cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 83 results. Next

A231562 Numbers n such that A031971(8490421583559688410706771261086*n) == n (mod 8490421583559688410706771261086*n).

Original entry on oeis.org

39607528021345872635, 118822584064037617905, 198037640106729363175, 356467752192112853715, 435682808234804598985, 514897864277496344255, 594112920320188089525, 673327976362879834795, 752543032405571580065, 910973144490955070605, 990188200533646815875
Offset: 1

Views

Author

Keywords

Comments

The number 8490421583559688410706771261086 occurring in the name is the 8th term of A230311.
The numbers in A230311 are the values of k such that the set {n : A031971(k*n)== n (mod k*n)} is nonempty.

Crossrefs

Cf. A231562 (numbers n such that A031971(8490421583559688410706771261086*n) == n (mod 8490421583559688410706771261086*n)).
Cf. A229312 (numbers n such that A031971(47058*n) == n (mod 47058*n)).
Cf. A229300 (numbers n such that A031971(1806*n)== n (mod n*1806)).
Cf. A229301 (numbers n such that A031971(42*n) == n (mod 42*n)).
Cf. A229302 (numbers n such that A031971(6*n) == n (mod 6*n)).
Cf. A229303 (numbers n such that A031971(2*n) == n (mod 2*n)).
Cf. A229313 (numbers n such that A031971(47058*n) <> n (mod 47058*n)).
Cf. A229304 (numbers n such that A031971(1806*n) <> n (mod n*1806)).
Cf. A229305 (numbers n such that A031971(42*n) <> n (mod 42*n)).
Cf. A229306 (numbers n such that A031971(6*n) <> n (mod 6*n)).
Cf. A229307 (numbers n such that A031971(2*n) <> n (mod 2*n)).
Cf. A229308 (primitive numbers in A229304).
Cf. A229309 (primitive numbers in A229305).
Cf. A229310 (primitive numbers in A229306).
Cf. A229311 (primitive numbers in A229307).

Programs

  • Mathematica
    fa = FactorInteger; Car[k_, n_] := Mod[n - Sum[If[IntegerQ[k/(fa[n][[i, 1]] - 1)], n/fa[n][[i,1]], 0], {i, 1, Length[fa[n]]}], n]; supercar[k_, n_] := If[k == 1 ||  Mod[k, 2] == 0 || Mod[n, 4] > 0, Car[k, n], Mod[Car[k, n] - n/2,]];  Select[39607528021345872635*Range[15],supercar[8490421583559688410706771261086*#, 8490421583559688410706771261086*#] == # &]

A230313 Numbers n such that A031971(47058*n) <> n (mod 47058*n).

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 73
Offset: 1

Views

Author

Keywords

Comments

The asymptotic density lies in the interval [0.919943, 0.943954].
Complement of A229312.
The numbers in A230311 are the values of k such that the set {n : A031971(k*n)== n (mod k*n)} is nonempty.

Crossrefs

Cf. A231562 (numbers n such that A031971(8490421583559688410706771261086*n) == n (mod 8490421583559688410706771261086*n)).
Cf. A229312 (numbers n such that A031971(47058*n) == n (mod 47058*n)).
Cf. A229300 (numbers n such that A031971(1806*n)== n (mod n*1806)).
Cf. A229301 (numbers n such that A031971(42*n) == n (mod 42*n)).
Cf. A229302 (numbers n such that A031971(6*n) == n (mod 6*n)).
Cf. A229303 (numbers n such that A031971(2*n) == n (mod 2*n)).
Cf. A229313 (numbers n such that A031971(47058*n) <> n (mod 47058*n)).
Cf. A229304 (numbers n such that A031971(1806*n) <> n (mod n*1806)).
Cf. A229305 (numbers n such that A031971(42*n) <> n (mod 42*n)).
Cf. A229306 (numbers n such that A031971(6*n) <> n (mod 6*n)).
Cf. A229307 (numbers n such that A031971(2*n) <> n (mod 2*n)).
Cf. A229308 (primitive numbers in A229304).
Cf. A229309 (primitive numbers in A229305).
Cf. A229310 (primitive numbers in A229306).
Cf. A229311 (primitive numbers in A229307).

Programs

  • Mathematica
    fa = FactorInteger; Car[k_, n_] := Mod[n - Sum[If[IntegerQ[k/(fa[n][[i,
       1]] - 1)], n/fa[n][[i, 1]], 0], {i, 1, Length[fa[n]]}], n]; supercar[k_, n_] := If[k == 1 || Mod[k, 2] == 0 || Mod[n, 4] > 0, Car[k,n], Mod[Car[k, n] - n/2, n]]; Select[Range[1000], !supercar[47058*#, 47058*#] == # &]

A103438 Square array T(m,n) read by antidiagonals: Sum_{k=1..n} k^m.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 3, 3, 0, 1, 5, 6, 4, 0, 1, 9, 14, 10, 5, 0, 1, 17, 36, 30, 15, 6, 0, 1, 33, 98, 100, 55, 21, 7, 0, 1, 65, 276, 354, 225, 91, 28, 8, 0, 1, 129, 794, 1300, 979, 441, 140, 36, 9, 0, 1, 257, 2316, 4890, 4425, 2275, 784, 204, 45, 10
Offset: 0

Views

Author

Ralf Stephan, Feb 11 2005

Keywords

Comments

For the o.g.f.s of the column sequences for this array, see A196837 and the link given there. - Wolfdieter Lang, Oct 15 2011
T(m,n)/n is the m-th moment of the discrete uniform distribution on {1,2,...,n}. - Geoffrey Critzer, Dec 31 2018
T(1,n) divides T(m,n) for odd m. - Franz Vrabec, Dec 23 2020

Examples

			Square array begins:
  0, 1,  2,   3,    4,     5,     6,      7,      8,      9, ... A001477;
  0, 1,  3,   6,   10,    15,    21,     28,     36,     45, ... A000217;
  0, 1,  5,  14,   30,    55,    91,    140,    204,    285, ... A000330;
  0, 1,  9,  36,  100,   225,   441,    784,   1296,   2025, ... A000537;
  0, 1, 17,  98,  354,   979,  2275,   4676,   8772,  15333, ... A000538;
  0, 1, 33, 276, 1300,  4425, 12201,  29008,  61776, 120825, ... A000539;
  0, 1, 65, 794, 4890, 20515, 67171, 184820, 446964, 978405, ... A000540;
Antidiagonal triangle begins as:
  0;
  0, 1;
  0, 1,  2;
  0, 1,  3,  3;
  0, 1,  5,  6,  4;
  0, 1,  9, 14, 10,  5;
  0, 1, 17, 36, 30, 15, 6;
		

References

  • J. Faulhaber, Academia Algebrae, Darinnen die miraculosische inventiones zu den höchsten Cossen weiters continuirt und profitirt werden, Augspurg, bey Johann Ulrich Schönigs, 1631.

Crossrefs

Diagonals include A076015 and A031971.
Antidiagonal sums are in A103439.
Antidiagonals are the rows of triangle A192001.

Programs

  • Magma
    T:= func< n,k | n eq 0 select k else (&+[j^n: j in [0..k]]) >;
    [T(n-k,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 22 2021
    
  • Maple
    seq(print(seq(Zeta(0,-k,1)-Zeta(0,-k,n+1),n=0..9)),k=0..6);
    # (Produces the square array from the example.) Peter Luschny, Nov 16 2008
    # alternative
    A103438 := proc(m,n)
        (bernoulli(m+1,n+1)-bernoulli(m+1))/(m+1) ;
        if m = 0 then
            %-1 ;
        else
            % ;
        end if;
    end proc: # R. J. Mathar, May 10 2013
    # simpler:
    A103438 := proc(m,n)
        (bernoulli(m+1,n+1)-bernoulli(m+1,1))/(m+1) ;
    end proc: # Peter Luschny, Mar 20 2024
  • Mathematica
    T[m_, n_]:= HarmonicNumber[m, -n]; Flatten[Table[T[m-n, n], {m, 0, 11}, {n, m, 0, -1}]] (* Jean-François Alcover, May 11 2012 *)
  • PARI
    T(m,n)=sum(k=0,n,k^m)
    
  • Python
    from itertools import count, islice
    from math import comb
    from fractions import Fraction
    from sympy import bernoulli
    def A103438_T(m,n): return sum(k**m for k in range(1,n+1)) if n<=m else int(sum(comb(m+1,i)*(bernoulli(i) if i!=1 else Fraction(1,2))*n**(m-i+1) for i in range(m+1))/(m+1))
    def A103438_gen(): # generator of terms
        for m in count(0):
            for n in range(m+1):
                yield A103438_T(m-n,n)
    A103438_list = list(islice(A103438_gen(),100)) # Chai Wah Wu, Oct 23 2024
  • SageMath
    def T(n,k): return (bernoulli_polynomial(k+1, n+1) - bernoulli_polynomial(1, n+1)) /(n+1)
    flatten([[T(n-k,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Dec 22 2021
    

Formula

E.g.f.: e^x*(e^(x*y)-1)/(e^x-1).
T(m, n) = Zeta(-n, 1) - Zeta(-n, m + 1), for m >= 0 and n >= 0, where Zeta(z, v) is the Hurwitz zeta function. - Peter Luschny, Nov 16 2008
T(m, n) = HarmonicNumber(m, -n). - Jean-François Alcover, May 11 2012
T(m, n) = (Bernoulli(m + 1, n + 1) - Bernoulli(m + 1, 1)) / (m + 1). - Peter Luschny, Mar 20 2024
T(m, n) = Sum_{k=0...m-n} B(k)*(-1)^k*binomial(m-n,k)*n^(m-n-k+1)/(m-n-k+1), where B(k) = Bernoulli number A027641(k) / A027642(k). - Robert B Fowler, Aug 20 2024
T(m, n) = Sum_{i=1..n} J_m(i)*floor(n/i), where J_m is the m-th Jordan totient function. - Ridouane Oudra, Jul 19 2025

A014117 Numbers n such that m^(n+1) == m (mod n) holds for all m.

Original entry on oeis.org

1, 2, 6, 42, 1806
Offset: 1

Views

Author

Keywords

Comments

"Somebody incorrectly remembered Fermat's little theorem as saying that the congruence a^{n+1} = a (mod n) holds for all a if n is prime" (Zagier). The sequence gives the set of integers n for which this property is in fact true.
If i == j (mod n), then m^i == m^j (mod n) for all m. The latter congruence generally holds for any (m, n)=1 with i == j (mod k), k being the order of m modulo n, i.e., the least power k for which m^k == 1 (mod n). - Lekraj Beedassy, Jul 04 2002
Also, numbers n such that n divides denominator of the n-th Bernoulli number B(n) (cf. A106741). Also, numbers n such that 1^n + 2^n + 3^n + ... + n^n == 1 (mod n). Equivalently, numbers n such that B(n)*n == 1 (mod n). Equivalently, Sum_{prime p, (p-1) divides n} n/p == -1 (mod n). It is easy to see that for n > 1, n must be an even squarefree number. Moreover, the set P of prime divisors of all such n satisfies the property: if p is in P, then p-1 is the product of distinct elements of P. This set is P = {2, 3, 7, 43}, implying that the sequence is finite and complete. - Max Alekseyev, Aug 25 2013
In 2005, B. C. Kellner proved E. W. Weisstein's conjecture that denom(B_n) = n only if n = 1806. - Jonathan Sondow, Oct 14 2013
Squarefree numbers n such that b^n == 1 (mod n^2) for every b coprime to n. Squarefree terms of A341858. - Thomas Ordowski, Aug 05 2024
Conjecture: Numbers n such that gcd(d+1, n) > 1 for every proper divisor d of n. Verified up to 10^696. - David Radcliffe, May 29 2025

Crossrefs

Squarefree terms of A124240. - Robert Israel and Thomas Ordowski, Jun 23 2017

Programs

  • Mathematica
    r[n_] := Reduce[ Mod[m^(n+1) - m, n] == 0, m, Integers]; ok[n_] := Range[n]-1 === Simplify[ Mod[ Flatten[ m /. {ToRules[ r[n][[2]] ]}], n], Element[C[1], Integers]]; ok[1] = True; A014117 = {}; Do[ If[ok[n], Print[n]; AppendTo[ A014117, n] ], {n, 1, 2000}] (* Jean-François Alcover, Dec 21 2011 *)
    Select[Range@ 2000, Function[n, Times @@ Boole@ Map[Function[m, PowerMod[m, n + 1, n] == Mod[m, n]], Range@ n] > 0]] (* Michael De Vlieger, Dec 30 2016 *)
  • Python
    [n for n in range(1, 2000) if all(pow(m, n+1, n) == m for m in range(n))] # David Radcliffe, May 29 2025

Formula

For n <= 5, a(n) = a(n-1)^2 + a(n-1) with a(0) = 1. - Raphie Frank, Nov 12 2012
a(n+1) = A007018(n) = A054377(n) = A100016(n) for n = 1, 2, 3, 4. - Jonathan Sondow, Oct 01 2013

A054377 Primary pseudoperfect numbers: numbers n > 1 such that 1/n + sum 1/p = 1, where the sum is over the primes p | n.

Original entry on oeis.org

2, 6, 42, 1806, 47058, 2214502422, 52495396602, 8490421583559688410706771261086
Offset: 1

Views

Author

Keywords

Comments

Primary pseudoperfect numbers are the solutions of the "differential equation" n' = n-1, where n' is the arithmetic derivative of n. - Paolo P. Lava, Nov 16 2009
Same as n > 1 such that 1 + sum n/p = n (and the only known numbers n > 1 satisfying the weaker condition that 1 + sum n/p is divisible by n). Hence a(n) is squarefree, and is pseudoperfect if n > 1. Remarkably, a(n) has exactly n (distinct) prime factors for n < 9. - Jonathan Sondow, Apr 21 2013
From the Wikipedia article: it is unknown whether there are infinitely many primary pseudoperfect numbers, or whether there are any odd primary pseudoperfect numbers. - Daniel Forgues, May 27 2013
Since the arithmetic derivative of a prime p is p' = 1, 2 is obviously the only prime in the sequence. - Daniel Forgues, May 29 2013
Just as 1 is not a prime number, 1 is also not a primary pseudoperfect number, according to the original definition by Butske, Jaje, and Mayernik, as well as Wikipedia and MathWorld. - Jonathan Sondow, Dec 01 2013
Is it always true that if a primary pseudoperfect number N > 2 is adjacent to a prime N-1 or N+1, then in fact N lies between twin primes N-1, N+1? See A235139. - Jonathan Sondow, Jan 05 2014
Also, integers n > 1 such that A069359(n) = n - 1. - Jonathan Sondow, Apr 16 2014

Examples

			From _Daniel Forgues_, May 24 2013: (Start)
With a(1) = 2, we have 1/2 + 1/2 = (1 + 1)/2 = 1;
with a(2) = 6 = 2 * 3, we have
  1/2 + 1/3 + 1/6 = (3 + 2 + 1)/6 = (1*3 + 3)/(2*3) = (1 + 1)/2 = 1;
with a(3) = 42 = 6 * 7, we have
  1/2 + 1/3 + 1/7 + 1/42 = (21 + 14 + 6 + 1)/42 =
  (3*7 + 2*7 + 7)/(6*7) = (3 + 2 + 1)/6 = 1;
with a(4) = 1806 = 42 * 43, we have
  1/2 + 1/3 + 1/7 + 1/43 + 1/1806 = (903 + 602 + 258 + 42 + 1)/1806 =
  (21*43 + 14*43 + 6*43 + 43)/(42*43) = (21 + 14 + 6 + 1)/42 = 1;
with a(5) = 47058 (not oblong number), we have
  1/2 + 1/3 + 1/11 + 1/23 + 1/31 + 1/47058 =
  (23529 + 15686 + 4278 + 2046 + 1518 + 1)/47058 = 1.
For n = 1 to 8, a(n) has n prime factors:
  a(1) = 2
  a(2) = 2 * 3
  a(3) = 2 * 3 *  7
  a(4) = 2 * 3 *  7 * 43
  a(5) = 2 * 3 * 11 * 23 *  31
  a(6) = 2 * 3 * 11 * 23 *  31 * 47059
  a(7) = 2 * 3 * 11 * 17 * 101 *   149 *       3109
  a(8) = 2 * 3 * 11 * 23 *  31 * 47059 * 2217342227 * 1729101023519
If a(n)+1 is prime, then a(n)*[a(n)+1] is also primary pseudoperfect. We have the chains: a(1) -> a(2) -> a(3) -> a(4); a(5) -> a(6). (End)
A primary pseudoperfect number (greater than 2) is oblong if and only if it is not the initial member of a chain. - _Daniel Forgues_, May 29 2013
If a(n)-1 is prime, then a(n)*(a(n)-1) is a Giuga number (A007850). This occurs for a(2), a(3), and a(5). See A235139 and the link "The p-adic order . . .", Theorem 8 and Example 1. - _Jonathan Sondow_, Jan 06 2014
		

Crossrefs

Programs

  • Mathematica
    pQ[n_] := (f = FactorInteger[n]; 1/n + Sum[1/f[[i]][[1]], {i, Length[f]}] == 1)
    Select[Range[2, 10^6], pQ[#] &] (* Robert Price, Mar 14 2020 *)
  • PARI
    isok(n) = if (n > 1, my(f=factor(n)[,1]); 1/n + sum(k=1, #f, 1/f[k]) == 1); \\ Michel Marcus, Oct 05 2017
  • Python
    from sympy import primefactors
    A054377 = [n for n in range(2,10**5) if sum([n/p for p in primefactors(n)]) +1 == n] # Chai Wah Wu, Aug 20 2014
    

Formula

A031971(a(n)) (mod a(n)) = A233045(n). - Jonathan Sondow, Dec 11 2013
A069359(a(n)) = a(n) - 1. - Jonathan Sondow, Apr 16 2014
a(n) == 36*(n-2) + 6 (mod 288) for n = 2,3,..,8. - Kieren MacMillan and Jonathan Sondow, Sep 20 2017

A121707 Numbers n > 1 such that n^3 divides Sum_{k=1..n-1} k^n = A121706(n).

Original entry on oeis.org

35, 55, 77, 95, 115, 119, 143, 155, 161, 187, 203, 209, 215, 221, 235, 247, 253, 275, 287, 295, 299, 319, 323, 329, 335, 355, 371, 377, 391, 395, 403, 407, 413, 415, 437, 455, 473, 475, 493, 497, 515, 517, 527, 533, 535, 539, 551, 559, 575, 581, 583, 589, 611
Offset: 1

Views

Author

Alexander Adamchuk, Aug 16 2006

Keywords

Comments

All terms belong to A038509 (Composite numbers with smallest prime factor >= 5). Many but not all terms belong to A060976 (Odd nonprimes, c, which divide Bernoulli(2*c)).
Many terms are semiprimes:
- the non-semiprimes are {275, 455, 475, 539, 575, 715, 775, 875, 935, ...}: see A321487;
- semiprime terms that are multiples of 5 have indices {7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, ...} = A002145 (Primes of form 4*k + 3, except 3, or k > 0; or Primes which are also Gaussian primes);
- semiprime terms that are multiples of 7 have indices {5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, ...} = A003627 (Primes of form 3*k - 1, except 2, or k > 1);
- semiprime terms that are multiples of 11 have indices {5, 7, 13, 17, 19, 23, 37, 43, 47, 53, 59, 67, 73, 79, 83, ...} = Primes of the form 4*k + 1 and 4*k - 1. [Edited by Michel Marcus, Jul 21 2018, M. F. Hasler, Nov 09 2018]
Conjecture: odd numbers n > 1 such that n divides Sum_{k=1..n-1} k^(n-1). - Thomas Ordowski and Robert Israel, Oct 09 2015. Professor Andrzej Schinzel (in a letter to me, dated Dec 29 2015) proved this conjecture. - Thomas Ordowski, Jul 20 2018
Note that n^2 divides Sum_{k=1..n-1} k^n for every odd number n > 1. - Thomas Ordowski, Oct 30 2015
Conjecture: these are "anti-Carmichael numbers" defined; n > 1 such that p - 1 does not divide n - 1 for every prime p dividing n. Equivalently, odd numbers n > 1 such that n is coprime to A027642(n-1). A number n > 1 is an "anti-Carmichael" if and only if gcd(n, b^n - b) = 1 for some integer b. - Thomas Ordowski, Jul 20 2018
It seems that these numbers are all composite terms of A317358. - Thomas Ordowski, Jul 30 2018
a(62) = 697 is the first term not in A267999: see A306097 for all these terms. - M. F. Hasler, Nov 09 2018
If the conjecture from Thomas Ordowski is true, then no term is a multiple of 2 or 3. - Jianing Song, Jan 27 2019
Conjecture: an odd number n > 1 is a term iff gcd(n, A027642(n-1)) = 1. - Thomas Ordowski, Jul 19 2019
Conjecture: Sequence consists of numbers n > 1 such that r = b^n + n - b will produce a prime for one or more integers b > 1. Only when n is in this sequence do one or more prime factors of n fail to divide r for all b. Also, n and b must be coprime for r to be prime. The above also applies to r = b^n - n - b, ignoring n=3, b=2. - Richard R. Forberg, Jul 18 2020
Odd numbers n > 1 such that Sum_{k(even)=2..n-1}2*k^(n-1) == 0 (mod n). - Davide Rotondo, Oct 28 2020
What is the asymptotic density of these numbers? The numbers A267999 have a slightly lower density. The difference between the densities is equal to the density of the numbers A306097. - Thomas Ordowski, Feb 15 2021
The asymptotic density of this sequence is in the interval (0.253, 0.265) (Ordowski, 2021). - Amiram Eldar, Feb 26 2021

Crossrefs

Cf. A000312, A002145, A002997, A027642, A031971, A038509, A060976, A121706, A267999 (probably a subsequence).
Cf. A306097 for terms of this sequence A121707 not in sequence A267999, A321487 for terms which are not semiprimes.
Cf. A191677 (n divides Sum_{k
Cf. A326478 for a conjectured connection with the Bernoulli numbers.

Programs

  • Maple
    filter:= n -> add(k &^ n mod n^3, k=1..n-1) mod n^3 = 0:
    select(filter, [$2..1000]); # Robert Israel, Oct 08 2015
  • Mathematica
    fQ[n_] := Mod[Sum[PowerMod[k, n, n^3], {k, n - 1}], n^3] == 0; Select[
    Range[2, 611], fQ] (* Robert G. Wilson v, Apr 04 2011 and slightly modified Aug 02 2018 *)
  • PARI
    is(n)=my(n3=n^3);sum(k=1,n-1,Mod(k,n3)^n)==0 \\ Charles R Greathouse IV, May 09 2013
    
  • PARI
    for(n=2, 1000, if(sum(k=1, n-1, k^n) % n^3 == 0, print1(n", "))) \\ Altug Alkan, Oct 15 2015
    
  • Sage
    # after Andrzej Schinzel
    def isA121707(n):
        if n == 1 or is_even(n): return False
        return n.divides(sum(k^(n-1) for k in (1..n-1)))
    [n for n in (1..611) if isA121707(n)] # Peter Luschny, Jul 18 2019

Extensions

Sequence corrected by Robert G. Wilson v, Apr 04 2011

A089072 Triangle read by rows: T(n,k) = k^n, n >= 1, 1 <= k <= n.

Original entry on oeis.org

1, 1, 4, 1, 8, 27, 1, 16, 81, 256, 1, 32, 243, 1024, 3125, 1, 64, 729, 4096, 15625, 46656, 1, 128, 2187, 16384, 78125, 279936, 823543, 1, 256, 6561, 65536, 390625, 1679616, 5764801, 16777216, 1, 512, 19683, 262144, 1953125, 10077696, 40353607, 134217728, 387420489
Offset: 1

Author

Alford Arnold, Dec 04 2003

Keywords

Comments

T(n, k) = number of mappings from an n-element set into a k-element set. - Clark Kimberling, Nov 26 2004
Let S be the semigroup of (full) transformations on [n]. Let a be in S with rank(a) = k. Then T(n,k) = |a S|, the number of elements in the right principal ideal generated by a. - Geoffrey Critzer, Dec 30 2021
From Manfred Boergens, Jun 23 2024: (Start)
In the following two comments the restriction k<=n can be lifted, allowing all k>=1.
T(n,k) is the number of n X k binary matrices with row sums = 1.
T(n,k) is the number of coverings of [n] by tuples (A_1,...,A_k) in P([n])^k with disjoint A_j, with P(.) denoting the power set.
For nonempty A_j see A019538.
For tuples with "disjoint" dropped see A092477.
For tuples with nonempty A_j and with "disjoint" dropped see A218695. (End)

Examples

			Triangle begins:
  1;
  1,  4;
  1,  8,  27;
  1, 16,  81,  256;
  1, 32, 243, 1024,  3125;
  1, 64, 729, 4096, 15625, 46656;
  ...
		

Crossrefs

Related to triangle of Eulerian numbers A008292.

Programs

  • Haskell
    a089072 = flip (^)
    a089072_row n = map (a089072 n) [1..n]
    a089072_tabl = map a089072_row [1..]  -- Reinhard Zumkeller, Mar 18 2013
    
  • Magma
    [k^n: k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 01 2022
    
  • Mathematica
    Column[Table[k^n, {n, 8}, {k, n}], Center] (* Alonso del Arte, Nov 14 2011 *)
  • SageMath
    flatten([[k^n for k in range(1,n+1)] for n in range(1,12)]) # G. C. Greubel, Nov 01 2022

Formula

Sum_{k=1..n} T(n, k) = A031971(n).
T(n, n) = A000312(n).
T(2*n, n) = A062206(n).
a(n) = (n + T*(1-T)/2)^T, where T = round(sqrt(2*n),0). - Gerald Hillier, Apr 12 2015
T(n,k) = A051129(n,k). - R. J. Mathar, Dec 10 2015
T(n,k) = Sum_{i=0..k} Stirling2(n,i)*binomial(k,i)*i!. - Geoffrey Critzer, Dec 30 2021
From G. C. Greubel, Nov 01 2022: (Start)
T(n, n-1) = A007778(n-1), n >= 2.
T(n, n-2) = A008788(n-2), n >= 3.
T(2*n+1, n) = A085526(n).
T(2*n-1, n) = A085524(n).
T(2*n-1, n-1) = A085526(n-1), n >= 2.
T(3*n, n) = A083282(n).
Sum_{k=1..n} (-1)^k * T(n, k) = (-1)^n * A120485(n).
Sum_{k=1..floor(n/2)} T(n-k, k) = A226065(n).
Sum_{k=1..floor(n/2)} T(n, k) = A352981(n).
Sum_{k=1..floor(n/3)} T(n, k) = A352982(n). (End)

Extensions

More terms and better definition from Herman Jamke (hermanjamke(AT)fastmail.fm), Jul 10 2004
Offset corrected by Reinhard Zumkeller, Mar 18 2013

A256016 a(n) = n! * Sum_{k=0..n} k^n/k!.

Original entry on oeis.org

1, 1, 6, 57, 796, 15145, 374526, 11669665, 447595800, 20733553809, 1141067915290, 73552752257281, 5484203261135028, 467864288815609465, 45236104846954021014, 4915818294874879570305, 596044703812665607374256, 80118478395137652912476449, 11870487496575403846760198322
Offset: 0

Author

Vaclav Kotesovec, Jun 01 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[n!*Sum[k^n/k!,{k,0,n}],{n,1,20}]]
  • PARI
    a(n) = n!*sum(k=0, n, k^n/k!); \\ Michel Marcus, Aug 15 2020
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k*x)^k/(k!*(1-k*x))))) \\ Seiichi Manyama, Aug 23 2022

Formula

a(n) ~ e*Bell(n)*n!, for the Bell numbers see A000110.
a(n) ~ sqrt(2*Pi) * n^(2*n+1/2) * exp(n/LambertW(n)-2*n) / (sqrt(1+LambertW(n)) * LambertW(n)^n).
E.g.f.: Sum_{k>=0} (k * x)^k / (k! * (1 - k * x)). - Seiichi Manyama, Aug 23 2022
a(n) = n! * [x^n] B_n(x) * exp(x) / (1-x), where B_n(x) = Bell polynomials. - Seiichi Manyama, Jan 04 2024
a(n) = Sum_{k=0..n} k^n*(n-k)!*binomial(n,k). - Ridouane Oudra, Jun 16 2025

Extensions

a(0)=1 prepended by Seiichi Manyama, Aug 14 2020

A229311 Primitive numbers in A229307.

Original entry on oeis.org

3, 10, 55, 136, 253, 406, 1081, 1378, 1711, 2485, 3403, 3916, 5671, 6328, 8515, 9316, 11026, 13861, 14878, 15931, 18145, 19306, 25651, 27028, 28441, 31375, 32896, 34453, 36046, 42778, 48205, 50086, 60031, 62128, 64261, 73153, 75466, 87571, 92665, 97903
Offset: 1

Author

Keywords

Crossrefs

Cf. A014117 (numbers n such that A031971(n)==1 (mod n)).
Cf. A229300 (numbers n such that A031971(1806*n)== n (mod n*1806)).
Cf. A229301 (numbers n such that A031971(42*n) == n (mod 42*n)).
Cf. A229302 (numbers n such that A031971(6*n) == n (mod 6*n)).
Cf. A229303 (numbers n such that A031971(2*n) == n (mod 2*n)).
Cf. A229304 (numbers n such that A031971(1806*n) <> n (mod n*1806)).
Cf. A229305 (numbers n such that A031971(42*n) <> n (mod 42*n)).
Cf. A229306 (numbers n such that A031971(6*n) <> n (mod 6*n)).
Cf. A229307 (numbers n such that A031971(2*n) <> n (mod 2*n)).
Cf. A229308 (primitive numbers in A229304).
Cf. A229309 (primitive numbers in A229305).
Cf. A229310 (primitive numbers in A229306).
Cf. A229311 (primitive numbers in A229307).

Programs

  • Mathematica
    g[n_] := Mod[Sum[PowerMod[i, n, n], {i, 1, n}], n]; tachar[lis_, num_] := Select[lis, ! IntegerQ[#1/num] &]; primi[{}]={}; primi[lis_] := Join[{lis[[1]]}, primi[tachar[lis, lis[[1]]]]]; primi@Select[Range[500], !g[2*#] == # &]

A229308 Primitive numbers in A229304.

Original entry on oeis.org

10, 26, 55, 57, 58, 136, 155, 222, 253, 346, 355, 381, 737, 876, 904, 1027, 1055, 1081, 1552, 1711, 1751, 1962, 2155, 2696, 2758, 3197, 3403, 3411, 3775, 3916, 4063, 4132, 4401, 5093, 5671, 6176, 6455, 6567, 7111, 7226, 8251, 8515, 8702, 9294, 9316, 9465
Offset: 1

Author

Keywords

Crossrefs

Cf. A014117 (numbers n such that A031971(n)==1 (mod n)).
Cf. A229300 (numbers n such that A031971(1806*n)== n (mod n*1806)).
Cf. A229301 (numbers n such that A031971(42*n) == n (mod 42*n)).
Cf. A229302 (numbers n such that A031971(6*n) == n (mod 6*n)).
Cf. A229303 (numbers n such that A031971(2*n) == n (mod 2*n)).
Cf. A229304 (numbers n such that A031971(1806*n) <> n (mod n*1806)).
Cf. A229305 (numbers n such that A031971(42*n) <> n (mod 42*n)).
Cf. A229306 (numbers n such that A031971(6*n) <> n (mod 6*n)).
Cf. A229307 (numbers n such that A031971(2*n) <> n (mod 2*n)).
Cf. A229308 (primitive numbers in A229304).
Cf. A229309 (primitive numbers in A229305).
Cf. A229310 (primitive numbers in A229306).
Cf. A229311 (primitive numbers in A229307).

Programs

  • Mathematica
    g[n_] := Mod[Sum[PowerMod[i, n, n], {i, 1, n}], n]; tachar[lis_, num_] := Select[lis, ! IntegerQ[#1/num] &];primi[{}] = {}; primi[lis_] := Join[{lis[[1]]}, primi[tachar[lis, lis[[1]]]]]; primi@Select[Range[70], ! g[1806*#] == # &]
Previous Showing 11-20 of 83 results. Next