55, 273, 1428, 7752, 43263, 246675, 1430715, 8414640, 50067108, 300830572, 1822766520, 11124755664, 68328754959, 422030545335, 2619631042665, 16332922290300, 102240109897695, 642312451217745, 4048514844039120, 25594403741131680, 162250238001816900
Offset: 0

Views

Author

Keywords

Comments

Smallest number of straight line crossing-free spanning trees on n points in the plane.
Number of dissections of some convex polygon by nonintersecting diagonals into polygons with an odd number of sides and having a total number of 2n+1 edges (sides and diagonals). - Emeric Deutsch, Mar 06 2002
Number of lattice paths of n East steps and 2n North steps from (0,0) to (n,2n) and lying weakly below the line y=2x. - David Callan, Mar 14 2004
With interpolated zeros, this has g.f. 2*sqrt(3)*sin(arcsin(3*sqrt(3)*x/2)/3)/(3*x) and a(n) = C(n+floor(n/2),floor(n/2))*C(floor(n/2),n-floor(n/2))/(n+1). This is the first column of the inverse of the Riordan array (1-x^2,x(1-x^2)) (essentially reversion of y-y^3). - Paul Barry, Feb 02 2005
Number of 12312-avoiding matchings on [2n].
Number of complete ternary trees with n internal nodes, or 3n edges.
Number of rooted plane trees with 2n edges, where every vertex has even outdegree ("even trees").
a(n) is the number of noncrossing partitions of [2n] with all blocks of even size. E.g.: a(2)=3 counts 12-34, 14-23, 1234. - David Callan, Mar 30 2007
Pfaff-Fuss-Catalan sequence C^{m}_n for m=3, see the Graham et al. reference, p. 347. eq. 7.66.
Also 3-Raney sequence, see the Graham et al. reference, p. 346-7.
The number of lattice paths from (0,0) to (2n,0) using an Up-step=(1,1) and a Down-step=(0,-2) and staying above the x-axis. E.g., a(2) = 3; UUUUDD, UUUDUD, UUDUUD. - Charles Moore (chamoore(AT)howard.edu), Jan 09 2008
a(n) is (conjecturally) the number of permutations of [n+1] that avoid the patterns 4-2-3-1 and 4-2-5-1-3 and end with an ascent. For example, a(4)=55 counts all 60 permutations of [5] that end with an ascent except 42315, 52314, 52413, 53412, all of which contain a 4-2-3-1 pattern and 42513. - David Callan, Jul 22 2008
Central terms of pendular triangle A167763. - Philippe Deléham, Nov 12 2009
With B(x,t)=x+t*x^3, the comp. inverse in x about 0 is A(x,t) = Sum_{j>=0} a(j) (-t)^j x^(2j+1). Let U(x,t)=(x-A(x,t))/t. Then DU(x,t)/Dt=dU/dt+U*dU/dx=0 and U(x,0)=x^3, i.e., U is a solution of the inviscid Burgers's, or Hopf, equation. Also U(x,t)=U(x-t*U(x,t),0) and dB(x,t)/dt = U(B(x,t),t) = x^3 = U(x,0). The characteristics for the Hopf equation are x(t) = x(0) + t*U(x(t),t) = x(0) + t*U(x(0),0) = x(0) + t*x(0)^3 = B(x(0),t). These results apply to all the Fuss-Catalan sequences with 3 replaced by n>0 and 2 by n-1 (e.g., A000108 with n=2 and A002293 with n=4), see also A086810, which can be generalized to A133437, for associahedra. - Tom Copeland, Feb 15 2014
Number of intervals (i.e., ordered pairs (x,y) such that x<=y) in the Kreweras lattice (noncrossing partitions ordered by refinement) of size n, see the Bernardi & Bonichon (2009) and Kreweras (1972) references. - Noam Zeilberger, Jun 01 2016
Number of sum-indecomposable (4231,42513)-avoiding permutations. Conjecturally, number of sum-indecomposable (2431,45231)-avoiding permutations. - Alexander Burstein, Oct 19 2017
a(n) is the number of topologically distinct endstates for the game Planted Brussels Sprouts on n vertices, see Ji and Propp link. - Caleb Ji, May 14 2018
Number of complete quadrillages of 2n+2-gons. See Baryshnikov p. 12. See also Nov 10 2014 comments in A134264. - Tom Copeland, Jun 04 2018
a(n) is the number of 2-regular words on the alphabet [n] that avoid the patterns 231 and 221. Equivalently, this is the number of 2-regular tortoise-sortable words on the alphabet [n] (see the Defant and Kravitz link). - Colin Defant, Sep 26 2018
a(n) is the number of Motzkin paths of length 3n with n steps of each type, with the condition that (1, 0) and (1, 1) steps alternate (starting with (1, 0)). - Helmut Prodinger, Apr 08 2019
a(n) is the number of uniquely sorted permutations of length 2n+1 that avoid the patterns 312 and 1342. - Colin Defant, Jun 08 2019
The compositional inverse o.g.f. pair in Copeland's comment above are related to a pair of quantum fields in Balduf's thesis by Theorem 4.2 on p. 92. - Tom Copeland, Dec 13 2019
The sequences of Fuss-Catalan numbers, of which this is the first after the Catalan numbers A000108 (the next is A002293), appear in articles on random matrices and quantum physics. See Banica et al., Collins et al., and Mlotkowski et al. Interpretations of these sequences in terms of the cardinality of specific sets of noncrossing partitions are provided by A134264. - Tom Copeland, Dec 21 2019
Call C(p, [alpha], g) the number of partitions of a cyclically ordered set with p elements, of cyclic type [alpha], and of genus g (the genus g Faa di Bruno coefficients of type [alpha]). This sequence counts the genus 0 partitions (non-crossing, or planar, partitions) of p = 3n into n parts of length 3: a(n) = C(3n, [3^n], 0). For genus 1 see A371250, for genus 2 see A371251. - Robert Coquereaux, Mar 16 2024
a(n) is the total number of down steps before the first up step in all 2_1-Dyck paths of length 3*n for n > 0. A 2_1-Dyck path is a lattice path with steps (1,2), (1,-1) that starts and ends at y = 0 and does not go below the line y = -1. - Sarah Selkirk, May 10 2020
a(n) is the number of pairs (A<=B) of noncrossing partitions of [n]. - Francesca Aicardi, May 28 2022
a(n) is the number of parking functions of size n avoiding the patterns 231 and 321. - Lara Pudwell, Apr 10 2023
Number of rooted polyominoes composed of n square cells of the hyperbolic regular tiling with Schläfli symbol {4,oo}. A rooted polyomino has one external edge identified, and chiral pairs are counted as two. A stereographic projection of the {4,oo} tiling on the Poincaré disk can be obtained via the Christensson link. - Robert A. Russell, Jan 27 2024
This is instance k = 3 of the family {C(k, n)}A130564.%20-%20_Wolfdieter%20Lang">{n>=0} given in a comment in A130564. - _Wolfdieter Lang, Feb 05 2024
The number of Apollonian networks (planar 3-trees) with n+3 vertices with a given base triangle. - Allan Bickle, Feb 20 2024
Number of rooted polyominoes composed of n tetrahedral cells of the hyperbolic regular tiling with Schläfli symbol {3,3,oo}. A rooted polyomino has one external face identified, and chiral pairs are counted as two. a(n) = T(n) in the second Beineke and Pippert link. - Robert A. Russell, Mar 20 2024

Examples

			a(2) = 3 because the only dissections with 5 edges are given by a square dissected by any of the two diagonals and the pentagon with no dissecting diagonal.
G.f. = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 + 7752*x^7 + 43263*x^8 + ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 23.
  • I. M. H. Etherington, On non-associative combinations, Proc. Royal Soc. Edinburgh, 59 (Part 2, 1938-39), 153-162.
  • I. M. H. Etherington, Some problems of non-associative combinations (I), Edinburgh Math. Notes, 32 (1940), pp. i-vi. Part II is by A. Erdelyi and I. M. H. Etherington, and is on pages vii-xiv of the same issue.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, pp. 200, 347. See also the Pólya-Szegő reference.
  • W. Kuich, Languages and the enumeration of planted plane trees. Nederl. Akad. Wetensch. Proc. Ser. A 73 = Indag. Math. 32, (1970), 268-280.
  • T. V. Narayana, Lattice Path Combinatorics with Statistical Applications. Univ. Toronto Press, 1979, p. 98.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, New York, Heidelberg, Berlin, 2 vols., 1972, Vol. 1, problem 211, p. 146 with solution on p. 348.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001762, A001763, A002294 - A002296, A006013, A025174, A063548, A064017, A072247, A072248, A134264, A143603, A258708, A256311, A188687 (binomial transform), A346628 (inverse binomial transform).
A column of triangle A102537.
Bisection of A047749 and A047761.
Row sums of triangles A108410 and A108767.
Second column of triangle A062993.
Mod 3 = A113047.
2D Polyominoes: A005034 (oriented), A005036 (unoriented), A369315 (chiral), A047749 (achiral), A000108 {3,oo}, A002293 {5,oo}.
3D Polyominoes: A007173 (oriented), A027610 (unoriented), A371350 (chiral), A371351 (achiral).
Cf. A130564 (for C(k, n) cases).

Programs

  • GAP
    List([0..25],n->Binomial(3*n,n)/(2*n+1)); # Muniru A Asiru, Oct 31 2018
    
  • Haskell
    a001764 n = a001764_list !! n
    a001764_list = 1 : [a258708 (2 * n) n | n <- [1..]]
    -- Reinhard Zumkeller, Jun 23 2015
    
  • Magma
    [Binomial(3*n,n)/(2*n+1): n in [0..30]]; // Vincenzo Librandi, Sep 04 2014
    
  • Maple
    A001764 := n->binomial(3*n,n)/(2*n+1): seq(A001764(n), n=0..25);
    with(combstruct): BB:=[T,{T=Prod(Z,F),F=Sequence(B),B=Prod(F,Z,F)}, unlabeled]:seq(count(BB,size=i),i=0..22); # Zerinvary Lajos, Apr 22 2007
    with(combstruct):BB:=[S, {B = Prod(S,S,Z), S = Sequence(B)}, labelled]: seq(count(BB, size=n)/n!, n=0..21); # Zerinvary Lajos, Apr 25 2008
    n:=30:G:=series(RootOf(g = 1+x*g^3, g),x=0,n+1):seq(coeff(G,x,k),k=0..n); # Robert FERREOL, Apr 03 2015
    alias(PS=ListTools:-PartialSums): A001764List := proc(m) local A, P, n;
    A := [1,1]; P := [1]; for n from 1 to m - 2 do P := PS(PS([op(P), P[-1]]));
    A := [op(A), P[-1]] od; A end: A001764List(25); # Peter Luschny, Mar 26 2022
  • Mathematica
    InverseSeries[Series[y-y^3, {y, 0, 24}], x] (* then a(n)=y(2n+1)=ways to place non-crossing diagonals in convex (2n+4)-gon so as to create only quadrilateral tiles *) (* Len Smiley, Apr 08 2000 *)
    Table[Binomial[3n,n]/(2n+1),{n,0,25}] (* Harvey P. Dale, Jul 24 2011 *)
  • PARI
    {a(n) = if( n<0, 0, (3*n)! / n! / (2*n + 1)!)};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( serreverse( x - x^3 + O(x^(2*n + 2))), 2*n + 1))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = 1 + O(x); for( m=1, n, A = 1 + x * A^3); polcoeff(A, n))};
    
  • PARI
    b=vector(22);b[1]=1;for(n=2,22,for(i=1,n-1,for(j=1,n-1,for(k=1,n-1,if((i-1)+(j-1)+(k-1)-(n-2),NULL,b[n]=b[n]+b[i]*b[j]*b[k])))));a(n)=b[n+1]; print1(a(0));for(n=1,21,print1(", ",a(n))) \\ Gerald McGarvey, Oct 08 2008
    
  • PARI
    Vec(1 + serreverse(x / (1+x)^3 + O(x^30))) \\ Gheorghe Coserea, Aug 05 2015
    
  • Python
    from math import comb
    def A001764(n): return comb(3*n,n)//(2*n+1) # Chai Wah Wu, Nov 10 2022
  • Sage
    def A001764_list(n) :
        D = [0]*(n+1); D[1] = 1
        R = []; b = false; h = 1
        for i in range(2*n) :
            for k in (1..h) : D[k] += D[k-1]
            if not b : R.append(D[h])
            else : h += 1
            b = not b
        return R
    A001764_list(22) # Peter Luschny, May 03 2012
    

Formula

From Karol A. Penson, Nov 08 2001: (Start)
G.f.: (2/sqrt(3*x))*sin((1/3)*arcsin(sqrt(27*x/4))).
E.g.f.: hypergeom([1/3, 2/3], [1, 3/2], 27/4*x).
Integral representation as n-th moment of a positive function on [0, 27/4]: a(n) = Integral_{x=0..27/4} (x^n*((1/12) * 3^(1/2) * 2^(1/3) * (2^(1/3)*(27 + 3 * sqrt(81 - 12*x))^(2/3) - 6 * x^(1/3))/(Pi * x^(2/3)*(27 + 3 * sqrt(81 - 12*x))^(1/3)))), n >= 0. This representation is unique. (End)
G.f. A(x) satisfies A(x) = 1+x*A(x)^3 = 1/(1-x*A(x)^2) [Cyvin (1998)]. - Ralf Stephan, Jun 30 2003
a(n) = n-th coefficient in expansion of power series P(n), where P(0) = 1, P(k+1) = 1/(1 - x*P(k)^2).
G.f. Rev(x/c(x))/x, where c(x) is the g.f. of A000108 (Rev=reversion of). - Paul Barry, Mar 26 2010
From Gary W. Adamson, Jul 07 2011: (Start)
Let M = the production matrix:
1, 1
2, 2, 1
3, 3, 2, 1
4, 4, 3, 2, 1
5, 5, 4, 3, 2, 1
...
a(n) = upper left term in M^n. Top row terms of M^n = (n+1)-th row of triangle A143603, with top row sums generating A006013: (1, 2, 7, 30, 143, 728, ...). (End)
Recurrence: a(0)=1; a(n) = Sum_{i=0..n-1, j=0..n-1-i} a(i)a(j)a(n-1-i-j) for n >= 1 (counts ternary trees by subtrees of the root). - David Callan, Nov 21 2011
G.f.: 1 + 6*x/(Q(0) - 6*x); Q(k) = 3*x*(3*k + 1)*(3*k + 2) + 2*(2*(k^2) + 5*k +3) - 6*x*(2*(k^2) + 5*k + 3)*(3*k + 4)*(3*k + 5)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 27 2011
D-finite with recurrence: 2*n*(2n+1)*a(n) - 3*(3n-1)*(3n-2)*a(n-1) = 0. - R. J. Mathar, Dec 14 2011
REVERT transform of A115140. BINOMIAL transform is A188687. SUMADJ transform of A188678. HANKEL transform is A051255. INVERT transform of A023053. INVERT transform is A098746. - Michael Somos, Apr 07 2012
(n + 1) * a(n) = A174687(n).
G.f.: F([2/3,4/3], [3/2], 27/4*x) / F([2/3,1/3], [1/2], (27/4)*x) where F() is the hypergeometric function. - Joerg Arndt, Sep 01 2012
a(n) = binomial(3*n+1, n)/(3*n+1) = A062993(n+1,1). - Robert FERREOL, Apr 03 2015
a(n) = A258708(2*n,n) for n > 0. - Reinhard Zumkeller, Jun 23 2015
0 = a(n)*(-3188646*a(n+2) + 20312856*a(n+3) - 11379609*a(n+4) + 1437501*a(n+5)) + a(n+1)*(177147*a(n+2) - 2247831*a(n+3) + 1638648*a(n+4) - 238604*a(n+5)) + a(n+2)*(243*a(n+2) + 31497*a(n+3) - 43732*a(n+4) + 8288*a(n+5)) for all integer n. - Michael Somos, Jun 03 2016
a(n) ~ 3^(3*n + 1/2)/(sqrt(Pi)*4^(n+1)*n^(3/2)). - Ilya Gutkovskiy, Nov 21 2016
Given g.f. A(x), then A(1/8) = -1 + sqrt(5), A(2/27) = (-1 + sqrt(3))*3/2, A(4/27) = 3/2, A(3/64) = -2 + 2*sqrt(7/3), A(5/64) = (-1 + sqrt(5))*2/sqrt(5), etc. A(n^2/(n+1)^3) = (n+1)/n if n > 1. - Michael Somos, Jul 17 2018
From Peter Bala, Sep 14 2021: (Start)
A(x) = exp( Sum_{n >= 1} (1/3)*binomial(3*n,n)*x^n/n ).
The sequence defined by b(n) := [x^n] A(x)^n = A224274(n) for n >= 1 and satisfies the congruence b(p) == b(1) (mod p^3) for prime p >= 3. Cf. A060941. (End)
G.f.: 1/sqrt(B(x)+(1-6*x)/(9*B(x))+1/3), with B(x):=((27*x^2-18*x+2)/54-(x*sqrt((-(4-27*x))*x))/(2*3^(3/2)))^(1/3). - Vladimir Kruchinin, Sep 28 2021
x*A'(x)/A(x) = (A(x) - 1)/(- 2*A(x) + 3) = x + 5*x^2 + 28*x^3 + 165*x^4 + ... is the o.g.f. of A025174. Cf. A002293 - A002296. - Peter Bala, Feb 04 2022
a(n) = hypergeom([1 - n, -2*n], [2], 1). Row sums of A108767. - Peter Bala, Aug 30 2023
G.f.: z*exp(3*z*hypergeom([1, 1, 4/3, 5/3], [3/2, 2, 2], (27*z)/4)) + 1.
- Karol A. Penson, Dec 19 2023
G.f.: hypergeometric([1/3, 2/3], [3/2], (3^3/2^2)*x). See the e.g.f. above. - Wolfdieter Lang, Feb 04 2024
a(n) = (3*n)! / (n!*(2*n+1)!). - Allan Bickle, Feb 20 2024
Sum_{n >= 0} a(n)*x^n/(1 + x)^(3*n+1) = 1. See A316371 and A346627. - Peter Bala, Jun 02 2024
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)^5). - Seiichi Manyama, Jun 16 2025

A001263 Triangle of Narayana numbers T(n,k) = C(n-1,k-1)*C(n,k-1)/k with 1 <= k <= n, read by rows. Also called the Catalan triangle.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 10, 20, 10, 1, 1, 15, 50, 50, 15, 1, 1, 21, 105, 175, 105, 21, 1, 1, 28, 196, 490, 490, 196, 28, 1, 1, 36, 336, 1176, 1764, 1176, 336, 36, 1, 1, 45, 540, 2520, 5292, 5292, 2520, 540, 45, 1, 1, 55, 825, 4950, 13860, 19404, 13860, 4950, 825
Offset: 1

Views

Author

Keywords

Comments

Number of antichains (or order ideals) in the poset 2*(k-1)*(n-k) or plane partitions with rows <= k-1, columns <= n-k and entries <= 2. - Mitch Harris, Jul 15 2000
T(n,k) is the number of Dyck n-paths with exactly k peaks. a(n,k) = number of pairs (P,Q) of lattice paths from (0,0) to (k,n+1-k), each consisting of unit steps East or North, such that P lies strictly above Q except at the endpoints. - David Callan, Mar 23 2004
Number of permutations of [n] which avoid-132 and have k-1 descents. - Mike Zabrocki, Aug 26 2004
T(n,k) is the number of paths through n panes of glass, entering and leaving from one side, of length 2n with k reflections (where traversing one pane of glass is the unit length). - Mitch Harris, Jul 06 2006
Antidiagonal sums given by A004148 (without first term).
T(n,k) is the number of full binary trees with n internal nodes and k-1 jumps. In the preorder traversal of a full binary tree, any transition from a node at a deeper level to a node on a strictly higher level is called a jump. - Emeric Deutsch, Jan 18 2007
From Gary W. Adamson, Oct 22 2007: (Start)
The n-th row can be generated by the following operation using an ascending row of (n-1) triangular terms, (A) and a descending row, (B); e.g., row 6:
A: 1....3....6....10....15
B: 15...10....6.....3.....1
C: 1...15...50....50....15....1 = row 6.
Leftmost column of A,B -> first two terms of C; then followed by the operation B*C/A of current column = next term of row C, (e.g., 10*15/3 = 50). Continuing with the operation, we get row 6: (1, 15, 50, 50, 15, 1). (End)
The previous comment can be upgraded to: The ConvOffsStoT transform of the triangular series; and by rows, row 6 is the ConvOffs transform of (1, 3, 6, 10, 15). Refer to triangle A117401 as another example of the ConvOffsStoT transform, and OEIS under Maple Transforms. - Gary W. Adamson, Jul 09 2012
For a connection to Lagrange inversion, see A134264. - Tom Copeland, Aug 15 2008
T(n,k) is also the number of order-decreasing and order-preserving mappings (of an n-element set) of height k (height of a mapping is the cardinal of its image set). - Abdullahi Umar, Aug 21 2008
Row n of this triangle is the h-vector of the simplicial complex dual to an associahedron of type A_n [Fomin & Reading, p.60]. See A033282 for the corresponding array of f-vectors for associahedra of type A_n. See A008459 and A145903 for the h-vectors for associahedra of type B and type D respectively. The Hilbert transform of this triangle (see A145905 for the definition of this transform) is A145904. - Peter Bala, Oct 27 2008
T(n,k) is also the number of noncrossing set partitions of [n] into k blocks. Given a partition P of the set {1,2,...,n}, a crossing in P are four integers [a, b, c, d] with 1 <= a < b < c < d <= n for which a, c are together in a block, and b, d are together in a different block. A noncrossing partition is a partition with no crossings. - Peter Luschny, Apr 29 2011
Noncrossing set partitions are also called genus 0 partitions. In terms of genus-dependent Stirling numbers of the second kind S2(n,k,g) that count partitions of genus g of an n-set into k nonempty subsets, one has T(n,k) = S2(n,k,0). - Robert Coquereaux, Feb 15 2024
Diagonals of A089732 are rows of A001263. - Tom Copeland, May 14 2012
From Peter Bala, Aug 07 2013: (Start)
Let E(y) = Sum_{n >= 0} y^n/(n!*(n+1)!) = 1/sqrt(y)*BesselI(1,2*sqrt(y)). Then this triangle is the generalized Riordan array (E(y), y) with respect to the sequence n!*(n+1)! as defined in Wang and Wang.
Generating function E(y)*E(x*y) = 1 + (1 + x)*y/(1!*2!) + (1 + 3*x + x^2)*y^2/(2!*3!) + (1 + 6*x + 6*x^2 + x^3)*y^3/(3!*4!) + .... Cf. A105278 with a generating function exp(y)*E(x*y).
The n-th power of this array has a generating function E(y)^n*E(x*y). In particular, the matrix inverse A103364 has a generating function E(x*y)/E(y). (End)
T(n,k) is the number of nonintersecting n arches above the x axis, starting and ending on vertices 1 to 2n, with k being the number of arches starting on an odd vertice and ending on a higher even vertice. Example: T(3,2)=3 [16,25,34] [14,23,56] [12,36,45]. - Roger Ford, Jun 14 2014
Fomin and Reading on p. 31 state that the rows of the Narayana matrix are the h-vectors of the associahedra as well as its dual. - Tom Copeland, Jun 27 2017
The row polynomials P(n, x) = Sum_{k=1..n} T(n, k)*x^(k-1), together with P(0, x) = 1, multiplied by (n+1) are the numerator polynomials of the o.g.f.s of the diagonal sequences of the triangle A103371: G(n, x) = (n+1)*P(n, x)/(1 - x)^{2*n+1}, for n >= 0. This is proved with Lagrange's theorem applied to the Riordan triangle A135278 = (1/(1 - x)^2, x/(1 - x)). See an example below. - Wolfdieter Lang, Jul 31 2017
T(n,k) is the number of Dyck paths of semilength n with k-1 uu-blocks (pairs of consecutive up-steps). - Alexander Burstein, Jun 22 2020
In case you were searching for Narayama numbers, the correct spelling is Narayana. - N. J. A. Sloane, Nov 11 2020
Named after the Canadian mathematician Tadepalli Venkata Narayana (1930-1987). They were also called "Runyon numbers" after John P. Runyon (1922-2013) of Bell Telephone Laboratories, who used them in a study of a telephone traffic system. - Amiram Eldar, Apr 15 2021 The Narayana numbers were first studied by Percy Alexander MacMahon (see reference, Article 495) as pointed out by Bóna and Sagan (see link). - Peter Luschny, Apr 28 2022
From Andrea Arlette España, Nov 14 2022: (Start)
T(n,k) is the degree distribution of the paths towards synchronization in the transition diagram associated with the Laplacian system over the complete graph K_n, corresponding to ordered initial conditions x_1 < x_2 < ... < x_n.
T(n,k) for n=2N+1 and k=N+1 is the number of states in the transition diagram associated with the Laplacian system over the complete bipartite graph K_{N,N}, corresponding to ordered (x_1 < x_2 < ... < x_N and x_{N+1} < x_{N+2} < ... < x_{2N}) and balanced (Sum_{i=1..N} x_i/N = Sum_{i=N+1..2N} x_i/N) initial conditions. (End)
From Gus Wiseman, Jan 23 2023: (Start)
Also the number of unlabeled ordered rooted trees with n nodes and k leaves. See the link by Marko Riedel. For example, row n = 5 counts the following trees:
((((o)))) (((o))o) ((o)oo) (oooo)
(((o)o)) ((oo)o)
(((oo))) ((ooo))
((o)(o)) (o(o)o)
((o(o))) (o(oo))
(o((o))) (oo(o))
The unordered version is A055277. Leaves in standard ordered trees are counted by A358371. (End)

Examples

			The initial rows of the triangle are:
  [1] 1
  [2] 1,  1
  [3] 1,  3,   1
  [4] 1,  6,   6,    1
  [5] 1, 10,  20,   10,    1
  [6] 1, 15,  50,   50,   15,    1
  [7] 1, 21, 105,  175,  105,   21,   1
  [8] 1, 28, 196,  490,  490,  196,  28,  1
  [9] 1, 36, 336, 1176, 1764, 1176, 336, 36, 1;
  ...
For all n, 12...n (1 block) and 1|2|3|...|n (n blocks) are noncrossing set partitions.
Example of umbral representation:
  A007318(5,k)=[1,5/1,5*4/(2*1),...,1]=(1,5,10,10,5,1),
  so A001263(5,k)={1,b(5)/b(1),b(5)*b(4)/[b(2)*b(1)],...,1}
  = [1,30/2,30*20/(6*2),...,1]=(1,15,50,50,15,1).
  First = last term = b.(5!)/[b.(0!)*b.(5!)]= 1. - _Tom Copeland_, Sep 21 2011
Row polynomials and diagonal sequences of A103371: n = 4,  P(4, x) = 1 + 6*x + 6*x^2 + x^3, and the o.g.f. of fifth diagonal is G(4, x) = 5* P(4, x)/(1 - x)^9, namely [5, 75, 525, ...]. See a comment above. - _Wolfdieter Lang_, Jul 31 2017
		

References

  • Berman and Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), pp. 103-124.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 196.
  • P. A. MacMahon, Combinatory Analysis, Vols. 1 and 2, Cambridge University Press, 1915, 1916; reprinted by Chelsea, 1960, Sect. 495.
  • T. V. Narayana, Lattice Path Combinatorics with Statistical Applications. Univ. Toronto Press, 1979, pp. 100-101.
  • A. Nkwanta, Lattice paths and RNA secondary structures, in African Americans in Mathematics, ed. N. Dean, Amer. Math. Soc., 1997, pp. 137-147.
  • T. K. Petersen, Eulerian Numbers, Birkhäuser, 2015, Chapter 2.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 17.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.36(a) and (b).

Crossrefs

Other versions are in A090181 and A131198. - Philippe Deléham, Nov 18 2007
Cf. variants: A181143, A181144. - Paul D. Hanna, Oct 13 2010
Row sums give A000108 (Catalan numbers), n>0.
A008459 (h-vectors type B associahedra), A033282 (f-vectors type A associahedra), A145903 (h-vectors type D associahedra), A145904 (Hilbert transform). - Peter Bala, Oct 27 2008
Cf. A016098 and A189232 for numbers of crossing set partitions.
Cf. A243752.
Triangles of generalized binomial coefficients (n,k)_m (or generalized Pascal triangles) for m = 1,...,12: A007318 (Pascal), A001263, A056939, A056940, A056941, A142465, A142467, A142468, A174109, A342889, A342890, A342891.

Programs

  • GAP
    Flat(List([1..11],n->List([1..n],k->Binomial(n-1,k-1)*Binomial(n,k-1)/k))); # Muniru A Asiru, Jul 12 2018
  • Haskell
    a001263 n k = a001263_tabl !! (n-1) !! (k-1)
    a001263_row n = a001263_tabl !! (n-1)
    a001263_tabl = zipWith dt a007318_tabl (tail a007318_tabl) where
       dt us vs = zipWith (-) (zipWith (*) us (tail vs))
                              (zipWith (*) (tail us ++ [0]) (init vs))
    -- Reinhard Zumkeller, Oct 10 2013
    
  • Magma
    /* triangle */ [[Binomial(n-1,k-1)*Binomial(n,k-1)/k : k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Oct 19 2014
    
  • Maple
    A001263 := (n,k)->binomial(n-1,k-1)*binomial(n,k-1)/k;
    a:=proc(n,k) option remember; local i; if k=1 or k=n then 1 else add(binomial(n+i-1, 2*k-2)*a(k-1,i),i=1..k-1); fi; end:
    # Alternatively, as a (0,0)-based triangle:
    R := n -> simplify(hypergeom([-n, -n-1], [2], x)): Trow := n -> seq(coeff(R(n,x),x,j), j=0..n): seq(Trow(n), n=0..9); # Peter Luschny, Mar 19 2018
  • Mathematica
    T[n_, k_] := If[k==0, 0, Binomial[n-1, k-1] Binomial[n, k-1] / k];
    Flatten[Table[Binomial[n-1,k-1] Binomial[n,k-1]/k,{n,15},{k,n}]] (* Harvey P. Dale, Feb 29 2012 *)
    TRow[n_] := CoefficientList[Hypergeometric2F1[1 - n, -n, 2, x], x];
    Table[TRow[n], {n, 1, 11}] // Flatten (* Peter Luschny, Mar 19 2018 *)
    aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[aot[n],Length[Position[#,{}]]==k&]],{n,2,9},{k,1,n-1}] (* Gus Wiseman, Jan 23 2023 *)
    T[1, 1] := 1; T[n_, k_]/;1<=k<=n := T[n, k] = (2n/k-1) T[n-1,k-1] + T[n-1, k]; T[n_, k_] := 0; Flatten@Table[T[n, k], {n, 1, 11}, {k, 1, n}] (* Oliver Seipel, Dec 31 2024 *)
  • PARI
    {a(n, k) = if(k==0, 0, binomial(n-1, k-1) * binomial(n, k-1) / k)};
    
  • PARI
    {T(n,k)=polcoeff(polcoeff(exp(sum(m=1,n,sum(j=0,m,binomial(m,j)^2*y^j)*x^m/m) +O(x^(n+1))),n,x),k,y)} \\ Paul D. Hanna, Oct 13 2010
    
  • Sage
    @CachedFunction
    def T(n, k):
        if k == n or k == 1: return 1
        if k <= 0 or k > n: return 0
        return binomial(n, 2) * (T(n-1, k)/((n-k)*(n-k+1)) + T(n-1, k-1)/(k*(k-1)))
    for n in (1..9): print([T(n, k) for k in (1..n)])  # Peter Luschny, Oct 28 2014
    

Formula

a(n, k) = C(n-1, k-1)*C(n, k-1)/k for k!=0; a(n, 0)=0.
Triangle equals [0, 1, 0, 1, 0, 1, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, ...] where DELTA is Deléham's operator defined in A084938.
0Mike Zabrocki, Aug 26 2004
T(n, k) = C(n, k)*C(n-1, k-1) - C(n, k-1)*C(n-1, k) (determinant of a 2 X 2 subarray of Pascal's triangle A007318). - Gerald McGarvey, Feb 24 2005
T(n, k) = binomial(n-1, k-1)^2 - binomial(n-1, k)*binomial(n-1, k-2). - David Callan, Nov 02 2005
a(n,k) = C(n,2) (a(n-1,k)/((n-k)*(n-k+1)) + a(n-1,k-1)/(k*(k-1))) a(n,k) = C(n,k)*C(n,k-1)/n. - Mitch Harris, Jul 06 2006
Central column = A000891, (2n)!*(2n+1)! / (n!*(n+1)!)^2. - Zerinvary Lajos, Oct 29 2006
G.f.: (1-x*(1+y)-sqrt((1-x*(1+y))^2-4*y*x^2))/(2*x) = Sum_{n>0, k>0} a(n, k)*x^n*y^k.
From Peter Bala, Oct 22 2008: (Start)
Relation with Jacobi polynomials of parameter (1,1):
Row n+1 generating polynomial equals 1/(n+1)*x*(1-x)^n*Jacobi_P(n,1,1,(1+x)/(1-x)). It follows that the zeros of the Narayana polynomials are all real and nonpositive, as noted above. O.g.f for column k+2: 1/(k+1) * y^(k+2)/(1-y)^(k+3) * Jacobi_P(k,1,1,(1+y)/(1-y)). Cf. A008459.
T(n+1,k) is the number of walks of n unit steps on the square lattice (i.e., each step in the direction either up (U), down (D), right (R) or left (L)) starting from the origin and finishing at lattice points on the x axis and which remain in the upper half-plane y >= 0 [Guy]. For example, T(4,3) = 6 counts the six walks RRL, LRR, RLR, UDL, URD and RUD, from the origin to the lattice point (1,0), each of 3 steps. Compare with tables A145596 - A145599.
Define a functional I on formal power series of the form f(x) = 1 + ax + bx^2 + ... by the following iterative process. Define inductively f^(1)(x) = f(x) and f^(n+1)(x) = f(x*f^(n)(x)) for n >= 1. Then set I(f(x)) = lim_{n -> infinity} f^(n)(x) in the x-adic topology on the ring of formal power series; the operator I may also be defined by I(f(x)) := 1/x*series reversion of x/f(x).
The o.g.f. for this array is I(1 + t*x + t*x^2 + t*x^3 + ...) = 1 + t*x + (t + t^2)*x^2 + (t + 3*t^2 + t^3)*x^3 + ... = 1/(1 - x*t/(1 - x/(1 - x*t/(1 - x/(1 - ...))))) (as a continued fraction). Cf. A108767, A132081 and A141618. (End)
G.f.: 1/(1-x-xy-x^2y/(1-x-xy-x^2y/(1-... (continued fraction). - Paul Barry, Sep 28 2010
E.g.f.: exp((1+y)x)*Bessel_I(1,2*sqrt(y)x)/(sqrt(y)*x). - Paul Barry, Sep 28 2010
G.f.: A(x,y) = exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^2*y^k] * x^n/n ). - Paul D. Hanna, Oct 13 2010
With F(x,t) = (1-(1+t)*x-sqrt(1-2*(1+t)*x+((t-1)*x)^2))/(2*x) an o.g.f. in x for the Narayana polynomials in t, G(x,t) = x/(t+(1+t)*x+x^2) is the compositional inverse in x. Consequently, with H(x,t) = 1/ (dG(x,t)/dx) = (t+(1+t)*x+x^2)^2 / (t-x^2), the n-th Narayana polynomial in t is given by (1/n!)*((H(x,t)*D_x)^n)x evaluated at x=0, i.e., F(x,t) = exp(x*H(u,t)*D_u)u, evaluated at u = 0. Also, dF(x,t)/dx = H(F(x,t),t). - Tom Copeland, Sep 04 2011
With offset 0, A001263 = Sum_{j>=0} A132710^j / A010790(j), a normalized Bessel fct. May be represented as the Pascal matrix A007318, n!/[(n-k)!*k!], umbralized with b(n)=A002378(n) for n>0 and b(0)=1: A001263(n,k)= b.(n!)/{b.[(n-k)!]*b.(k!)} where b.(n!) = b(n)*b(n-1)...*b(0), a generalized factorial (see example). - Tom Copeland, Sep 21 2011
With F(x,t) = {1-(1-t)*x-sqrt[1-2*(1+t)*x+[(t-1)*x]^2]}/2 a shifted o.g.f. in x for the Narayana polynomials in t, G(x,t)= x/[t-1+1/(1-x)] is the compositional inverse in x. Therefore, with H(x,t)=1/(dG(x,t)/dx)=[t-1+1/(1-x)]^2/{t-[x/(1-x)]^2}, (see A119900), the (n-1)-th Narayana polynomial in t is given by (1/n!)*((H(x,t)*d/dx)^n)x evaluated at x=0, i.e., F(x,t) = exp(x*H(u,t)*d/du) u, evaluated at u = 0. Also, dF(x,t)/dx = H(F(x,t),t). - Tom Copeland, Sep 30 2011
T(n,k) = binomial(n-1,k-1)*binomial(n+1,k)-binomial(n,k-1)*binomial(n,k). - Philippe Deléham, Nov 05 2011
A166360(n-k) = T(n,k) mod 2. - Reinhard Zumkeller, Oct 10 2013
Damped sum of a column, in leading order: lim_{d->0} d^(2k-1) Sum_{N>=k} T(N,k)(1-d)^N=Catalan(n). - Joachim Wuttke, Sep 11 2014
Multiplying the n-th column by n! generates the revert of the unsigned Lah numbers, A089231. - Tom Copeland, Jan 07 2016
Row polynomials: (x - 1)^(n+1)*(P(n+1,(1 + x)/(x - 1)) - P(n-1,(1 + x)/(x - 1)))/((4*n + 2)), n = 1,2,... and where P(n,x) denotes the n-th Legendre polynomial. - Peter Bala, Mar 03 2017
The coefficients of the row polynomials R(n, x) = hypergeom([-n,-n-1], [2], x) generate the triangle based in (0,0). - Peter Luschny, Mar 19 2018
Multiplying the n-th diagonal by n!, with the main diagonal n=1, generates the Lah matrix A105278. With G equal to the infinitesimal generator of A132710, the Narayana triangle equals Sum_{n >= 0} G^n/((n+1)!*n!) = (sqrt(G))^(-1) * I_1(2*sqrt(G)), where G^0 is the identity matrix and I_1(x) is the modified Bessel function of the first kind of order 1. (cf. Sep 21 2011 formula also.) - Tom Copeland, Sep 23 2020
T(n,k) = T(n,k-1)*C(n-k+2,2)/C(k,2). - Yuchun Ji, Dec 21 2020
From Sergii Voloshyn, Nov 25 2024: (Start)
G.f.: F(x,y) = (1-x*(1+y)-sqrt((1-x*(1+y))^2-4*y*x^2))/(2*x) is the solution of the differential equation x^3 * d^2(x*F(x,y))/dx^2 = y * d^2(x*F(x,y))/dy^2.
Let E be the operator x*D*D, where D denotes the derivative operator d/dx. Then (1/(n! (1 + n)!)) * E^n(x/(1 - x)) = (row n generating polynomial)/(1 - x)^(2*n+1) = Sum_{k >= 0} C(n-1, k-1)*C(n, k-1)/k*x^k. For example, when n = 4 we have (1/4!/5!)*E^3(x/(1 - x)) = x (1 + 6 x + 6 x^2 + x^3)/(1 - x)^9. (End)

Extensions

Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021

A132081 Triangle (read by rows) with row sums = Motzkin sums (also called Riordan numbers) (A005043): T(n,s) = (1/n)*C(n,s)*(C(n-s,s+1) - C(n-s-2,s-1)).

Original entry on oeis.org

1, 1, 2, 1, 5, 1, 9, 5, 1, 14, 21, 1, 20, 56, 14, 1, 27, 120, 84, 1, 35, 225, 300, 42, 1, 44, 385, 825, 330, 1, 54, 616, 1925, 1485, 132, 1, 65, 936, 4004, 5005, 1287, 1, 77, 1365, 7644, 14014, 7007, 429
Offset: 3

Views

Author

Frank R. Bernhart (farb45(AT)gmail.com), Oct 30 2007

Keywords

Comments

Whereas A005043 counts certain trees, or noncrossed partitions, this subdivides the counts according to the number of leaves, or the lattice rank. Analogous to the Narayana triangle (A001263), where rows sum to the Catalan numbers.
Diagonals of A132081 are rows of A033282. - Tom Copeland, May 08 2012
Related to the number of certain non-crossing partitions for the root system A_n. Cf. p. 12, Athanasiadis and Savvidou. See also A108263 and A100754. - Tom Copeland, Oct 19 2014

Examples

			A005043(6) = 15 = 1+9+5 since NC (noncrossed, planar) partitions of 6-point cycle without singletons have 1,9,5 items with 1,2,3 blocks.
Triangle begins:
  1;
  1,   2;
  1,   5;
  1,   9,   5;
  1,  14,  21;
  1,  20,  56,  14;
  1,  27, 120,  84;
  1,  35, 225, 300,  42;
  1,  44, 385, 825, 330;
  ...
		

Crossrefs

Programs

  • Magma
    /* triangle excluding 0 */ [[Binomial(n,k)*Binomial(n-2-k,k)/(k+1): k in [0..n-3]]: n in [3..15]]; // Vincenzo Librandi, Oct 19 2014
  • Mathematica
    Map[Most, Table[(1/n) Binomial[n, s] (Binomial[n - s, s + 1] - Binomial[n - s - 2, s - 1]), {n, 3, 14}, {s, 0, n}] /. k_ /; k <= 0 -> Nothing] // Flatten (* Michael De Vlieger, Jan 09 2016 *)

Formula

a(n,k) = binomial(n,k)*binomial(n-2-k,k)/(k+1). - David Callan, Jul 22 2008
From Peter Bala, Oct 22 2008: (Start)
O.g.f.: (1 + x - sqrt(1 - 2*x + x^2*(1 - 4*a)))/(2*x*(1 + a*x)) = 1 + a*x^2 + a*x^3 + (a + 2*a^2)*x^4 + (a + 5*a^2)*x^5 + (a + 9*a^2 + 5*a^3)*x^6 + ... . [corrected by Jason Yuen, Sep 22 2024]
Define a functional I on formal power series of the form f(x) = 1 + a*x + b*x^2 + ... by the following iterative process. Define inductively f^(1)(x) = f(x) and f^(n+1)(x) = f(x*f^(n)(x)) for n >= 1. Then set I(f(x)) = lim n -> infinity f^(n)(x) in the x-adic topology on the ring of formal power series; the operator I may also be defined by I(f(x)) := 1/x*series reversion of x/f(x).
Let now f(x) = 1 + a*x^2 + a*x^3 + a*x^4 + ... . Then the o.g.f. for this table is I(f(x)) = 1 + a*x^2 + a*x^3 + (a + 2*a^2)*x^4 + (a + 5*a^2)*x^5 + (a + 9*a^2 + 5*a^3)*x^6 + ... . Cf. A001263 and A108767. (End)

Extensions

Edited by N. J. A. Sloane, Jul 01 2008 at the suggestion of R. J. Mathar
Name corrected by Emeric Deutsch, Dec 20 2014

A120986 Triangle read by rows: T(n,k) is the number of ternary trees with n edges and having k middle edges (n >= 0, k >= 0).

Original entry on oeis.org

1, 2, 1, 5, 6, 1, 14, 28, 12, 1, 42, 120, 90, 20, 1, 132, 495, 550, 220, 30, 1, 429, 2002, 3003, 1820, 455, 42, 1, 1430, 8008, 15288, 12740, 4900, 840, 56, 1, 4862, 31824, 74256, 79968, 42840, 11424, 1428, 72, 1, 16796, 125970, 348840, 465120, 325584
Offset: 0

Views

Author

Emeric Deutsch, Jul 21 2006

Keywords

Comments

A ternary tree is a rooted tree in which each vertex has at most three children and each child of a vertex is designated as its left or middle or right child.
T(n,k) is the number of Dyck paths of semilength 2n+2 with all descent runs of even length and n+1-k peaks. - Alexander Burstein, May 23 2020
T(n,k) is the number of Dyck paths of semilength 2n+2 with all descent runs of even length and k+1 peaks at even height. - Alexander Burstein, Jun 03 2020
T(n,k) is the number of Dyck paths of semilength 2n+2 with all descent runs of even length and k peaks at odd height. - Alexander Burstein, Jun 18 2020
An apparent refinement is A338135. - Tom Copeland, Oct 12 2020

Examples

			Triangle starts:
    1;
    2,   1;
    5,   6,   1;
   14,  28,  12,   1;
   42, 120,  90,  20,  1;
  132, 495, 550, 220, 30, 1;
  ...
		

Crossrefs

Cf. A001764 (row sums), A000108, A108767, A013698, A110608.

Programs

  • Maple
    T:=(n,k)->binomial(n+1,k)*binomial(2*(n+1),n-k)/(n+1): for n from 0 to 10 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    T[n_, k_] := Binomial[n+1, k]*Binomial[2*(n+1), n-k]/(n+1);
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 06 2018 *)
  • PARI
    T(n,k) = binomial(n+1,k)*binomial(2*(n+1),n-k)/(n+1); \\ Andrew Howroyd, Nov 06 2017
    
  • Python
    from sympy import binomial
    def T(n, k): return binomial(n + 1, k)*binomial(2*(n + 1), n - k)//(n + 1)
    for n in range(21): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Nov 07 2017

Formula

T(n,k) = (1/(n+1))*binomial(n+1,k)*binomial(2*(n+1),n-k).
T(n,0) = A000108(n+1) (the Catalan numbers).
T(n,k) = A108767(n+1,n+1-k).
Sum_{k>=1} k*T(n,k) = binomial(3*n+2,n-1) = A013698(n).
G.f.: G = G(t,z) satisfies G = (1+t*z*G)(1+z*G)^2.
O.g.f.: A(x,t) = 1 + (2 + t)*x + (5 + 6*t + t^2)*x^2 + ... satisfies 1 + x*d/dx(A(x,t))/A(x,t) = 1 + (2 + t)*x + (6 + 8*t + t^2)*x^2 + ..., which is the o.g.f. for A110608. - Peter Bala, Oct 13 2015

A173020 Triangle of Generalized Runyon numbers R_{n,k}^(3) read by rows.

Original entry on oeis.org

1, 1, 3, 1, 9, 12, 1, 18, 66, 55, 1, 30, 210, 455, 273, 1, 45, 510, 2040, 3060, 1428, 1, 63, 1050, 6650, 17955, 20349, 7752, 1, 84, 1932, 17710, 74382, 148764, 134596, 43263, 1, 108, 3276, 40950, 245700, 753480, 1184040, 888030, 246675, 1, 135, 5220, 85260, 690606, 2992626, 7125300, 9161100, 5852925, 1430715
Offset: 1

Views

Author

R. J. Mathar, Nov 08 2010

Keywords

Comments

The Runyon numbers R_{n,k}^(1) are A001263, R_{n,k}^(2) are A108767.
Row sums are in A002293.

Examples

			The triangle starts in row n=1 as
  1;
  1,  3;
  1,  9,   12;
  1, 18,   66,    55;
  1, 30,  210,   455,   273;
  1, 45,  510,  2040,  3060,   1428;
  1, 63, 1050,  6650, 17955,  20349,   7752;
  1, 84, 1932, 17710, 74382, 148764, 134596, 43263;
		

References

  • Chunwei Song, The Generalized Schroeder Theory, El. J. Combin. 12 (2005) #R53

Crossrefs

Cf. A010054 (m=0), A001263 (m=1), A108767 (m=2), this sequence (m=3).

Programs

  • Magma
    A173020:= func< n,k,m | Binomial(n,k)*Binomial(m*n,k-1)/n >;
    [A173020(n,k,3): k in [1..n], n in [1..12]]; // G. C. Greubel, Feb 20 2021
  • Mathematica
    T[n_, k_, m_]:= Binomial[n, k]*Binomial[m*n, k-1]/n;
    Table[T[n, k, 3], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Feb 20 2021 *)
  • Sage
    def A173020(n,k,m): return binomial(n,k)*binomial(m*n,k-1)/n
    flatten([[A173020(n,k,3) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 20 2021
    

Formula

T(n, k) = R(n,k,3) with R(n,k,m)= binomial(n,k)*binomial(m*n,k-1)/n, 1<=k<=n.
T(n, n) = A001764(n).
T(n, n-1) = A003408(n-2).
T(n, 2) = A045943(n-1).
T(n, 3) = n*(n-1)*(n-2)*(3*n-1)/4 = 3*A052149(n-1).
O.g.f. is series reversion with respect to x of x/((1+x)*(1+x*u)^3). - Peter Bala, Sep 12 2012
Sum_{k=1..n} T(n, k, 3) = binomial(4*n, n)/(3*n+1) = A002293(n). - G. C. Greubel, Feb 20 2021
n-th row polynomial = x * hypergeom([1 - n, -3*n], [2], x). - Peter Bala, Aug 30 2023

A338135 Irregular triangle read by rows: Row p gives number of non-overlapping clusters of 2q-plets joining 2p points on a circle, i.e., number of noncrossing partitions from A134264 with h_k for k odd replaced by zero.

Original entry on oeis.org

1, 1, 2, 1, 6, 5, 1, 8, 4, 28, 14, 1, 10, 10, 45, 45, 120, 42, 1, 12, 12, 6, 66, 132, 22, 220, 330, 495, 132, 1, 14, 14, 14, 91, 182, 91, 91, 364, 1092, 364, 1001, 2002, 2002, 429
Offset: 1

Views

Author

Tom Copeland, Oct 11 2020

Keywords

Comments

This combinatorial problem arises in relating connected and disconnected Green functions associated to a "zero-dimensional" quantum field theory presented by Brezin et al. in "Planar Diagrams" via Eqn. 31 on p. 42.
Appears to be a refinement of A120986 and A108767 in that summing the coefficients of partitions with the same sum of exponents gives the rows or reverse rows of the two entries; for example, row 4 here becomes x + 8 xx + 4 x^2 + 28 x^2x + 14 x^4 = x + 12 x^2 + 28 x^3 + 14 x^4, which is row 4 of A108767. In short, replace each g_k or (k) by x in the formula section here to obtain the coarser entry or its reverse from this refined entry, apparently.
This also gives the relationship between moments and free cumulants in free probability theory restricted to an even number of noncrossing partitions as given by restricting the similar enumeration formuia on p. 34 of Novak and LaCroix to b_{2n} = G_{2n} and K_{2q} = g_{2q}. This is consistent with setting h_k to zero for odd k in A134264, e.g., doing so for the coefficients of t^7 for g(t) there gives G_6 here.
A125181 is another version of A134264, providing interpretations in terms of Dyck paths and trees.

Examples

			row 1: G_2  = g_2
row 2: G_4  = g_4  +  2 g_2^2
row 3: G_6  = g_6  +  6 g_2 g_4 +  5 g_2^3
row 4: G_8  = g_8  +  8 g_2 g_6 +  4 g_4^2   +  28 g_2^2 g_4 + 14 g_2^4
row 5: G_10 = g_10 + 10 g_2 g_8 + 10 g_4 g_6 +  45 g_2^2 g_6 + 45 g_2 g_4^2
              + 120 g_2^3 g_4  + 42 g_2^5
_____________
In the notation of Abramowitz and Stegun p. 831 with indices of the partitions above divided by 2;
R_1  = (1)
R_2  = (2)  +  2 (1)^2
R_3  = (3)  +  6 (1) (2) +  5 (1)^3
R_4  = (4)  +  8 (1) (3) +  4 (2)^2   +  28 (1)^2 (2) + 14 (1)^4
R_5  = (5)  + 10 (1) (4) + 10 (2) (3) +  45 (1)^2 (3) + 45 (1) (2)^2
        + 120 (1)^3 (2) + 42 (1)^5
______________
		

Crossrefs

Programs

  • Mathematica
    Table[(2 n)!/((2 n + 1 - Length@p)! Product[r!, {r, Last /@ Tally[p]}]), {n, 5}, {p, Sort[Sort /@ IntegerPartitions[n]]}] // Flatten (* Andrey Zabolotskiy, Mar 07 2024 *)

Formula

Under the constraint 2p = Sum_{q} 2q r_q, then G_{2p} = Sum_{r_q >= 0} [(2p)! / (2p + 1 - Sum_{q} r_q)! ] (g_2^r_1 /(r_1)!) (g_4^r_2 / (r_2)!) ... (g_{2q}^r_q / (r_q)!) where g_{2k} are the connected Green functions.
With R_p = G_{2p} and N_q = g_{2q}, then R_p = Sum_{r_q >= 0} [(2p)! / (2p + 1 - Sum_{q} r_q)! ] (N_1^r_1 /(r_1)!) (N_2^r_2 / (r_2)!) ... (N_{q}^r_q / (r_q)!) where N_q are the partitions in Abramowitz and Stegun on p. 831.
Coefficients of the final terms g_{2}^p = (1)^p are the Catalan numbers A000108.

Extensions

Rows 6-7 from Andrey Zabolotskiy, Mar 07 2024

A173621 Triangle of Generalized Runyon numbers R_{n,k}^(4) read by rows.

Original entry on oeis.org

1, 1, 4, 1, 12, 22, 1, 24, 120, 140, 1, 40, 380, 1140, 969, 1, 60, 920, 5060, 10626, 7084, 1, 84, 1890, 16380, 61425, 98280, 53820, 1, 112, 3472, 43400, 251720, 704816, 906192, 420732, 1, 144, 5880, 99960, 824670, 3518592, 7791168, 8347680, 3362260
Offset: 1

Views

Author

R. J. Mathar, Nov 08 2010

Keywords

Comments

The Runyon numbers R_{n,k}^(1) are A001263, R_{n,k}^(2) are A108767. Row sums are in A002294.

Examples

			The triangle starts in row n=1 as
1;
1, 4;
1, 12, 22;
1, 24, 120, 140;
1, 40, 380, 1140, 969;
1, 60, 920, 5060, 10626, 7084;
1, 84, 1890, 16380, 61425, 98280, 53820;
1, 112, 3472, 43400, 251720, 704816, 906192, 420732;
		

References

  • Chunwei Song, The Generalized Schroeder Theory, El. J. Combin. 12 (2005) #R53

Formula

T(n,k) = R(n,k,4) with R(n,k,m)= binomial(n,k)*binomial(m*n,k-1)/n, 1<=k<=n.
T(n,n) = A002293(n).
T(n,n-1) = A004332(n).
T(n,2) = A046092(n-1).

A354622 Irregular triangle read by rows: Refined 3-Narayana triangle. Coefficients of partition polynomials of A134264, a refined Narayana triangle enumerating noncrossing partitions, with all h_k other than h_0, h_3, h_6, ..., h_(3n), ... replaced by zero.

Original entry on oeis.org

1, 1, 3, 1, 9, 12, 1, 12, 6, 66, 55, 1, 15, 15, 105, 105, 455, 273, 1, 18, 18, 9, 153, 306, 51, 816, 1224, 3060, 1428, 1, 21, 21, 21, 210, 420, 210, 210, 1330, 3990, 1330, 5985, 11970, 20349, 7752, 1, 24, 24, 24, 12, 276, 552, 552, 276, 276, 2024, 6072, 3036, 6072, 506, 10626, 42504, 21252, 42504, 106260, 134596, 43263
Offset: 1

Views

Author

Tom Copeland, Jul 08 2022

Keywords

Comments

A set of partition polynomials with these coefficients and the polynomials of A338135 can be generated by substitution of the refined Narayana, or noncrossing partition, polynomials N_n[h_1,...,h_n] of A134264 (h_0=1) into themselves--once for A338135 and twice for this entry--or by setting the indeterminates h_n of A134264 to zero except for h_0, h_3, h_6, ..., h_(3n), ... with h_0 = 1 and ultimately re-indexing. This is equivalent to recursive use of the Lagrange inversion formula on f(x) = x / h(x) = x / (1 + h_1 x + h_2 x^2 + ...) since its compositional inverse is f^{(-1)}(x) = x + N_1(h_1) x + N_2(h_1,h_2) x^2 + .... The equivalence of the two methods of generation--the substitution and the zeroing out--follows from the general theorems stated by Peter Bala in his presentation of formulas for A108767 in 2008, which stem from a fixed point-iteration formalism of a basic identity for a compositional inverse pair, x* h(f^{(-1)}(x)) = f^{(-1)}(x), where, as above, h(x) = x / f(x).
The sets of refined m-Narayana polynomials are used by Cachazo and Umbert to characterize the scattering amplitudes of a class of quantum fields (see, e.g., section 7.3).
These could also be called the refined 3-Dyck path polynomials. From the interpretation of A134264 as Dyck paths in A125181, or staircases whose steps never rise above the diagonal of a square grid (see illustrations in Weisstein), the monomials of the partition polynomial N_4 = 1 (4') + 4 (1') (3') + 2 (2')^2 + 6 (1')^2 (2') + 1 (1')^4 of A134264 have the following correspondences:
1 (4') --> 1 staircase of one step of height 4,
4 (1') (3') --> 4 staircases of 1 step of height 1 and 1 step of height 3,
2 (2')^2 --> 2 staircases of 2 steps of height 2,
6 (1')^2 (2') --> 6 staircases of 2 steps of height 1 and 1 step of height 2,
1 (1')^4 --> 1 staircase of 4 steps of height 1.
Consequently, the partition polynomials G_{3n} of this entry enumerate staircases of height 3n with steps of heights 3, 6, 9, ..., 3k, ... only.
Diverse combinatorial models of the refined m-Narayana, or m-Dyck, polynomials are inherited from those presented for the refined Narayana, or noncrossing partition, polynomials in A134264 and A125181 and in the references therein.
A127537 gives a combinatorial model (see title and Domb and Barret therein, Table 2, p. 355) that contains the coefficients of the monomials h_1^n and h_1^(n-2) h_2, i.e., A001764 and A003408.

Examples

			Triangle begins:
  1;
  1,  3;
  1,  9, 12;
  1, 12,  6, 66,  55;
  1, 15, 15, 105, 105, 455, 273;
  ...
Row 1: G_3  = g_3
row 2: G_6  = g_6 + 3 g_3^2
row 3: G_9  = g_9 + 9 g_3 g_6 + 12 g_3^3
row 4: G_12 = g_12 + 12 g_3 g_9 + 6 g_6^2 + 66 g_3^2 g_6 + 55 g_3^4
row 5: G_15 = g_15 + 15 g_3 g_12 + 15 g_6 g_9 + 105 g_3^2 g_9 + 105 g_3 g_6^2
              + 455 g_3^3 g_6 + 273 g_3^5.
.
In the notation of Abramowitz and Stegun p. 831 with indices of the partitions above divided by 3 and partition indeterminates h_n denoted (n):
R_1 = (1);
R_2 = (2) + 3 (1)^2;
R_3 = (3) + 9 (1) (2) + 12 (1)^3;
R_4 = (4) + 12 (1) (3) + 6 (2)^2 + 66 (1)^2 (2) + 55 (1)^4;
R_5 = (5) + 15 (1) (4) + 15 (2) (3) + 105 (1)^2 (3) + 105 (1) (2)^2 + 455 (1)^3(2)
          + 273 (1)^5.
		

Crossrefs

The length of row n is equal to A000041(n).
Row sums give A002293, n >= 1.

Programs

  • Mathematica
    Table[Binomial[Total[y], Length[y]-1] (Length[y]-1)! / Product[Count[y, i]!, {i, Max@@y}], {n, 8}, {y, Sort[Sort /@ IntegerPartitions[3n, n, Range[3, 3n, 3]]]}] // Flatten (* Andrey Zabolotskiy, Feb 19 2024, using Gus Wiseman's code for A134264 *)
  • PARI
    \\ Compare with A134264
    C(v)={my(n=vecsum(v), S=Set(v)); n!/((n-#v+1)!*prod(i=1, #S, my(x=S[i]); (#select(y->y==x, v))!))}
    row(n)=[C(3*Vec(p)) | p<-partitions(n)]
    { for(n=1, 7, print(row(n))) } \\ Andrew Howroyd, Feb 19 2024

Formula

Coefficients of the monomials are those of the surviving monomials of the partition polynomials of A134264 after zeroing all indeterminates other than h_0, h_3, h_6, h_9, ..., h_(3n), .... The multinomial coefficients of A125181 also apply for G_n, giving the coefficient of the monomial h_1^e_1 h_2^e_2 ... h_n^n of R_n with se := e_1 + e_2 + ... + e_n as (3n)! / ((3n-se+1)! (e_1)! (e_2)! ... (e_n)!).
1*e_1 + 2*e_2 + ... + n*e_n = n for each monomial of R_n.
The partition polynomials R_n = N_n^3 of this entry can be determined from those of A338135, N_n^2, by substituting the partition polynomials of A134264, N_n, for the indeterminate h_n = (n) of N_n^2 or by doing the same for A134264 twice. E.g., N_1(h_1) = h_1, N_2(h_1,h_2) = h_2 + h_1^2, so N_2^2(h_1,h_2) = N_2(N_1,N_2) = N_2 + N_1 = h_2 + h_1^2 + h_1^2 = h_2 + 2 h_1^2 and N_2^3(h_1,h_2) = N_2^2(N_1,N_2) = N_2 + 2 N_1^2 = h_2 + h_1^2 + 2 h_1^2 = h_2 + 3 h_1^2.
Reduces with all indeterminates h_n = (n) = t to A173020.
The coefficient of the monomial h_1^n is (3*n)! / ((3*n-n+1)! n!) = A001764(n) (see also A179848 and A235534). In general, the coefficients of these monomials of the refined (m+1)-Narayana polynomials are the Fuss-Catalan sequence associated to the row sums of the refined m-Narayana polynomials.
The coefficient of the monomial h_1^(n-2) h_2 is (3n)! / ((3n-n+2)! (n-2)!) = A003408(n-2) for n > 1.
The coefficient of the monomial h_1^(n-3) h_3 is (3n)! / ((3n-n+3)! (n-3)!) = A004321(n) for n > 2.

Extensions

Rows 6-8 added by Andrey Zabolotskiy, Feb 19 2024
Showing 1-8 of 8 results.